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SYMBOLIC APPROACH TO THE QUADRATIC DECOMPOSITION OF APPELL
SEQUENCES

Safia Mekhalfa1 and Mohamed Cherif Bouras

ABSTRACT. In this paper, we characterize the four derived sequences obtained by
the symbolic approach to the quadratic decomposition of Appll sequences. More-
over, we prove that the two monic polynomial sequences associated to such qua-
dratic decomposition are also Appell sequences.

1. INTRODUCTION

Let P be the linear space of polynomials in one variable with complex coeffi-
cients and let P ′ be its algebraic dual. ⟨u, f⟩ denotes the action of u in P ′ on f in
P and by (u)n := ⟨u, xn⟩ , n ≥ 0, the moments of u with respect to the monomial
sequence {xn}n≥0. When (u)0 = 1, the linear functional u is said to be normalized.
In this work we need to recall some operations in P ′, (see [4,6]). For any u in P ′,
any q in P, let Du = u′and qu be respectively the derivative, the left multiplication
of the linear functionals defined by duality:〈

u
′
, f
〉
:= −⟨u, f ′⟩ ,

⟨qu, f⟩ := ⟨u, qf⟩ .
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Recall that a linear operator L : P → P has a transpose tL : P ′ → P ′defined by

(1.1)
〈
tL (u) , f

〉
= ⟨u, L (f)⟩ , u ∈ P

′
, f ∈ P ,

then D is the differential operator. Thus, the differentiation operator D on forms
is minus the transpose of the differentiation operator D on polynomials.

The linear functional u is called regular (quasi-definite) if we can associate with
it a polynomials sequence {Pn}n≥0 such that

(1.2) ⟨u, PnPm⟩ = knδn,m

with kn ̸= 0, for every n,m ≥ 0, {Pn}n≥0 is said to be orthogonal with respect to
u [4,6,7].

Definition 1.1. [4] A sequence of monic polynomials {Pn}n≥0 is called orthogonal
with respect to the linear functional u if the following orthogonality conditions hold

⟨u, Pn (x)Pm (x)⟩ = 0, n ̸= m,

⟨u, P 2
n (x)⟩ ≠ 0, n ≥ 0,

where degPn = n, for every n ≥ 0.

In this case, {Pn}n≥0 satisfies the following two order recurrence relation:{
Pn+1(x) = (x− βn)Pn(x)− γnPn−1(x), n ≥ 1,

P0(x) = 1, P1(x) = x− β0

where βn =
⟨u, xP 2

n(x)⟩
⟨u, P 2

n(x)⟩
and γn+1 =

〈
u, P 2

n+1(x)
〉

⟨u, P 2
n(x)⟩

̸= 0, n ≥ 0.

We will denote as
{
P

[1]
n

}
n≥0

the MPS obtained from given MPS by a single

differentiation P
[1]
n (x) :=

1

n+ 1
P ′
n+1 (x) , n ≥ 0.

Denote by (a)n the Pochhammer symbol defined by

(1.3) (a)n =

{
1, if n = 0,

a(a− 1)(a− 2)...(a− n+ 1), if n ≥ 1.

Definition 1.2. A linear mapping M of P into itself is called lowering operator when
M(1) = 0 and deg(M(xn)) = n− 1, n ≥ 1.

Definition 1.3. An Appell sequence is a MPS {Pn}n≥0 such that P
[1]
n (x) =

1
n+1

P ′
n+1 (x), n ≥ 0, [1,4,9].
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Definition 1.4. A MPS {Pn}n⪰0 is called an M−Appell sequence with respect to a
lowering operator M if Pn(x) = P

[1]
n (x;M) for all integers n ≥ 0, [2,3]

2. SYMBOLIC APPROACH OF APPELL SEQUENCES

Let {Pn}n≥0 a MPS, it is always possible to associate with it two MPS {Qn}n≥0

and {Rn}n≥0 and two sequences {Sn}n≥0 and {Tn}n≥0 such that

(2.1) P2n(x) = Qn(x
2 + a) + xSn−1(x

2 + a),

(2.2) P2n+1(x) = Tn(x
2 + a) + xRn−1(x

2 + a).

where deg Sn ≤ n, deg Tn ≤ n, n ≥ 0, S−1(x) = 0, [4,5].
As a consequence, a MPS {Pn}n≥0 is symmetric, that is Pn(−x) = (−1)nPn(x),

n ≥ 0, if and only if Sn(x) = Tn(x) = 0, n ≥ 0, [5,8].

Theorem 2.1. Let {Pn}n≥0 an appell polynomials sequence satisfied (2.1) and (2.2) ,

then the sequences {Qn}n≥0 , {Rn}n≥0 , {Sn}n≥0 and {Tn}n≥0 are given by

Qn(x) =
1

(2n+ 1)(n+ 1)
(L−1Qn+1) , n ≥ 0,(2.3)

Rn(x) =
1

(2n+ 3)(n+ 1)
(L1Rn+1) , n ≥ 0,

Sn(x) =
1

(2n+ 3)(n+ 2)
(L1Sn+1) , n ≥ 0,

Tn(x) =
1

(2n+ 3)(n+ 1)
(L−1Tn+1) , n ≥ 0,

where the operateur Lα with α = 1 or α = −1 defined by

Lα = 2L+ αD,

where L = D(x− a)D.

Proof. By differenting (2.1) , we have

2nP
[1]
2n−1(x) = 2xnQ

[1]
n−1(x

2 + a) + Sn−1(x
2 + a) + 2x2S ′

n−1(x
2 + a),

replacing n by n+ 1, we obtain

2(n+ 1)P
[1]
2n+1(x) = 2x(n+ 1)Q[1]

n (x2 + a) + Sn(x
2 + a) + 2x2S

′

n(x
2 + a),
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using (2.2) , we get

2(n+ 1)
[
Tn(x

2 + a) + xRn−1(x
2 + a)

]
= 2x(n+ 1)Q[1]

n (x2 + a) + Sn(x
2 + a) + 2x2S

′

n(x
2 + a),

then {
2(n+ 1)Tn(x

2 + a) = Sn(x
2 + a) + 2x2S

′

n(x
2 + a)

Rn−1(x
2 + a) = Q[1]

n (x2 + a)

x2 + a to replace by x, we have

(2.4) 2(n+ 1)Tn(x) = Sn(x) + 2(x− a)S
′

n(x), n ≥ 0,

(2.5) Rn−1(x) = Q[1]
n (x), n ≥ 0.

By differenting (2.2) , we have

(2n+ 1)P
[1]
2n (x) = 2xT

′

n(x
2 + a) +Rn(x

2 + a) + 2nx2R
[1]
n−1(x

2 + a),

using (2.1) , we get

(2n+ 1)
[
Qn(x

2 + a) + xSn−1(x
2 + a)

]
= 2xT

′

n(x
2 + a) +Rn(x

2 + a) + 2nx2R
[1]
n−1(x

2 + a),

then  (2n+ 1)Qn(x
2 + a) = Rn(x

2 + a) + 2nx2R
[1]
n−1(x

2 + a),

(2n+ 1)Sn−1(x
2 + a) = 2T

′

n(x
2 + a),

x2 + a to replace by x, we have

(2.6) (2n+ 1)Qn(x) = Rn(x) + 2n(x− a)R
[1]
n−1(x), n ≥ 0,

(2.7) (2n+ 1)Sn−1(x) = 2T
′

n(x), n ≥ 0.

n to rplace by n+ 1 in (2.6) , we obtain

(2n+ 3)Qn+1(x) = Rn+1(x) + 2(n+ 1)(x− a)R[1]
n (x), n ≥ 0,

by differentiating, we get

(2n+ 3) (n+ 1)Q[1]
n (x) = R′

n+1(x) + 2
(
(x− a)R

′

n+1(x)
)′
.
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Using (2.5) , then

(2.8) (2n+ 3) (n+ 1)Rn(x) = R′
n+1(x) + 2

(
(x− a)R

′

n+1(x)
)′
.

From (2.6)

(2n+ 1)Qn(x) = Q[1]
n (x) + 2n(x− a)R

[1]
n−1(x)

=
Q

′
n+1(x)

n+ 1
+ 2(x− a)R

′

n(x)

=
Q

′
n+1(x)

n+ 1
+ 2(x− a)

(
Q[1]

n (x)
)′

=
Q

′
n+1(x)

n+ 1
+ 2(x− a)

(
Q

′
n+1(x)

n+ 1

)′

=⇒ (2n+ 1) (n+ 1)Qn(x) = Q
′

n+1(x) + 2(x− a)Q
′′

n+1(x),

so,

(2.9) (2n+ 1) (n+ 1)Qn(x) =
(
2(x− a)Q

′

n+1(x)
)′

−Q
′

n+1(x).

From (2.8) and (2.9) can be write

Rn(x) =
1

(2n+ 3) (n+ 1)

[
2(x− a)D2 + 3D

]
Rn+1(x),

and
Qn(x) =

1

(2n+ 1) (n+ 1)

[
2(x− a)D2 +D

]
Qn+1(x).

Further, n to replace by n+ 1 in(2.7) , we find

(2n+ 3)Sn(x) = 2T
′

n+1(x),

replacing the above expression in (2.4) , we obtain

(2n+ 3) (n+ 1)Tn(x) = T
′

n+1(x) + 2(x− a)
(
T

′

n+1(x)
)′

= T
′

n+1(x) + 2

[(
(x− a)T

′

n+1(x)
)′

− T
′

n+1(x)

]
= 2

(
(x− a)T

′

n+1(x)
)′

− T
′

n+1(x).

Hence
Tn(x) =

2

(2n+ 3) (n+ 1)

[
(x− a)D2 +D

]
Tn+1(x).
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From (2.7) and on account of (2.4) , can be write

(2n+ 3)Sn(x) = 2T
′

n+1(x)

=
1

n+ 2

(
Sn+1(x) + 2(x− a)S

′

n+1(x)
)′

=
1

(2n+ 3) (n+ 2)

[(
2(x− a)S

′

n+1(x)
)′

+ S
′

n+1(x

]
.

□

Proposition 2.1. Let {Pn}n≥0 an appell polynomials sequence satisfied (2.1) and
(2.2) , then either {Pn}n⪰0 is symmetric or there exists an integer p ≥ 0 such that
Sp(x) ̸= 0 (respectively, Tp(x) ̸= 0). In this case, we have

Sn(x) = 0, 0 ≤ n ≤ p− 1, p ≥ 1,(2.10)

Tn(x) = 0, 0 ≤ n ≤ p− 1, p ≥ 1,

(2.11) Sp+n(x) =

(
n+ p+ 1

n

)
(p+ 3

2
)n

(3
2
)n

SpS̃n(x), n ≥ 0,

(2.12) Tp+n(x) =

(
n+ p

n

)
(p+ 3

2
)n

(1
2
)n

TpT̃n(x), n ≥ 0,

where S̃n and T̃n are two monic polynomials fulfilling deg S̃n(x) = n and deg T̃n(x) =

n, n ≥ 0, (a)n is given by (1.3).

Proof. Firstly, If {Pn}n⪰0 is a symmetric sequence, then

Sn(x) = Tn(x) = 0, n ≥ 0.

Reciprocally, if Sn(x) = 0, n ≥ 0, then from (2.4)

Tn(x) = 0, n ≥ 0.

Moreover, if Tn(x) = 0, n ≥ 0, then from (2.7)

Sn(x) = 0, n ≥ 0.
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Now, if {Pn}n⪰0 is not a symmetric sequence, then it exists the smallest integer
p ≥ 0 such that

Sp(x) ̸= 0

and

Sn(x) = 0, 0 ≤ n ≤ p− 1, p ≥ 1.

From (2.7), we have

Tn(x) = constant, 0 ≤ n ≤ p.

On the other hand, using (2.4) , we obtain

Tn(x) = 0, 0 ≤ n ≤ p− 1,

and

2(p+ 1)Tp = Sp(x) + 2(x− a)Śp(x),

this leads to
Sp(x) = constant = Sp ̸= 0,

with
Sp = (p+ 1)Tp.

Taking into account (2.4) and (2.7) , we have

deg(Sn+p) = n, n ≥ 0

and

deg(Tn+p) = n, n ≥ 0.

Therefore, it exists two nonzero sequences {ξn}n≥0 and {νn}n≥0 such that

Sn+p(x) = ξnS̃n(x), n ≥ 0,

Tn+p(x) = νnT̃n(x), n ≥ 0,

where S̃n and T̃n are two monic polynomials of degree n, n ≥ 0, ξ0 = Tp and ν0

= 2(p+ 1)Tp.
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According to (2.4) and (2.7) , we deduce that

ξn =

(
n+ 1 + p

n

)(
p+ 3

2

)
n(

3
2

)
n

ξ0,

νn =
n+ 1

2

n+ p+ 1
ξn, n ≥ 0.

□

Now, given a MPS {Pn}n⪰0 , we construct the sequence {P [1]
n (.;M)}n≥0 defined

by

(2.13) P [1]
n (x;M) = χn(MPn+1)(x), n ≥ 0,

where χn ∈ C− {0}, n ≥ 0, is chosen for making P
[1]
n (.;M) monic. Thus, we have

(2.14) P [1]
n (x;Lα) =

1

(n+ 1) [2(n+ 1) + α]
(LαPn+1)(x), n ≥ 0.

where α ̸= −2(n+ 1), n ≥ 0. Consequently, relations (2.13) and (2.14) become

Qn(x) = Q[1]
n (x;L−1), n ≥ 0,

Rn(x) = R[1]
n (x;L1), n ≥ 0.

According to the definition 1.4, the Theorem 2.1 allows us to conclude that {Qn}n⪰0

is L−1−Appell and {Rn}n⪰0 is L1−Appell.
Moreover, from (2.3) and (2.11), (2.12) given in Proposition 2.1, we may say that

the sequences {S̃n}n≥0 and {T̃n}n≥0 are L1 and L−1−Appell, respectively.

3. Lα−APPELL SEQUENCES

Let {Pn}n≥0 be a MPS with dual sequence {un}n≥0 and let {u[1]
n Lα}n≥0 be the

dual sequence of {P [1]
n (.;Lα)}n≥0 .

From (1.1) , the transpose tLα defined by〈
tLαu, p

〉
= ⟨u, Lαp⟩ = ⟨u, (2L+ αD)p⟩

=
〈
(2tL− αD)u, p

〉
, p ∈ P ,

then
tLα = 2tL− αD.
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And as tD = −D this leads to tL = L. Thus, tLα := L−α where Lα is defined on P
and P´.

Now it is easy to prove that

Lα(pq) = p(Lαq) + q(Lαp) + 4xp
′
q′, p, q ∈ P,(3.1)

Lα(pu) = u(Lαp) + p(Lαu) + 4xp′u′, p ∈ P, u ∈ P´.(3.2)

Lemma 3.1. The sequence {u[1]
n (Lα)}n≥0 satisfies

(3.3) L−α(u
[1]
n (Lα)) = (n+ 1) [2(n+ 1) + α]un+1, n ≥ 0.

Proof. According to (1.2) , we have〈
u[1]
n (Lα), P

[1]
m (x;Lα)

〉
= δn,m n, m ≥ 0,〈

u[1]
n (Lα), Lα(Pm+1)

〉
= (n+ 1) [2(n+ 1) + α] δn,m n, m ≥ 0,〈

L−α(u
[1]
n (Lα), Pm+1

〉
= (n+ 1) [2(n+ 1) + α] δn,m n, m ≥ 0.(3.4)

In particular, 〈
L−α(u

[1]
n (Lα)), Lαm+1

〉
= 0, m ≥ n+ 1, n ≥ 0.

This implies [9,10]

L−α(u
[1]
n (Lα)) =

n+1∑
k=0

µn,k uk, n ≥ 0

with µn,k =
〈
L−α(u

[1]
n (Lα)), Pk

〉
, 0 ≤ k ≤ n + 1. Consequently, from (3.3),we get

(3.4). □

Proposition 3.1. Let {Pn}n≥0 be a MPS, {Pn}n≥0 is a Lα −Appell sequence if and
only if its dual sequence {un}n≥0 satisfies

(3.5) un =
1

n!2n
(
1 + α

2

)
n

Ln
−α(u0), n ≥ 0.

Proof. Necessary condition, from (3.3), the sequence {un}n≥0 satisfies

(3.6) L−α(un) = (n+ 1) [2(n+ 1) + α)]un+1, n ≥ 0.

For n = 0, we have

u1 =
1

2 + α
L−αu0.
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By recurrence, we obtain (3.5).
Sufficient condition, from (3.5), we have (3.6) is satisfied. Comparing (3.6) with

(3.3), we obtain
L−α(u

[1]
n (Lα)) = L−αun, n ≥ 0.

The operator Lα satisfies Lα(P) = P and L−α is on P´. Then u
[1]
n (Lα) = un, n ≥

0. □
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