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THE RELAXED MAXIMUM PRINCIPLE FOR G-STOCHASTIC CONTROL
SYSTEMS WITH CONTROLLED JUMPS

H. Ben Gherbal1, A. Redjil, and O. Kebiri

ABSTRACT. This paper is concerned with optimal control of systems driven by G-
stochastic differential equations (G-SDEs), with controlled jump term. We study
the relaxed problem, in which admissible controls are measure-valued processes
and the state variable is governed by an G-SDE driven by a counting measure val-
ued process called relaxed Poisson measure such that the compensator is a prod-
uct measure. Under some conditions on the coefficients, using the G-chattering
lemma, we show that the strict and the relaxed control problems have the same
value function. Additionally, we derive a maximum principle for this control prob-
lem.

1. INTRODUCTION

We consider a stochastic control problem where the state variable is a solution
of a SDE driven by a G-Brownian motion with jumps, the control enters both the
drift and the jump term. More precisely the system evolves according to the SDE
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(1.1)


dxt= b(t, xt, ut)dt+ σ(t, xt)dBt+γ(t, xt, ut)d⟨B⟩t

+

∫
Γ

f(t, xt− , θ, ut)Ñ(dt, dθ)

x0= x

,

on some space of sublinear expectation (Ω, H, Ê, FP), where FP is the universal
filtration, with P is a tight family of possibly mutually singular probability mea-
sures, and b, σ, γ, f are given deterministic functions, u is the control process. We
consider here an independent Poisson random measure N ; whose compensator is
given by v(dθ)dt.

The expected cost to be minimized over the class of admissible controls is de-
fined by:

(1.2) J(x;u) = sup
P∈P

EP

g(xT ) + T∫
0

h(t, xt, ut)dt

 = Ê

g(xT ) + T∫
0

h(t, xt, ut)dt

 ,
where x is the initial condition of the process (xt)t∈[0,T ].

We defined then the value function V by:

(1.3) V (x) := inf
u∈U

J(x;u),

where U is the set of admissible controls, a control process that verify (1.3) is
called optimal.

In the recent years the framework of G-expectation has found increasing ap-
plication in the domain of finance and economics, e.g., Epstein and Ji [16, 17]
study the asset pricing with ambiguity preferences, Beissner [5] who studies the
equilibrium theory with ambiguous volatility, and many others see e.g [6,48,49],
also see [25–27]. for numerical methods. The motivation is that many systems
are subject to model uncertainty or ambiguity due to incomplete information, or
vague concepts and principles. Aspects of model ambiguity such as volatility un-
certainty have been studied by Peng (2007, 2008, 2010, [39–41]) who introduced
a sublinear expectation with a process called G-Brownian motion, also by Denis
and Martini [13] who suggested a structure based on quasi-sure analysis from ab-
stract potential theory to construct a similar structure using a tight family P of
possibly mutually singular probability measures.
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The strict control problem may fail to have an optimal solution, if we don’t
impose some kind of convexity assumption. In this case, we must embed the
space of strict controls into a larger space that has nice properties of compactness
and convexity. This space is that of probability measures on A, where A is the
set of values taken by the strict control. These measure valued processes are
called relaxed controls. In the classical framework, the first existence result of an
optimal relaxed control is proved by Fleming [18], for the SDEs with uncontrolled
diffusion coefficient and no jump term. For such systems of SDEs a maximum
principle has been established in [2, 3, 34]. The case where the control variable
appears in the diffusion coefficient has been solved in [14]. The existence of
an optimal relaxed control of SDEs, where the control variable enters in the jump
term was derived by Kushner [31], also recently the work given by H. Ben Gherbal
and B. Mezerdi [7] of relaxed stochastic maximum principle in optimal control of
diffusions with controlled jumps, for which the state variable is governed by a
SDE driven by a counting measure valued process called relaxed Poisson measure,
where the existence of an optimal relaxed control and a Pontryagin maximum
principle were proved.

In the G-framework, the existence of an optimal relaxed control is established
In 2018, by Redjil and Choutri [42], where a stochastic differential equation is
considered without jump term and an uncontrolled diffusion coefficient, the cele-
brate Chattering lemma was generalized in the G-framework and the existence of
relaxed optimal control was proved. The same result in the case with jump term
is recently proved by A. Redjil, H. Ben Gherbal and O. Kebiri [43].

In this paper, we establish a Pontryagin maximum principle for the relaxed con-
trol problem given by (2.1) and (2.2). More precisely we derive necessary con-
ditions for optimality satisfied by an optimal control. The proof is based on the
results obtained in [43], Pontryagin’s maximum principle for nearly optimal strict
controls and some stability results of trajectories and adjoint processes with re-
spect to the control variable. In our case the diffusion coefficient is uncontrolled
because our control set is not convex, by this the controlled case require more
work and two-adjoint equation. We let this case as a future work.

The motivation of our work came from applications in finance when a jump
process models the stock price where we can’t estimate exactly the coefficients
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of the noise. The uncertainty in the noise coefficient will produce a G-SDE with
jump, if then we want to control this dynamic, this lead a controlled G-SDE with
jump.

The rest of the paper is organized as follows: in the next section, we formulate
the control problem, and introduce the assumptions of the model. Section 3 is
devoted to the proof of the approximation and stability results. In the last section,
we state and prove a maximum principle for our relaxed control problem, which
is the main result of this paper.

2. FORMULATION OF THE PROBLEM

2.1. G-Strict control problem. We consider a control problem of systems gov-
erned by stochastic differential equations on some sublinear expectation space
(Ω, H,Ê, FP), such that FP the universal filtration defined by FP =

{
F̂P

t

}
t≥0

,

where F̂P
t :=

⋂
P∈P

(FP
t ∨NP) for t ≥ 0, such that FP

t := F+
t ∨N P(F+

t ) is the right con-

tinous P−completed filtrations generated by a G−Brownian motion B and an in-
dependent Poisson measure N , with compensator ν(dθ)dt, and NP :=

⋂
P∈P

N P(F∞)

the family of polar sets, where N P(F∞) is the P−negligible sets. The jumps are
confined to a compact set Γ, and set

Ñ(dt, dθ) = N(dt, dθ)− ν(dθ)dt.

Consider a compact set A in Rk and let U the class of measurable, adapted
processes u : [0;T ]×Ω −→ A, such that u ∈M2

G (0, T ) . For any u ∈ U , we consider
the following stochastic differential equation (SDE)

(2.1)


dxt= b(t, xt, ut)dt+ σ(t, xt)dBt+γ(t, xt, ut)d⟨B⟩t

+

∫
Γ

f(t, xt− , θ, ut)Ñ(dt, dθ)

x0= x,

where

b : [0;T ]× Rn × A −→ Rn

σ : [0;T ]× Rn −→ Mn×d(R)
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γ : [0;T ]× Rn × A −→ Rn×n

f : [0;T ]× Rn × Γ× A −→ Rn

are bounded, measurable and continuous functions.
The expected cost is given by

(2.2) J(u) = sup
P∈P

EP

g(xT ) + T∫
0

h(t, xt, ut)dt

 = Ê

g(xT ) + T∫
0

h(t, xt, ut)dt

 ,
where,

g : Rn −→ R

h : [0;T ]× Rn × A −→ R,

be bounded and continuous functions.
The problem is to minimize the functional J(.) over U . A control that solves this

problem is called optimal.
We note that from the result of [35], equation (2.1) has a unique solution, under

these assumptions (A):
(A1) Let be b, σ, γ and f bounded and lipschitz continuous with respect to the

state variable x uniformly in (t, u), also we suppose that γ(t, x, .) is a symmetric
d× d matrix with each element.

(A2) For all (t, x, θ) ∈ [0, T ]×Rn×Γ the functions b(t, x, .), f(t, x, θ, .) and γ(t, x, .)
are continuous in u ∈ U .

(A3) b(., x, .), γ(., x, .) and σ(., x) taking value in M2
G(0, T ) and f(., x, ., .) takes

value in Ĥ2
G(0, T ).

(A4) The functions g and h(., x, .) are taking value in M2
G(0, T ) and bounded.

Moreover we suppose that g is lipschitz continuous, and h is lipschitz continuous
with respect to the state variable x uniformly in time and control (t, u).

2.2. The G-relaxed control problem. Let (A, d) be a separable metric space and
P(A) be the space of probability measures on the set A endowed with its Borel
σ-algebra B(A). The class M([0, T ] × A) of relaxed controls we consider in this
paper is a subset of the set M([0, T ]×A) of Radon measures ν(dt, da) on [0, T ]×A

equipped with the topology of stable convergence of measures, whose projections
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on [0, T ] coincide with the Lebesgue measure dt, and whose projection on A coin-
cide with some probability measure µt(da) ∈ P(A) i.e. ν(da, dt) := µt(da)dt. The
topology of stable convergence of measures is the coarsest topology which makes
the mapping

q 7→
∫ T

0

∫
A

φ(t, a)q(dt, da)

continuous, for all bounded measurable functions φ(t, a) such that for fixed t,
φ(t, ·) is continuous. Equipped with this topology,M :=M([0, T ]×A) is a separable
metrizable space. Moreover, it is compact whenever A is compact. The topology
of stable convergence of measures implies the topology of its weak convergence.
For further details see [14,15].

Now we present the following definitions:

Definition 2.1. Lip(Ω) is the set of random variables of the form

ξ := φ(Bt1 , Bt2 , . . . , Btn)

for some bounded Lipschitz continuous function ϕ on Rd×n and 0 ≤ t1 ≤ t2 ≤ · · · ≤
tn ≤ T . The coordinate process (Bt, t ≥ 0) is called G-Brownian motion whenever
B1 is G-normally distributed under Ê [·] and for each s, t ≥ 0 and t1, t2, . . . , tn ∈ [0, t]

we have
Ê[φ(Bt1 , . . . , Btn , Bt+s −Bt)] = Ê[ψ(Bt1 , . . . , Btn)],

where ψ(x1, . . . , xn) = Ê[φ(x1, . . . , xn,
√
sB1)]. This property implies that the incre-

ments of the G-Brownian motion are independent and that Bt+s − Bt and Bs are
N(0, sΣ)-distributed.

Next, we introduce the class of relaxed stochastic controls on (ΩT ,H, Ê), where
H is a vector lattice of real functions on Ω such that Lip(ΩT ) ⊂ H.

Definition 2.2. A relaxed stochastic control on (ΩT , Lip(ΩT ), Ê) is a random mea-
sure q(ω, dt, da) = µt(ω, da)dt such that for each subset C ∈ B(A), the process
(µt(C))t∈[0,T ] is FP -progressively measurable i.e. for every t ∈ [0, T ], the mapping
[0, t]× Ω → [0, 1] defined by (s, ω) 7→ µs(ω,A) is B([0, t])⊗ F̂P

t -measurable. In par-
ticular, the process (µt(C))t∈[0,T ] is adapted to the universal filtration FP . We denote
by R the class of relaxed stochastic controls.

The set U ([0, T ]) of strict controls constituted of FP -adapted processes u tak-
ing values in the set A, embeds into the set R of relaxed controls through the
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mapping:
Φ : U ([0, T ]) ∋ u 7→ Φ(u)(dt, da) = δut(da)dt ∈ R.

Definition 2.3. Let µ a relaxed representation of an admissible control u , for each
Γ0 ⊂ Γ, Γ0 is a Borel set (Γ0 ∈ B(Γ)) and A0 ⊂ A, (A0 ∈ B(A)), we define:

N
µ

([0, t] , A0,Γ0) :=
we denote by

N
µ

(t, A0,Γ0) =

∫ t

0

∫
Γ0

1A0(us)N(ds, dθ).

N
µ is the number of jumps of

∫ t

0

∫
Γ0
θN(ds, dθ) on [0, t] with values in Γ0 and where

us ∈ A0 at the jump times s.
Since 1A0(us) = µs(A0); then the compensator of the counting measure valued

process Nµ is
v(dθ)µt(da)dt = µt ⊗ v(da, dθ).

Definition 2.4. A relaxed Poisson measure Nµ is a counting measure valued process
such that its compensator is the product measure of the relaxed control µ with the
compensator v of N such that for each Γ0 ⊂ Γ, Γ0 is a Borel set (Γ0 ∈ B(Γ)) and
A0 ⊂ A, (A0 ∈ B(A)), the processes

Zµ = Ñ
µ

(t, A0,Γ0) = N
µ

(t, A0,Γ0)− µ(t, A0)ν(Γ0)

are F̂P
t −martingales and orthogonal for disjoint Γ0 × A0, because according to [7],

the processes Zµ are FP
t - martingales for each P ∈ P , and so is an F̂P

t -martingale,
also are orthogonal for disjoint Γ0 × A0.

Proposition 2.1. For any bounded measurable function φ with real values, the pro-
cess Y given by:

Yt =

∫ t

0

∫
Γ

∫
A

φ(s, xs− , θ, a)N
µ(dt, dθ, da)−

∫ t

0

∫
Γ

∫
A

φ(s, xs− , θ, a)v(dθ)µs(da)ds

is an F̂P
t −martingale.

Proof. By the definition of G−martingale [41] Y is an F̂P
t −martingale means that

Y is an FP
t -supermartingale for each probability sufficiently. And this is verified

in our case because from H. Ben Gherbal and B. Mezerdi [7] the process Y is an
FP

t -martingale for each P ∈ P . □

Proposition 2.2. Consider a sequence of (µn
s ⊗ ν)n converging weakly to µs ⊗ ν on

Ω × [0, T ] × A × Γ, there exists a sequence of orthogonal martingale measures Ñn
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defined on Ω× [0, T ]× A× Γ, such that for each bounded function φ:∫ t

0

∫
A

∫
Γ

φ(s,Xµ
s− , θ, a)Ñ

n(ds, dθ, da)

−→
n→∞

∫ t

0

∫
A

∫
Γ

φ(s,Xµ
s− , θ, a)Ñ

µ(ds, dθ, da) quasi-surely.

Proof. Given a fixed probability measure, we have from [7]

P ∈ P =⇒
∫ t

0

∫
A

∫
Γ

φ(s, xµs− , θ, a)Ñ
n(ds, dθ, da)

→
∫ t

0

∫
A

∫
Γ

φ(s, xµs− , θ, a)Ñ
µ(ds, dθ, da) P-surely,

this means that we have the convergence outside a polar set, which means that
we have quasi surely convergence. □

Now we present our relaxed controlled system, theG-SDE with controlled jumps
in terms of relaxed Poisson measure is given by:

(2.3)


dxµt =

∫
A
b(t, xµt , a)µt(da)dt+ σ(t, xµt )dBt +

∫
A
γ(t, xµt , a)µt(da)d⟨B⟩t

+
∫
A

∫
Γ
f(t, xµt− , θ, a)Ñ

µ(dt, dθ, da)

xµ0 = 0.

The cost functional is given by:

J(µ) = Ê
[∫ T

0

∫
A

h(t, xµt , a)µt(da) dt+ g(xµT )

]
.

3. APPROXIMATION OF TRAJECTORIES AND STABILITY RESULTS

The next lemma, which called G-chattering lemma gives the approximation of
a relaxed control by a sequence of strict controls order for the relaxed control
problem. This result is considered essential in showing that the relaxed control
problem is a truly an extension of the strict one. We refer to [43] to more detail
of this subsection.

Lemma 3.1 (see [42]). Let (A, d) be a separable metric space and assume that A
is a compact set. Let (µt)t be an FP -progressively measurable process with values in
P (A). Then there exists a sequence (unt )n≥0 of FP -progressively measurable processes
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with values in A such that the sequence of random measures δun
t
(da)dt converges in

the sense of stable convergence (thus, weakly) to µt(da)dt quasi-surely:

µn
t (da)dt = δun

t
(da)dt −→ µt(da)dt quasi-surely.

Lemma 3.2 (See [43]). Under our assumption (A), for every P ∈ P, it holds that

(1)

(3.1) lim
n→∞

EP
[
sup

0≤t≤T
|xnt − xµt |

2

]
= 0,

and

(3.2) lim
n→∞

JP(un) = JP(µ).

(2) Moreover,

(3.3) inf
u∈U

JP(u) = inf
µ∈R

JP(µ),

and there exists a relaxed control µ̂P ∈ R such that JP(µ̂P) = infµ∈R J
P(µ).

The next theorem gives the stability of the stochastic differential equations with
respect to the control variable, and that the two problems has the same infimum
of the expected costs.

Theorem 3.1 (See [43].). Under our assumption (A) we have:

(1) Let µ be a relaxed control and let xµ the corresponding trajectory. Then there
exists a sequence (un) of strict controls such that:

lim
n−→∞

Ê
[
sup

0≤t≤T
|xnt − xµt |

2

]
= 0,

where xnt denotes the trajectory associated to un.
(2) Let J(un) and J(µ) be the cost functional corresponding respectively to un

and µ (where dtδun(t)(da) converges weakly to dtµt(da) quasi-surely). Then,
there exists a subsequence (unk) of (un) such that

lim
k−→∞

J(unk) = J(µ).
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4. MAXIMUM PRINCIPLE FOR RELAXED CONTROL PROBLEMS

Our main goal in this section is to establish optimality necessary conditions
for relaxed control problem, where the system is described by a G-SDE driven
by a relaxed Poisson measure. The proof is based on the G-chattering lemma,
we derive necessary conditions of near optimality satisfied by a sequence of strict
controls. By using stability properties of the state equations and adjoint processes,
we obtain the maximum principle for our relaxed problem.

4.1. The maximum principle for strict control. Under the above hypothesis,
(2.1) has a unique strong solution and the cost functional (2.2) is well defined
from U into R, for more details see [43]. The purpose of this subsection is to
derive optimality necessary conditions satisfied by an optimal strict control. The
proof is based on the strong perturbation of the optimal control u∗, which defined
by:

uht =

{
νt if t ∈ [t0; t0 + h]

u∗t otherwise,

where 0 ≤ t0 < T is fixed, h is sufficiently small, and ν is an arbitrary A−valued
FP

t0
−measurable random such that under every P ∈ P, EP |ν|2 <∞. Let xht denotes

the trajectory associated with uht , then

xht = x∗t ; t ≤ t0

dxht = b(t, xht , νt)dt+ σ(t, xht )dBt+γ(t, x
h
t , νt)d⟨B⟩t

+

∫
Γ

f(t, xht− , θ, νt)Ñ(dt, dθ) ; t0 < t < t0 + h

dxht = b(t, xht , u
∗
t )dt+ σ(t, xht )dBt+γ(t, x

h
t , u

∗
t )d⟨B⟩t

+

∫
Γ

f(t, xht− , θ, u
∗
t )Ñ(dt, dθ) ; t0 + h < t < T.

We first have

Lemma 4.1. Under assumptions (A1)-(A2), we have for every P ∈ P, it holds that

(4.1) lim
h→0

EP
[
sup

0≤t≤T

∣∣xht − x∗t
∣∣2] = 0,
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and,

(4.2) lim
h→0

Ê

[
sup

t∈[t0;T ]

∣∣xht − x∗t
∣∣2] = 0.

Proof. Under every P ∈ P, the G-SDEs (2.1) and (2.3) becomes standard SDEs
driven by a standard Brownian motion B and a Poisson measure Ñ , the proof of
(4.1) follows from H. Ben Gherbal and B. Mezerdi [7], we sketch it here. Using
the fact that under P ∈ P, Ñ is a martingale and B is a continuous martingale
whose quadratic variation process ⟨B⟩ is such that πt = d⟨B⟩t

dt
is bounded by a

deterministic d× d symmetric positive definite matrix σ, and xh satisfy

dxht = b(t, xht , νt)dt+ σ(t, xht )dBt+πtγ(t, x
h
t , νt)dt+

∫
Γ

f(t, xht− , θ, νt)Ñ(dt, dθ),

then the result gives by a standard arguments from stochastic calculus, for more
detail see [7].

For the second limit, set

ςh = sup
t∈[t0;T ]

∣∣xht − x∗t
∣∣2 ,

if there is a θ > 0 such that Ê [ςh] ≥ θ, we can find a probability P ∈ P such
that Ê [ςh] ≥ θ − ε; ε → 0. Since P is weakly compact, there exists a subsequence
(Pnk

)k≥1 that converges weakly to some P ∈ P, hence

lim
h→0

EP [ςh] = lim
h→0

lim
k→∞

EPnk [ςh] ≥ lim inf
k→∞

EPnk [ςh] ≥ θ.

This contradicts (4.1). This complete the proof. □

Since u∗ is optimal, then

J(u∗) ≤ J(uh) = J(u∗) + h
dJ(uh)

dh

∣∣∣∣
h=0

+ ◦(h).

Thus, a necessary condition for optimality is that

dJ(uh)

dh

∣∣∣∣
h=0

≥ 0.
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Note that under every P ∈ P, the following properties hold, because b(t, x, u),
h(t, x, u), γ(t, x, u) and f(t, xt− , θ, u) are sufficiently integrable.

1

h

t+h∫
t

EP [|k(s, xs, us)− k(t, xt, ut)|2
]
h→ 0−−−→ 0 dt− a.e(4.3)

1

h

t+h∫
t

EP [|γ(s, xs, us)− γ(t, xt, ut)|2
]
h→ 0−−−→ 0 d⟨B⟩t − a.e(4.4)

(4.5)
1

h

∫
Γ

t+h∫
t

EP [|f(s, xs− , θ, us)− f(t, xt− , θ, ut)|2
]
υ(dθ) h→ 0−−−→ 0 dt− a.e,

where k stands for b or h.

Lemma 4.2. Under assumptions (A1)-(A3), it holds that

lim
h→0

Ê

[∣∣∣∣xht − x∗t
h

− zt

∣∣∣∣2
]
= 0.

Proof. We proceed as in H. Ben Gherbal and B. Mezerdi [7], let

yht =
xht − x∗t

h
− zt.

Then, we have for t ∈ [t0;t0 + h]

dyht = 1
h

[
b(t, x∗t + h(yht + zt), νt)− b(t, x∗t , u

∗
t )− hbx(t, x

∗
t , u

∗
t )zt

]
dt

+ 1
h

[
σ(t, x∗t + h(yht + zt))− σ(t, x∗t )− hσx(t, x

∗
t )zt

]
dBt

+ 1
h

[
γ(t, x∗t + h(yht + zt), νt)− γ(t, x∗t , u

∗
t )− hγx(t, x

∗
t , u

∗
t )zt

]
d⟨B⟩t

+ 1
h

∫
Γ

[
f(t, x∗t− + h(yht− + zt−), νt)− f(t, x∗t− , u

∗
t )− hfx(t, x

∗
t− , u

∗
t )zt−

]
Ñ(dt, dθ)

yht0 = −
[
b(t0, x

∗
t0
, νt0)− b(t0, x

∗
t0
, u∗t0)

]
.

Hence,

yht0+h =
1

h

t0+h∫
t0

[
b(t, x∗t + h(yht + zt), νt)− b(t, x∗t , νt)

]
dt
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+
1

h

t0+h∫
t0

[
b(t, x∗t , νt)− b(t, x∗t0 , νt)

]
dt

+
1

h

t0+h∫
t0

[
b(t, x∗t0 , νt)− b(t0, x

∗
t0
, νt)

]
dt+

1

h

t0+h∫
t0

[
b(t0, x

∗
t0
, u∗t0)− b(t, x∗t , u

∗
t )
]
dt

+
1

h

t0+h∫
t0

[
σ(t, x∗t + h(yht + zt))− σ(t, x∗t )

]
dBt

+
1

h

t0+h∫
t0

[
γ(t, x∗t + h(yht + zt), νt)− γ(t, x∗t , νt)

]
d⟨B⟩t

+
1

h

t0+h∫
t0

[
γ(t, x∗t , νt)− γ(t, x∗t0 , νt)

]
d⟨B⟩t

+
1

h

t0+h∫
t0

[
γ(t, x∗t0 , νt)− γ(t0, x

∗
t0
, νt)

]
d⟨B⟩t

+
1

h

t0+h∫
t0

[
γ(t0, x

∗
t0
, u∗t0)− γ(t, x∗t , u

∗
t )
]
d⟨B⟩t

+
1

h

t0+h∫
t0

∫
Γ

[
f(t, x∗t− + h(yht− + zt−), θ, νt)−f(t, x

∗
t− , θ, νt)

]
Ñ(dt, dθ)

+
1

h

t0+h∫
t0

∫
Γ

[
f(t, x∗t− , θ, νt)−f(t, x

∗
t−0
, θ, ν

t
)
]
Ñ(dt, dθ)

+
1

h

t0+h∫
t0

∫
Γ

[
f(t, x∗

t−0
, θ, ν

t
)−f(t0, x

∗
t−0
, θ, ν

t
)
]
Ñ(dt, dθ)

+
1

h

t0+h∫
t0

∫
Γ

[
f(t0, x

∗
t−0
, θ, ν

t
)−f(t0, x

∗
t−0
, θ, u∗t0)

]
Ñ(dt, dθ)



1326 H. Ben Gherbal, A. Redjil, and O. Kebiri

+
1

h

t0+h∫
t0

∫
Γ

[
f(t0, x

∗
t−0
, θ, u∗t0)−f(t, x

∗
t− , θ, u

∗
t )
]
Ñ(dt, dθ)

−
t0+h∫
t0

bx(t, x
∗
t , u

∗
t )ztdt−

t0+h∫
t0

γx(t, x
∗
t , u

∗
t )ztd⟨B⟩t

−
t0+h∫
t0

σx(t, x
∗
t )ztdBt −

t0+h∫
t0

∫
Γ

fx(t, x
∗
t− , θ, u

∗
t )ztÑ(dt, dθ).

Then, under every P ∈ P, we have

(4.6)

EP
∣∣yht0+h

∣∣2 ≤ C

[
EP sup

t0≤t≤t0+h

∣∣xht − x∗t
∣∣2

+ sup
t0≤t≤t0+h

EP
∣∣b(t, x∗t0 , νt0)− b(t0, x

∗
t0
, νt0)

∣∣2 dt
+ 1

h
EP

t0+h∫
t0

∣∣b(t0, x∗t0 , u∗t0)− b(t, x∗t , u
∗
t )
∣∣2 dt+ EP sup

t0≤t≤t0+h

∣∣x∗t − x∗t0
∣∣2

+ sup
t0≤t≤t0+h

EP
∣∣γ(t, x∗t0 , νt0)− γ(t0, x

∗
t0
, νt0)

∣∣2 d⟨B⟩t

+ 1
h
EP

t0+h∫
t0

∣∣γ(t0, x∗t0 , u∗t0)− γ(t, x∗t , u
∗
t )
∣∣2 d⟨B⟩t

+EP

t0+h∫
t0

∫
Γ

∣∣ν − u∗t0
∣∣2 υ(dθ)dt+ EP

t0+h∫
t0

|zt|2 dt

+ sup
t0≤t≤t0+h

EP
∫
Γ

∣∣∣f(t, x∗
t−0
, θ, νt0)−f(t0, x∗t−0 , θ, νt0)

∣∣∣2 υ(dθ)
+ 1

h
EP

t0+h∫
t0

∫
Γ

∣∣∣f(t0, x∗t−0 , θ, u∗t0)−f(t, x∗t− , θ, u∗t )∣∣∣2 υ(dθ)dt
 .

By lemma (4.1), and the properties (4.3), (4.4) and (4.5), it is easy to see that
for each P ∈ P, EP

∣∣yht0+h

∣∣2 tends to 0 as h→ 0.

Finally, we deduce that Ê
∣∣yht0+h

∣∣2 tends to 0 as h → 0 by the same way as in the
proof of lemma (4.1). For t ∈ [t0 + h;T ] , we denote xh,λt = x∗t + λh(yht + zt), then
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yht satisfies the following SDE:

dyht =
1

h

[
b(t, x∗t + h(yht + zt), u

∗
t )− b(t, x∗t , u

∗
t )
]
dt

+
1

h

[
σ(t, x∗t + h(yht + zt))− σ(t, x∗t )

]
dBt

+
1

h

[
γ(t, x∗t + h(yht + zt), u

∗
t )− γ(t, x∗t , u

∗
t )
]
d⟨B⟩t

+
1

h

∫
Γ

[
f(t, x∗t− + h(yht− + zt−), θ, u

∗
t )−f(t, x

∗
t− , θ, u

∗
t )
]
Ñ(dt, dθ)

−bx(t, x∗t , u∗t )ztdt− σx(t, x
∗
t )ztdBt −

∫
Γ

fx(t, x
∗
t− , θ, u

∗
t )ztÑ(dt, dθ),

then,

yht = yht0+h +

t∫
t0+h

1∫
0

bx(s, x
h,λ
s , u∗s)y

h
s dλds+

t∫
t0+h

1∫
0

σx(s, x
h,λ
s )yhs dλdBs

+

t∫
t0+h

1∫
0

γx(s, x
h,λ
s , u∗s)y

h
s dλd⟨B⟩s +

1∫
0

t∫
t0+h

∫
Γ

fx(s, x
h,λ
s , θ, u∗s)y

h
s dλÑ(ds, dθ) + ρht ,

where,

ρht =

t∫
t0+h

1∫
0

bx(s, x
h,λ
s , u∗s)zsdλds+

t∫
t0+h

1∫
0

σx(s, x
h,λ
s )zsdλdBs

+

t∫
t0+h

1∫
0

γx(s, x
h,λ
s , u∗s)zsdλd⟨B⟩s +

t∫
t0+h

1∫
0

∫
Γ

fx(s, x
h,λ
s , θ, u∗s)zsdλÑ(ds, dθ)

−
t∫

t0+h

bx(s, x
∗
s, u

∗
s)zsds−

t∫
t0+h

γx(s, x
∗
s, u

∗
s)zsd⟨B⟩s −

t∫
t0+h

σx(s, x
∗
s)zsdBs

−
t∫

t0+h

∫
Γ

fx(s, x
∗
s− , θ, u

∗
s)zsÑ(ds, dθ), .
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Hence, under every P ∈ P, we have

EP ∣∣yht ∣∣2 ≤ EP ∣∣yht0+h

∣∣2 +KEP

t∫
t0+h

∣∣∣∣∣∣
1∫

0

bx(s, x
h,λ
s , uhs )y

h
s dλ

∣∣∣∣∣∣
2

ds

+KEP

t∫
t0+h

∣∣∣∣∣∣
1∫

0

σx(s, x
h,λ
s )yhs dλ

∣∣∣∣∣∣
2

ds+KEP

t∫
t0+h

∣∣∣∣∣∣
1∫

0

γx(s, x
h,λ
s , uhs )y

h
s dλ

∣∣∣∣∣∣
2

d⟨B⟩s

+KEP

t∫
t0+h

∫
Γ

∣∣∣∣∣∣
1∫

0

fx(s, x
h,λ
s , θ, uhs )y

h
s dλ

∣∣∣∣∣∣
2

υ(dθ)ds+KEP ∣∣ρht ∣∣2 .
Since bx, σx, γx and fx are bounded, then

EP ∣∣yht ∣∣2 ≤ EP ∣∣yht0+h

∣∣2 + CEP

t∫
0

∣∣yhs ∣∣2 ds+KEP ∣∣ρht ∣∣2 .
We conclude by the continuity of bx, σx, γx and fx, and the dominated conver-

gence that limh→0 ρ
h
t = 0. Hence by the Gronwall lemma, and (4.6) we get

lim
h→0

sup
t0+h≤t≤T

EP ∣∣yht ∣∣2 = 0.

Finally, we deduce that Ê
∣∣yht ∣∣2 tends to 0 as h → 0 by the same way as in the

proof of lemma (4.1).
The second estimate is proved in a similar way. □

Choose t0 such that (4.3), (4.4) and (4.5) holds, then we have

Corollary 4.1. Under assumptions (A1)-(A3), one has

(4.7) 0 ≤ dJ(uh)

dh

∣∣∣∣
h=0

≤ Ê

gx(x∗T )zT +

T∫
0

hx(t, x
∗
t , u

∗
t )ztdt

 ,
where the process z is the solution of the linear SDE

(4.8)


dzt = bx(t, x

∗
t , u

∗
t )ztdt+ σx(t, x

∗
t )ztdBt + γx(t, x

∗
t , u

∗
t )ztd⟨B⟩t

+

∫
Γ

fx(t, x
∗
t− , θ, u

∗
t )zt−Ñ(dt, dθ); t0 ≤ t ≤ T

zt0 =
[
b(t0, x

∗
t0
, νt0)− b(t0, x

∗
t0
, u∗t0)

]
.
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We use the same notations as in the proof of lemma (4.2), to prove this corollary.

proof . We have by the definition of J that

1

h

[
J(uh)− J(u∗)

]
≤ 1

h
Ê

 T∫
t0

h(t, xht , u
h
t )dt+ g(xhT )

− Ê

 T∫
t0

h(t, x∗t , u
∗
t )dt+ g(x∗T )

 ,
then,

0 ≤ 1
h

[
J(uh)− J(u∗)

]
≤ Ê

 1∫
0

gx(x
h,λ
T )zTdλ+ 1

h

T∫
0

1∫
0

hx(t, x
h,λ
t , uht )z

h
t dλdt

+

T∫
0

1∫
0

hu(t, x
∗
t , u

h,λ
t )utdλdt

 .
From lemma (4.2), we obtain (4.7) by letting h tend to 0. □

Let us introduce the adjoint process, which is a G-backward stochastic differen-
tial equation (G-BSDE in short). We proceed as in [8], [47] and [7].

By the integration by parts formula, we can see that the solution of dzt is given
by zt = φtηt where

dφ(t, τ) = bx(t, x
∗
t , u

∗
t )φ(t, τ)dt+ σx(t, x

∗
t )φ(t, τ)dBt

+

∫
Γ

fx(t, x
∗
t− , θ, u

∗
t )φ(t

−, τ)Ñ(dt, dθ) + γx(t, x
∗
t , u

∗
t )d⟨B⟩t 0 ≤ τ ≤ t ≤ T,

φ(τ, τ) = Id,

and 

dηt = ψt

bu(t, x∗t , u∗t )ut −
∫
Γ

fu(t, x
∗
t− , θ, u

∗
t )utυ(dθ)

 dt

−ψt−

∫
Γ

(
fx(t, x

∗
t− , θ, u

∗
t ) + Id

)−1
fu(t, x

∗
t− , θ, u

∗
t )utN(dt, dθ)

+ψtγu(t, x
∗
t , u

∗
t )utd⟨B⟩t

η0 = 0,

with ψt is the inverse of φ satisfying suitable integrability conditions, and it is the
solution of the following equation
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

dψ(t, τ) = {σx(t, x∗t )ψ(t, τ)σx(t, x∗t )− bx(t, x
∗
t , u

∗
t )ψ(t, τ)

−
∫
Γ

fx(t, x
∗
t− , θ, u

∗
t )ψ(t

−, τ)υ(dθ)

 dt

−σx(t, x∗t )ψ(t, τ)dBt − γx(t, x
∗
t , u

∗
t )d⟨B⟩t

−ψ(t−, τ)
∫
Γ

(
fx(t, x

∗
t− , θ, u

∗
t ) + Id

)−1
fx(t, x

∗
t− , θ, u

∗
t )N(dt, dθ)

0 ≤ τ ≤ t ≤ T,

ψ(τ, τ) = Id.

Remark 4.1.

(1) From Ito’s formula, we can easily check that

d (φ(t, τ)ψ(t, τ)) = 0, and φ(τ, τ)ψ(τ, τ) = Id.

(2) If τ = 0, we simply write φ(t, 0) = φt and ψ(t, 0) = ψt.

Then the equality (4.7) will become

(4.9)
dJ(uh)

dh

∣∣∣
h=0

= Ê

 T∫
0

{hx(t, x∗t , u∗t )φtηt + hu(t, x
∗
t , u

∗
t )ut} dt

+gx(x
∗
T )φTηT ] .

Set

X =

T∫
0

hx(t, x
∗
t , u

∗
t )φ

∗
tdt+ gx(x

∗
T )φ

∗
T

yt = Ê
[
X

∣∣FP
t

]
−

t∫
0

hx(s, x
∗
s, u

∗
s)φ

∗
sds+

t∫
0

dks,

then, we have

(4.10)

y
T
= Ê

[
X

∣∣FP
t

]
−

T∫
0

hx(s, x
∗
s, u

∗
s)φ

∗
sds+

T∫
0

dkt

= X −
T∫

0

hx(s, x
∗
s, u

∗
s)φ

∗
sds = gx(x

∗
T )φ

∗
T +

T∫
0

dkt.



RELAXED MAXIMUM PRINCIPLE FOR G-STOCHASTIC CONTROL SYSTEMS 1331

Replacing (4.10) in (4.9), we obtain

(4.11)
dJ(uh)

dh

∣∣∣∣
h=0

= Ê

 T∫
0

{hx(t, x∗t , u∗t )φ∗
tηt + hu(t, x

∗
t , u

∗
t )ut} dt+ yTηT

 .
By the Ito representation theorem of a G-martingale (see [41]), there exist pro-
cesses Q ∈M2

G (0, T ) , S ∈ S(d) and R ∈ L2
G (0, T ) satisfying

Ê
[
X

∣∣FP
t

]
= Ê [X]+

t∫
0

QsdBs+

t∫
0

φ∗
sSsd⟨B⟩s−2

t∫
0

φ∗
sG(Ss)ds+

t∫
0

∫
Γ

Rs(θ)Ñ(ds, dθ),

where G the generator G : S(d) → R satisfying the uniformly elliptic condition,
i.e., there exists a β > 0 such that, for each A,A ∈ S(d) with A ≥ A,

G(A)−G(A) ≥ βtr[A− A].

Hence,

yt = Ê [X]−
t∫

0

(hx(s, x
∗
s, u

∗
s)φs + 2φ∗

sG(Ss)) ds+

t∫
0

QsdBs

+

t∫
0

∫
Γ

Rs(θ)Ñ(ds, dθ) +

t∫
0

dks +

t∫
0

φ∗
sSsd⟨B⟩s.

Now, let us calculate Ê [yTηT ] , we have

dyt = − (hx(s, x
∗
s, u

∗
s)φs + 2φ∗

sG(Ss)) dt+QtdBt+

∫
Γ

Rt(θ)Ñ(dt, dθ)+dkt+φ
∗
sStd⟨B⟩t,

by the integration by parts formula we get

d(ytηt) = ytψt

bu(t, x∗t , u∗t )ut − ∫
Γ

fu(t, x
∗
s, θ, u

∗
s)utυ(dθ)

 dt
−ytψt−

∫
Γ

(fx + Id)−1 fuutN(dt, dθ)− (ηtφ
∗
thx + 2ηtφ

∗
sG(St)) dt

+ηtQtdBt +

∫
Γ

ηtRt(θ)Ñ(dt, dθ)

+ {ytψtγu(t, x
∗
t , u

∗
t )ut + qtσxηtφ

∗
t + ηtφ

∗
sSt} d⟨B⟩t
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+

∫
Γ

Rt(θ)ψt (fx + Id)−1 fuutυ(dθ)dt+ ηtφ
∗
tdkt.

If we define the adjoint process by: pt = ytψt, then

d(ytηt) = ptbuutdt− pt

∫
Γ

fuutυ(dθ)dt− pt

∫
Γ

(fx + Id)−1 fuutÑ(dt, dθ)

−pt
∫
Γ

(fx + Id)−1 fuutυ(dθ)dt− (ηtφ
∗
thx + 2ηtφ

∗
sG(St)) dt+ ηtQtdBt

+ {ptγu(t, x∗t , u∗t )ut + qtσxηtφ
∗
t + ηtφ

∗
sSt} d⟨B⟩t + ηtφ

∗
tdkt

+

∫
Γ

ηtRt(θ)Ñ(dt, dθ) +

∫
Γ

Rt(θ)ψt (fx + Id)−1 fuutυ(dθ)dt,

hence,

yTηT =

T∫
0

ptbuutdt−
T∫

0

∫
Γ

ptfuutυ(dθ)dt−
T∫

0

∫
Γ

pt (fx + Id)−1 fuutÑ(dt, dθ)

−
T∫

0

∫
Γ

pt (fx + Id)−1 fuutυ(dθ)dt−
T∫

0

(ηtφ
∗
thx + 2ηtφ

∗
sG(St)) dt+

T∫
0

ηtQtdBt

+

T∫
0

{ptγu(t, x∗t , u∗t )ut + qtσxηtφ
∗
t + ηtSt} d⟨B⟩t +

T∫
0

ηtφ
∗
tdkt

+

T∫
0

∫
Γ

ηtRt(θ)Ñ(dt, dθ) +

T∫
0

∫
Γ

Rt(θ)ψt (fx + Id)−1 fuutυ(dθ)dt,

take the G-expectation, we obtain

Ê [yTηT ] = Ê

 T∫
0

ptbuutdt+

T∫
0

∫
Γ

Rt(θ)ψt (fx + Id)−1

−pt
(
(fx + Id)−1 + Id

)]
fuutυ(dθ)dt+

T∫
0

{ptγu(t, x∗t , u∗t )ut + qtσxηtφ
∗
t

+ηtφ
∗
sSt} d⟨B⟩t +

T∫
0

ηtφ
∗
tdkt −

T∫
0

(ηtφ
∗
thx + 2ηtφ

∗
sG(St)) dt

 .
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We define the adjoint process r by

rt(θ) = Rt(θ)ψt (fx + Id)−1 − pt
(
(fx + Id)−1 + Id

)
,

hence

Ê [yTηT ] = Ê

 T∫
0

ptbuut +
∫
Γ

rt(θ)fuutυ(dθ)

 dt

−
T∫

0

(ηtφ
∗
thx + 2ηtφ

∗
sG(St)) dt

+

T∫
0

{γu(t, x∗t , u∗t )ut + qtσxηtφ
∗
t + ηtφ

∗
sSt} d⟨B⟩t +

T∫
0

ηtφ
∗
tdkt

 .
By the replacing in (4.11), we get

dJ(uh)

dh

∣∣∣∣
h=0

= Ê

 T∫
0

{hu(s, x∗s, u∗s) + psbu(s, x
∗
s, u

∗
s)

+

∫
Γ

rs(θ)fu(s, x
∗
s, θ, u

∗
s)υ(dθ)

usds

+

T∫
0

{ptγu(t, x∗t , u∗t )ut + qtσxηtφ
∗
t + ηtφ

∗
sSt} d⟨B⟩t

−
T∫

0

2ηtφ
∗
sG(St)dt+

T∫
0

ηtφ
∗
tdkt

 ≥ 0.

(4.12)

Finally, based on the remark 5.2 in [47] if we assume that in equation (4.12)
k = 0 q.s, and we define the Hamiltonian H from [0;T ]×Rn×A×Rn×Rn×m×L2

m

into R by

H(t, x, u, p, q, r(.)) = h(t, xt, ut) + pb(t, xt, ut) + qσ(t, xt)

+

∫
Γ

rt(θ)f(s, xt, θ, ut)υ(dθ),
(4.13)

and
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F (t, x, u, p, q, r(.)) =

T∫
0

{ptγu(t, x∗t , u∗t )ut + qtσxηtφ
∗
t + ηtφ

∗
sSt} d⟨B⟩t

−
T∫

0

2ηtφ
∗
sG(St)dt.

We get from (4.12) the next theorem.

Theorem 4.1 (maximum principle for strict control). Let u∗ be the optimal strict
control minimizing the cost J (.) over U , and denote by x∗ the corresponding optimal
trajectory. Then there exists a unique triple of square integrable adapted processes
(p, q, r) which is the unique solution of the backward G-SDE

(4.14)



dpt = −

{
hx(t, x

∗
t , u

∗
t ) + ptbx(t, x

∗
t , u

∗
t )

+

∫
Γ

rt(θ)f(t, x
∗
t− , θ, u

∗
t )υ(dθ)

}
dt

− {γx(t, x∗t , u∗t )pt + qtσx(t, x
∗
t )} d⟨B⟩t

+ qtdBt +

∫
Γ

rt(θ)Ñ(dt, dθ) + dkt

pT = gx(x
∗
T ), k0 = 0,

such that, if we assume that b = 0 and h = 0, then for all ν ∈ U the following
inequality holds

Ê [H(t, x∗t , νt, pt)−H(t, x∗t , u
∗
t , pt) +G(t, x∗t , u

∗
t , p, q, r(.))] ≥ 0.dt− a.e.

Where the Hamiltonian H is defined by (4.13).

4.2. The maximum principle for near optimal controls. In this subsection, we
establish necessary conditions of near optimality satisfied by a sequence of nearly
optimal strict controls. This result is based on Ekeland’s variational principle,
which is given by the following lemma.

Lemma 4.3. [Ekeland’s variational principle] Let (E, d) be a complete metric space
and f : E → R be lower semicontinuous and bounded from below. Given ε > 0,
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suppose uε ∈ E satisfies f(uε) ≤ inf(f) + ε. Then for any λ > 0, there exists ν ∈ E

such that

- f(ν) ≤ f(uε)

- d(uε, ν) ≤ λ

- f(ν) ≤ f(ω) + ε
λ
d(ω, ν) for all ω ̸= ν.

To apply Ekeland’s variational principle, we have to endow the set U of strict
controls with an appropriate metric. For any u and ν ∈ U , we set

d(u, ν) = P⊗ dt {(ω, t) ∈ Ω× [0;T ] ;u(t, ω) ̸= ν(t, ω)} ,

where P⊗ dt is the product measure of P with the Lebesgue measure dt.

Remark 4.2. It is easy to see that (U , d) is a complete metric space, and it well known
that the cost functional J is continuous from U into R. For more detail see [32].

Now, let µ∗ ∈ R be an optimal relaxed control and denote by xµ∗ the trajectory
of the system controlled by µ∗. From lemma (3.1), there exists a sequence (un) of
strict controls such that

µn
t (da)dt = δun

t
(da)dt −→ µ∗

t (da)dt quasi-surely,

and for every P ∈ P

lim
n→∞

EP
[∣∣∣xnt − xµ

∗

t

∣∣∣2] = 0,

where xn is the solution of (2.3) corresponding to µn.

According to the optimality of µ∗ and lemma (4.3), there exists a sequence (εn)

of positive numbers with limn→∞ εn = 0 such that

J(un) = J(µn) ≤ J(µ∗) + εn = inf
u∈U

J(u) + εn.

A suitable version of lemma (4.3) implies that, given any εn > 0, there exists
un ∈ U such that

(4.15) J(un) ≤ J(u) + εnd(u
n, u), ∀u ∈ U .

Let us define the perturbation

un,ht =

{
νt if t ∈ [t0; t0 + h]

unt otherwise.
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From (4.15) we have

0 ≤ J(un,h)− J(un) + εnd(u
n,h, un).

Using the definition of d it holds that

(4.16) 0 ≤ J(un,h)− J(un) + εnCh,

where C is a positive constant.
Now, we can introduce the next theorem which is the main result of this section.

Theorem 4.2. For each εn > 0, there exists (un) ∈ U such that there exists a unique
triple of square integrable adapted processes (pn, qn, rn) which is the solution of the
backward SDE

(4.17)



dpnt = −{hx(t, xnt , unt ) + pnt bx(t, x
n
t , u

n
t )

+

∫
Γ

rnt (θ)f(t, x
n
t− , θ, u

n
t )υ(dθ)

 dt

− {γx(t, xnt , unt )pt + qnt σx(t, x
n
t )} d⟨B⟩t

+ qnt dBt +

∫
Γ

rnt (θ)Ñ(dt, dθ) + dknt

pnT = gx(x
n
T ), k

n
0 = 0,

such that, if we assume that in equation (4.17)

∀n, hx(t, xnt , unt ) = 0, bx(t, x
n
t , u

n
t ) = 0,

then for all ν ∈ U

Ê [H(t, xnt , νt, p
n
t )−H(t, xnt , u

n
t , p

n
t )

+Gn(t, x∗t , u
∗
t , p, q, r(.))] + Cεn ≥ 0 dt− a.e..

(4.18)

Here C is a positive constant.

Proof. From the inequality (4.16), we use the same method as in the previous
subsection, we obtain (4.18). □

4.3. The relaxed stochastic maximum principle. Now, we can introduce the
next theorem, which is the main result of this section.
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Theorem 4.3. [The relaxed stochastic maximum principle] Let µ∗ be an optimal
relaxed control minimizing the functional J over R, and let xµ

∗

t be the corresponding
optimal trajectory. Then there exists a unique triple of square integrable and adapted
processes (p µ∗

, q µ∗
, r µ∗

) which is the solution of the backward SDE

(4.19)



dpµ
∗

t = −


∫
A

hx(t, x
µ∗

t , a)µ
∗
t (da) +

∫
A

pnt bx(t, x
µ∗

t , a)µ
∗
t (da)

+

∫
A

∫
Γ

rµ
∗

t (θ)f(t, xµ
∗

t− , θ, a)µ
∗
t ⊗ υ(da, dθ)

 dt

−
{
γx(t, x

µ∗

t , a)p
µ∗

t µ
∗
t (da) + qµ

∗

t σx(t, x
µ∗

t )
}
d⟨B⟩t + qµ

∗

t dBt

+

∫
A

∫
Γ

rµ
∗

t (θ)Ñµ∗
(dt, dθ, da) + dkµ

∗

t

pµ
∗

T = gx(x
µ∗

T ), kµ
∗

0 = 0,

such that if we assume that b = 0 and h = 0, then for all ν ∈ U

0 ≤ Ê

H(t, xµ
∗

t , νt, p
µ∗

t , q
µ∗
, rµ

∗

t (.))−
∫
Γ

H(t, xµ
∗

t , a, p
µ∗

t , q
µ∗
, rµ

∗

t (.))µ∗
t (da)(4.20)

+Gµ∗
(t, x∗t , u

∗
t , p, q, r(.))

]
dt− a.e.

The proof of this theorem is based on the following stability result of G-BSDEs
with jumps. Note that this theorem is proved in the classical problems by Hu and
Peng [23], and by H. Ben Gherbal and B. Mezerdi [7] in the case with jump.

4.3.1. Stability theorem for G-BSDEs with jump. Let us denote by M2
G (0, T ) the

subset of L2
G (0, T ) consisting of Ft−progressively measurable processes. consider

the following G-BSDE with jump depending on a parameter n. Using the fact that
under P ∈ P, Ñ is a martingale and B is a continuous martingale whose quadratic
variation process ⟨B⟩ is such that πt =

d⟨B⟩t
dt

is bounded by a deterministic d × d

symmetric positive definite matrix σ, and pnt satisfy
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(4.21)



dpnt = −

{
hx(t, x

n
t , u

n
t ) + pnt (bx(t, x

n
t , u

n
t )− πtγx(t, x

∗
t , u

∗
t ))

− πtq
n
t σx(t, x

n
t ) +

∫
Γ

rnt (θ)f(t, x
n
t− , θ, u

n
t )υ(dθ)

}
dt

+ qnt dBt +

∫
Γ

rnt (θ)Ñ(dt, dθ) + dknt

pnT = gx(x
n
T ); k

n
0 = 0.

Then we have

pnt = pnT+

T∫
t

F n(s, pns , q
n
s , r

n
s )ds−

T∫
t

qns dBs−
T∫
t

∫
Γ

rns (θ)N
n(ds, dθ)−Kn

T+K
n
t t ∈ [0;T ] ,

with

F n(s, pns , q
n
s , r

n
s ) = −hx(t, xnt , unt ) + pnt (bx(t, x

n
t , u

n
t )− πtγx(t, x

∗
t , u

∗
t ))

− πtq
n
t σx(t, x

n
t ) +

∫
Γ

rnt (θ)f(t, x
n
t− , θ, u

n
t )υ(dθ).

Using the linearity of the adjoint equation, it is not difficult to check that the
following assumptions are verified:

(1) For any n, (p, q, r) ∈ Rm × Rm×d × R, F n(., p, q, r) ∈ M2
G (0, T ) and pnT ∈

L2
G (0, T ) .

(2) There exists a constant C0 > 0 such that

|F n(s, p1, q1, r1)− F n(s, p2, q2, r2)|

≤ C0

|p1 − p2|+ |q2 − q2|+
∫
Γ

|r1 − r2| υ(dθ)

 P.a.s a.e t ∈ [0;T ] ,

(3) E
(
|pnT − p∗T |

2)−−−−→n→ ∞ 0,

(4) ∀t ∈ [0;T ] ,

lim
n→∞

EP


∣∣∣∣∣∣

T∫
t

(F n(s, p∗s, q
∗
s , r

∗
s)− F ∗(s, p∗s, q

∗
s , r

∗
s)) ds

∣∣∣∣∣∣
2
 = 0.
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Theorem 4.4 (Stability theorem for G-BSDEs with jumps). Let (p n, q n, r n) and
(p ∗, q ∗, r ∗), be the solutions of (4.17) and (4.19), respectively. We have

lim
n→∞

Ê

|pn − p∗|2 +
T∫
t

|qn − q∗|2 ds+
T∫
t

∫
Γ

|rn − r∗|2 υ(dθ)ds+ |kn − k∗|2
 = 0.

Proof. Under every P ∈ P , we have

EP |pnt − p∗t |
2 +

T∫
t

|qns − q∗s |
2 ds+

T∫
t

∫
Γ

|rns − r∗s |
2 υ(dθ)ds

≤ 2EP |αn
t |

2 + 2EP

 T∫
t

[F n(s, pns , q
n
s , r

n
s )− F n(s, p∗s, q

∗
s , r

∗
s)] ds

2

≤ 2EP |αn
t |

2 + 2(T − t)E

T∫
t

|F n(s, pns , q
n
s , r

n
s )− F n(s, p∗s, q

∗
s , r

∗
s)|

2 ds,

with

αn
t = pnT − p∗T +

T∫
t

[F n(s, p∗s, q
∗
s , r

∗
s)− F ∗(s, p∗s, q

∗
s , r

∗
s)] ds+ (k∗T − knT )

+ (k∗t − knt ) .

Because of the assumption 2, we get

EP |pnt − p∗t |
2 ≤ 2

3
EP |αn

t |
2 +

1

6

T∫
t

EP |pns − p∗s|
2 ds(4.22)

EP

T∫
t

|qns − q∗s |
2 ds ≤ 4

3
EP |αn

t |
2 +

2

3

T∫
t

EP |pns − p∗s|
2 ds(4.23)

EP

T∫
t

∫
Γ

|rns − r∗s |
2 υ(dθ)ds ≤ 4

3
EP |αn

t |
2 +

2

3

T∫
t

EP |pns − p∗s|
2 ds .(4.24)

By the assumptions 3, 4 and the stability theorem of G-BSDE without jump,
see [21], we deduce that lim

n→∞
EP |αn

t |
2 = 0, then lim

n→∞
EP |pnt − p∗t |

2 = 0 and
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lim
n→∞

EP

T∫
t

|qns − q∗s |
2 ds = 0.

Hence, by (4.24) we get

lim
n→∞

EP

T∫
t

∫
Γ

|rns − r∗s |
2 υ(dθ)ds = 0.

Finally, by the aggregation property we conclude the desired result. □

Proof of Theorem (4.3) . By passing to the limit in inequality (4.18), and using
lemma (4.3), we get easily the inequality (4.20). □
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