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EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR FRACTIONAL BSDES
WITH WEAK MONOTONICITY COEFFICIENTS

Mostapha Abdelouahab Saouli1

ABSTRACT. In this paper, we deal with the fractional backward stochastic differen-
tial equations (F-BSDEs in short) with Hurst parameter H ∈ ( 12 , 1) when the driver
g is weak monotone. Via an approximation theory, we derive the existence and
uniqueness of solutions to F-BSDEs. The comparison theorem is also established.

1. INTRODUCTION

In the 20th century, a new concept was born in the field of fractional calculus
it is called fractional Brownian motion (fBm in short), which presented by Kol-
mogorov [10] as a method to generate a spirals Gaussians in Hilbert spaces. After
some years, Mandelbrot and Van Ness [11] studied their properties and incorpo-
rated a concept fBm into financial models, we also inform you that there are many
fields of application of fBm, for example: physics , hydrology, economy, telecom-
munications.
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The fBm with Hurst parameter H ∈ (0, 1) is a continuous normal process BH =

{BH
t , t ≥ 0} whose covariance is given by:

E
(
BH
s B

H
t

)
= 1

2

(
t2H + s2H − |t− s|2H

)
.

For H = 1
2
, the process BH is a standard Wiener process. However, since BH

with H > 1
2

is not a Markov process, nor a semi-martingale, we cannot use the
classic technique of stochastic calculus to find a concept for the stochastic integral
associated to fBm. Basically, two different kinds of integrals were identified and
developed in relation to fBm:

- The first kind is Stieltjes-Riemann integral (see Young, [15]).
- The second class of these integrals presented by Decreusefond [5] in (1998)

is the Skorokhod integral, it has been defined as the adjoint of the deriva-
tive in the cadre of the Malliavin calculus.

Linear backward stochastic differential equations (LBSDEs in short) were stud-
ied by Bismut in (1973) [4] and for the non-linear case with non-stochastic termi-
nal time were first presented by Pardoux-Peng in (1990) [13] where they get the
existence and uniqueness results. Since then, these pioneering works have been
widely used in many areas such as: optimal control [7], financial mathematics [6]
and in the probability representation to the solutions of PDEs.

Backward stochastic differential equations (BSDEs for short) driven by fBm were
studied by several authors. However, compared to the extensive search for back-
ward SDEs driven by the standard Brownian motion (Bm in short), only a few
were accomplished and there are many questions remain open, because we can-
not directly apply the usual methods here and the main drawback to this is that
fBm is neither a semimartingale, nor a Markov process. The BSDEs driven by frac-
tional Brownian motion (F-BSDEs for short) were first studied by Biagini et al. [3]
with Hurst parameter H greater than 1

2
. In 2005 Bender [2] studied a linear F-

BSDEs with Hurst index 0 < H < 1. After several years, Hu & Peng [9] studied
a linear and a non-linear F-BSDEs associated to the stochastic integral is the Sko-
rokhod integral, for that, they use the technique of quasi-conditional expectation
and Malliavin calculus. In this paper we study the BSDEs driven by fBm with Hurst
parameter H greater than 1

2
. We establish existence and uniqueness of solutions of
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this kind of equation under weak monotonicity condition and establish a compar-
ison theorem, which indicates that our assumptions are much weaker than those
in the paper of Hu & Peng [9].

The organization of our paper is as follows: In section 2, we give some def-
initions and results about fractional stochastic integral, which will be needed
throughout this paper. The existence and uniqueness result for the solution of
backward SDE driven by fBm under weak monotonicity condition is given in sec-
tion 3. Finally, we prove the comparison theorem in section 4.

2. BACKGROUND ON FBM AND FRACTIONAL STOCHASTIC CALCULUS

In this section we will present some basic concepts related to fractional stochas-
tic calculus and fractional Browian motion.

Let (Ω,G,P,Gt, t ≥ 0) be a stochastic space such that Gt is an increasing family
contains all P-null elements of Gt, also we assume that the filtration Gt is governed
by a fBm BH = {BH

t , t ≥ 0}.
We suppose H ∈

(
1
2
, 1
)

during all this paper. For y is real, we put ψ (y) =

H (2H − 1) |y|2H−2.
Let ν and κ be two measurables functions on [0, T ], we define

⟨ν, κ⟩t =
∫ t
0

∫ t
0
ψ (r − u) νrκudrdu,

and ⟨ν, ν⟩t = ||ν||2t . Note that, ∀t ∈ [0, T ] , ⟨ν, κ⟩t is a product space of Hilbert.
Let Q be the completion of the measurable functions on [0, T ] under ||·||T . The

components of Q can be distributions.
We note by ∇T the set of all polynomials which can be written in the following

form
K (ω) = k

(∫ T
0
ν1 (t) dB

H
t , · · ·,

∫ T
0
νp (t) dB

H
t

)
,

where k is a polynomial of p variables and p ≥ 0.
Then, for a component F belong in ∇T their Malliavin derivative DH

s is defined
as follows:

DH
s K =

∑p
i=1

∂f
∂xi

(∫ T
0
ν1 (t) dB

H
t , · · ·,

∫ T
0
νp (t) dB

H
t

)
ν1 (s) , s ∈ [0, T ] .

Because the non-convergence operator DH : L2 (Ω,G,P) → (Ω,G,Q) is not open-
able. So, we can consider the completion of ∇T by the space D1,2 endowed with
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the following norm
||K||21,2 = E |K|2 + E

∣∣∣∣DH
s K

∣∣∣∣2
T
.

We can now give another derivative

DH
t K =

∫ T
0
ψ (t− s)DH

s Kds.

Let LH1,2 the space of process K defined on (Ω,G,P) and has a value in Q such that

E
(
||K||2T +

∫ T
0

∫ T
0

∣∣DH
s Kt

∣∣2 dsdt) <∞.

The following propositions are well famous now.

Proposition 2.1. Let K ∈ LH1,2, then the integral
∫ T
0
KsdB

H
s exists in L2 (Ω,G,P).

Moreover, we have
E
(∫ T

0
KsdB

H
s

)
= 0,

and

E
(∫ T

0
KsdB

H
s

)2
= E

(
||K||2T +

∫ T
0

∫ T
0
DH
s KtDH

t Ksdsdt
)
.

The following proposition given in ( [8, Theorem 11.1]) would be helpful below.

Proposition 2.2. Let ϑj (s) , θj (s) be in D1,2 and E
∫ T
0

(
|ϑj (s)|2 + |θj (s)|2

)
ds <

∞, where j = 1, 2.Assume that DH
t ϑ1 (s) and DH

t ϑ2 (s) are continuously differ-
entiable with respect to (s, t) ∈ [0, T ] for almost all ω ∈ Ω, suppose also that
E
∫ T
0

∫ T
0

∣∣DH
t ϑj (s)

∣∣2 dsdt <∞. Denote

Xi (t) =
∫ t
0
θj (s) ds+

∫ t
0
ϑj (s) dB

H
s , 0 ≤ t ≤ T.

Then

X1 (t)X2 (t) =

∫ t

0

X1 (s) θ2 (s) ds+

∫ t

0

X1 (s)ϑ2 (s) dB
H
s +

∫ t

0

X2 (s) θ1 (s) ds

+

∫ t

0

X2 (s)ϑ1 (s) dB
H
s +

∫ t

0

DH
s X1 (s) θ2 (s) ds+

∫ t

0

DH
s X2 (s) θ1 (s) ds.

Let’s end this section by presenting an Itô formula for the non-convergence type
integral (see [8, Theorem 10.3]).

Proposition 2.3. Let ϑ, θ : [0, T ] → R be two non-stochastic measurable functions.
If

Xt = X0 +
∫ t
0
θsds+

∫ t
0
ϑsdB

H
s , 0 ≤ t ≤ T,
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where X0 is a constant and K ∈ C1,2 ([0, T ]× R), then we have ∀t ∈ [0, T ] ,

K (t,Xt) = K (0, X0) +

∫ t

0

∂K

∂s
(s,Xs) ds+

∫ t

0

∂K

∂x
(s,Xs) dx

+
1

2

∫ t

0

∂2K

∂x2
(s,Xs)

(
d

ds
||ϑ||2s ds

)
,

where

d
ds
||ϑ||2s =

d
ds

∫ s
0

∫ s
0
ψ (r − u)ϑrϑudrdu = 2ϑs

∫ s
0
ϕ (r − s)ϑrdr.

By the preliminary results mentioned previously, we are now able to study our
main results.

3. FRACTIONAL BSDE WITH WEAK MONOTONOCITY COEFFICIENT

In this section, we study the results of the existence and uniqueness solution to
the weak monotone backward SDEs associated to fBm. We use the approximation
technic to proof it.

Assume that

- κ0 is a constant.
- θ, ϑ : [0, T ] → R are two measurables non-stochastic functions, ϑ is dif-

ferentiable and such that ϑ (t) ̸= 0 ∀t ∈ [0, T ] . Note that, since ||ϑ||2t =

H (2H − 1)
∫ t
0

∫ t
0
|r − u|2H−2 ϑ (r)ϑ (u) drdu, we have

d
dt

(
||ϑ||2t

)
= ϑ (t) ϑ̂ (t) ≥ 0, with ϑ̂ (t) =

∫ t
0
ψ (t− u)ϑ (u) du.

In the following, let (κt)0≤t≤T be a solution of the following stochastic differential
equation associated by fBm:{

dκt = θ (t) dt+ ϑ (t) dBH
t ,

κ0 = π0.

Now, we Introduce the following backward SDE driven by fBm{
−dYt = g(t, κt, Yt, Zt)dt− ZtdB

H
t ,

YT = ξ.

Throughout this paper, for δ > 0, we will use the following spaces of processes

- Let L2 (Ω,GT ,P) is the space of GT -measurable non-deterministic variables
ξ : Ω → R with E

(
eδT |ξ|2

)
<∞.
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- We denote by C1,2
pol ([0, T ]× R) the space of all C1,2-applications over [0, T ]×

R, such that it and its derivatives have polynomial growth.
- V[0,T ] =

{
Y = ψ (·, κ) ; ψ ∈ C1,2

pol ([0, T ]× R)
}

, dψ
dt

is bounded, t ∈ [0, T ] .

- The completion of V[0,T ] is noted by ṼH[0,T ] and endowed with the following
norm:

||Y ||v =
(
E
∫ T
0
eδtt2H−1 |Yt|2 dt

) 1
2
=
(
E
∫ T
0
eδtt2H−1 |ψ (t, κt)|2 dt

) 1
2
.

Definition 3.1. A solution of the equation (3.1) is a pair of processes (Y, Z) ∈ Ṽ
1
2

[0,T ]×
ṼH[0,T ] and satisfies the equation (3.1) .

Also, we have the following proposition. It’s proof follows the same way as
in [1, Proposition 3.6].

Proposition 3.1. Assume the pair (Yt, Zt)t∈[0,T ] is a solution of the BSDE driven by
fBm (3.1). Then:

(a) We have the following non-deterministic representation

DH
t Yt =

σ̂(t)
σ(t)

Zt, 0 ≤ t ≤ T.

(b) There is a strictly positive constant M such that

t2H−1

M
≤ σ̂(t)

σ(t)
≤ M

t2H−1 , 0 ≤ t ≤ T.

Now, we suppose that the coefficient g satisfy the following assumptions (H):
(H1.1) For any fixed t, g(t, ·, ·, ·) is continuous.
(H1.2) There exist a constant γ ∈ [0, 1) and strictly non-negative constant C

such that
|g(t, ϱ, χ, z)| ≤ C (1 + |ϱ|γ + |χ|γ + |ς|γ) .

(H1.3) There exists a nondecreasing and concave function ρ (·) : R+ → R+

with ρ (0) = 0, ρ (v) > 0 for v > 0 and
∫
0+

dv
ρ(v)

= +∞ such that dP× dt− a.e.

(χ− χ́) (g(t, ϱ, χ, ς)− g(t, ϱ, χ́, ς)) ≤ ρ
(
|χ− χ́|2

)
,

for all (ϱ, χ, χ́, ς) ∈ R4.
(H1.4) There exists a positive constant C such that for any (ϱ, ϱ́, ς, ς́) ∈ R4

|g(t, ϱ, χ, ς)− g(t, ϱ́, χ, ς́)| ≤ C (|ϱ− ϱ́|+ |ς − ς́|) .
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When the assumption (H1.1) and (H1.2) are satisfied, we can define the
family of semi norms (Φn (g))n

Φn (g) =

(
E
∫ T
0

sup
|ϱ|,|χ|,|ς|≤n

|g (t, ϱ, χ, ς)|2 dt

) 1
2

.

Remark 3.1. Since |η|γ ≤ (1 + |η|) for γ ∈ [0, 1) then assumption (H1.2) implies
that

|g(t, ϱ, χ, z)| ≤ C (4 + |ϱ|+ |χ|+ |ς|) .

Now, we mention an estimate for the distance between two solution of F-BSDE
(3.1). This estimate is very important to study the existence and uniqueness of the
solution, we then consider the our main result.

Proposition 3.2. We assume ξ1, ξ2 ∈ L2 (Ω,GT ,P) and g1, g2 satisfy the hypothesis

(H). Let for j = {1, 2} , (Y j, Zj) belong in B2 = Ṽ
1
2

[0,T ] × ṼH[0,T ] has a unique solution
of the following BSDEs driven by fBm

Y j
t = ξj +

∫ T
t
g(u, κu, Y

j
u , Z

j
u)du−

∫ T
t
Zj
udB

H
u , t ∈ [0, T ] .

Then, we find

(3.1)
E
(
eδt |Y 1

t − Y 2
t |

2
+
∫ T
t
eδu |Y 1

u − Y 2
u |

2
du+

∫ T
t
eδuu2H−1 |Z1

u − Z2
u|

2
du
)

≤ C
(
EeδT |ξ1 − ξ2|2 + C

N2(1−γ) + ρ2N (g1 − g2)
)
.

Proof. Applying Itô’s formula to
∣∣Y j
t

∣∣2, we get∣∣Y j
t

∣∣2 = |ξj|2 + 2
∫ T
t
Y j
u g(u, κu, Y

j
u , Z

j
u)du− 2

∫ T
t
Y j
uZ

j
udB

H
u − 2

∫ T
t
DH
u Y

j
uZ

j
udu.

Using the integration by part formula, we get

eδt
∣∣Y j
t

∣∣2 + δ

∫ T

t

eδu
∣∣Y j
u

∣∣2 du = eδT
∣∣ξj∣∣2 + 2

∫ T

t

eδuY j
u g(u, κu, Y

j
u , Z

j
u)du

− 2

∫ T

t

eδuY j
uZ

j
udB

H
u − 2

∫ T

t

eδuDH
u Y

j
uZ

j
udu.
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By hypothesis (H1.2), Young’s inequality and Remark 3.1, we have

2

∫ T

t

eδuY j
u g(u, κu, Y

j
u , Z

j
u)du ≤ 2C

∫ T

t

eδuY j
u

(
4 + |κu|+

∣∣Y j
u

∣∣+ ∣∣Zj
u

∣∣)) du
≤ C +

∫ T

t

eδu
(
1 + C2 + 2C +

MC2

u2H−1

) ∣∣Y j
u

∣∣2 du
+

∫ T

t

eδu |κu|2 du+
1

M

∫ T

t

eδuu2H−1
∣∣Zj

u

∣∣2 du.
Therefore, using Proposition 3.1, we can write

(3.2)

E
(
eδt
∣∣Y j
t

∣∣2 + δ
∫ T
t
eδu |Y j

u |
2
du+ 2

M

∫ T
t
eδuu2H−1 |Zj

u|
2
du
)

≤ EeδT |ξj|2 + C + E
(∫ T

t
eδu
(
1 + C2 + 2C + MC2

u2H−1

)
|Y j
u |

2
du
)

+E
(∫ T

t
eδu |κu|2 du+ 1

M

∫ T
t
eδuu2H−1 |Zj

u|
2
du
)
.

By Gronwall’s inequality, we find for M > 1

E
(
eδt
∣∣Y j
t

∣∣2)
≤ Θ(t, T, C,M, ξj)× exp

(
(1 + C2 + 2C)T +MC2 T 2−2H−t2−2H

2−2H

)
<∞.

And by (3.3) also, one has

E
∫ T
t
eδuu2H−1 |Zj

u|
2
du ≤ Θ(t, T, C,M,H, ξj) <∞.

Now, we set

B = {(ω, u) , |Y 1
u |+ |Y 2

u |+ |Z1
u|+ |Z2

u|+ |κu| ≥ N} , Bc = Ω \B.

Again by (a) , (b) in Proposition 3.1 and Itô’s formula, we obtain

(3.3)

E
(
eδt |Y 1

t − Y 2
t |

2
+ δ

∫ T
t
eδu |Y 1

u − Y 2
u |

2
du
)

+ 2
M
E
(∫ T

t
eδuu2H−1 |Z1

u − Z2
u|

2
du
)

≤ E
(
eδT |ξ1 − ξ2|2

)
+ I1 + I2 + I3 + I4,

where

I1 = 2E
∫ T
t
eδu (Y 1

u − Y 2
u ) (g1(u, κu, Y

1
u , Z

1
u)− g2(u, κu, Y

2
u , Z

2
u)) 1Bdu,

I2 = 2E
∫ T
t
eδu (Y 1

u − Y 2
u ) (g1(u, κu, Y

1
u , Z

1
u)− g1(u, κu, Y

2
u , Z

1
u)) 1Bcdu,

I3 = 2E
∫ T
t
eδu (Y 1

u − Y 2
u ) (g1(u, κu, Y

2
u , Z

1
u)− g1(u, κu, Y

2
u , Z

2
u)) 1Bcdu,

I4 = 2E
∫ T
t
eδu (Y 1

u − Y 2
u ) (g1(u, κu, Y

2
u , Z

2
u)− g2(u, κu, Y

2
u , Z

2
u)) 1Bcdu.
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We now need to estimate I1, I2, I3 and I4.
It follows from the assumption (H1.2) and (Σ + Υ + Ψ + Λ)2 ≤ 4(Σ2 + Υ2 +

Ψ2 + Λ2) that ∀ϵ > 0

(3.4)

I1 ≤ ϵ2E
(∫ T

t
eδu |(Y 1

u − Y 2
u )|

2
1Bdu

)
+8C

ϵ2
E
(∫ T

t
eδu
(
1 + |κu|2γ + |Y 1

u |
2γ

+ |Z1
u|

2γ
)
1Bdu

)
+8C

ϵ2
E
(∫ T

t
eδu
(
1 + |κu|2γ + |Y 2

u |
2γ

+ |Z2
u|

2γ
)
1Bdu

)
.

By inequality (3.3) , Hölder’s inequality and Chebyshev’s inequality, then

(3.5) I1 ≤ ϵ2E
(∫ T

t
|Y 1
u − Y 2

u |
2
du
)
+ C

N2(1−γ) .

The assumption (H1.3) give

(3.6) I2 ≤ 2E
(∫ T

t
ρ
(
eδu |Y 1

u − Y 2
u |

2
)
du
)
.

Due to the assumption (H1.4) and Young’s inequality that ∀ϵ > 0,

I3 ≤ ϵ2C2E
(∫ T

t

eδu
1

u2H−1

∣∣Y 1
u − Y 2

u

∣∣2 du)
+

1

ϵ2
E
(∫ T

t

eδuu2H−1
∣∣Z1

u − Z2
u

∣∣2 du) .(3.7)

Finally by inequality 2ab ≤ a2 + b2, we have

(3.8) I4 ≤ E
(∫ T

t
eδu |Y 1

u − Y 2
u |

2
du
)
+ Φ2

N (g1 − g2) .

Combining (3.4) and (3.6)− (3.9) , we conclude that

E
(
eδt |Y 1

t − Y 2
t |

2
+ δ

∫ T
t
eδu |Y 1

u − Y 2
u |

2
du+

(
2
M

− 1
ϵ2

) ∫ T
t
eδuu2H−1 |Z1

u − Z2
u|

2
du
)

≤ E
(
eδT |ξ1 − ξ2|2

)
+ C

N2(1−γ) + ρ2N (g1 − g2)

+E
∫ T
t

(
2ρ
(
eδu |Y 1

u − Y 2
u |

2
)
+
(
1 + ϵ2 + ϵ2C2

u2H−1

)
eδu |Y 1

u − Y 2
u |

2
)
du,

Now, for M > 0 choosing ϵ > 0 such that 2
M

− 1
ϵ2
> 1 and Cϵ, C, H (u) = 1 + ϵ2 +

ϵ2C2

u2H−1 > 2 for u ∈ [t, T ] , we get

E
(
eδt |Y 1

t − Y 2
t |

2
+
∫ T
t
eδuu2H−1 |Z1

u − Z2
u|

2
du
)

≤ E
(
eδT |ξ1 − ξ2|2

)
+ C

N2(1−γ) + ρ2N (g1 − g2)

+E
∫ T
t
Cϵ, C, H (u)

(
ρ
(
eδu |Y 1

u − Y 2
u |

2
)
+ eδu |Y 1

u − Y 2
u |

2
)
du.
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Taking ρ̄ (v) = ρ (v) + v, for v > 0, such that
∫
0+

dv
ρ̄(v)

= +∞, from Fubini’s theorem
and Jensen’s inequality, we have

E
(
eδt |Y 1

t − Y 2
t |

2
+
∫ T
t
eδuu2H−1 |Z1

u − Z2
u|

2
du
)

≤ E
(
eδT |ξ1 − ξ2|2

)
+ C

N2(1−γ) + ρ2N (g1 − g2)

+
∫ T
t
Cϵ, C, H (u) ρ̄

(
E
(
eδu |Y 1

u − Y 2
u |

2
+
∫ T
u
eδur2H−1 |Z1

r − Z2
r |

2
dr
))

du,

using Bihari’s inequality, wz conclude that

E
(
eδt |Y 1

t − Y 2
t |

2
+
∫ T
t
eδuu2H−1 |Z1

u − Z2
u|

2
du
)

≤ Cϵ, C, H, T

(
E
(
eδT |ξ1 − ξ2|2

)
+ C

N2(1−γ) + ρ2N (g1 − g2)
)
.

Therefore, the proof of Proposition 3.2 is completey. □

Before to state the proof of our main result, we first give the following technical
approximation lemma.

Lemma 3.1. Let g : [0, T ]× R3 → R be a measurable function satisfies assumptions
(H). Then there exists the sequence of function gn such that

(i) ∀t ∈ [0, T ], gn (t, ·, ·, ·) is a continuous.
(ii) Convergence : ∀N , ΦN (gn, g) →

n→∞
0 a.s..

(iii) ∀ n, gn is locally weak monotone in χ i.e., for any n, N such that n ≥ N, we
get

(χ− χ́) (gn(t, ϱ, χ, ς)− gn(t, ϱ, χ́, ς)) ≤ ρ
(
|χ− χ́|2

)
.

for any ϱ, χ, χ́, ς satisfaying |ϱ| ≤ N, |χ| ≤ N, |χ́| ≤ N, |ς| ≤ N, where ρ (·) is the
same function in assumption (H1.3).

(iv) There is a constant γ ∈ [0, 1) and a constant C > 0 such that for every
(t, ϱ, χ, ς) ∈ [0, T ]× R3, the sequence of function gn satisfy

|gn (t, ϱ, χ, ς)| ≤ C (1 + |ϱ|γ + |χ|γ + |ς|γ) .

(v) ∀ n, gn is Lipschitz in ς and ϱ i.e., there is a constant Cn > 0 such that

|gn(t, ϱ, χ, ς)− gn(t, ϱ́, χ, ς́)| ≤ Cn (|ϱ− ϱ́|+ |ς − ς́|) .

(vi) ∀ n, gn is Lipschitz in χ i.e., there is a constant An > 0 such that

|gn(t, ϱ, χ, ς)− gn(t, ϱ, χ́, ς)| ≤ An |χ− χ́| .
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(vii) For any n, N with n ≥ N , gn is locally Lipschitz in ϱ and ς, i.e., for any ϱ, ϱ́,
χ, ς and ς́ satisfying |ϱ| ≤ N, |ϱ́| ≤ N, |χ| ≤ N, |ς́| ≤ N, |ς| ≤ N , then

|gn(t, ϱ, χ, ς)− gn(t, ϱ́, χ, ς́)| ≤ C (|ϱ− ϱ́|+ |ς − ς́|) ,

where C is the same constant in assumption (H1.4).

Proof. See, [16, Lemma 2.1]. □

We are now ready to state our main result.

Theorem 3.1. Suppose ξ ∈ L2 (Ω,GT ,P) and g satisfies the hypothesis (H). Then,

the pair (Y, Z) belong in B2 with B2 = Ṽ
1
2

[0,T ] × ṼH[0,T ] is a unique solution of BSDE
driven by fBm (3.1).

Proof. Choosing g1 = g2 and ξ1 = ξ2 and going N → ∞ in inequality (3.2), we can
get the uniqueness result. Let gn a sequence of function related to g by Lemma
3.1. Then gn satisfies (v) and (vi) in Lemma 3.1 for each n. So, according to the
result of Hu and Peng [9], the pair (Y n

· , Z
n
· ) belongs in B2, for each n ≥ N is the

unique solution to the following BSDE driven by fBm

Y n
t = ξ +

∫ T
t
gn(u, κu, Y

n
u , Z

n
u )du−

∫ T
t
Zn
udB

H
u , t ∈ [0, T ] .

Appling Itô’s formula to eδt |Y n
t |

2, for M > 1, we have

E
(
eδt |Y n

t |
2 + δ

∫ T
t
eδu |Y n

u |
2 du+ 1

M

∫ T
t
eδuu2H−1 |Zn

u |
2 du

)
≤ Θ̃ (t, T, C,M, ξ) <∞.

Like the proof of Proposition 3.2, show that, for M > 2 and p, q large enough

E
(
eδt |Y p

t − Y q
t |

2 +
∫ T
t
eδu |Y p

u − Y q
u |

2 du+
∫ T
t
eδuu2H−1 |Zp

u − Zq
u|

2 du
)

≤ K
(

C
N2(1−γ) + Φ2

N (gp − gq)
)
.

Now going to the limit successively on p, q and N , we conclude that (Y n
· , Z

n
· ) is

a Cauchy sequence in B2. Hence, there exists a pair of processes (Y·, Z·) such that

E
(
eδt |Y n

t − Yt|2 +
∫ T
t
eδu |Y n

u − Yu|2 du+
∫ T
t
eδuu2H−1 |Zn

u − Zu|2 du
)
→ 0,

as n→ ∞. In order to verify that (Y·, Z·) is a solution of the fractional BSDE (3.1),
we just have to prove that

(3.9) gn(u, κu, Y
n
u , Z

n
u ) → g(u, κu, Yu, Zu), as n→ ∞.
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Set

Bn = {(ω, u) , |Y n
u |+ |Yu|+ |Zn

u |+ |Zu|+ |κu| ≥ N} , Bc
n = Ω \Bn.

Then

E
(∫ T

t
|gn(u, κu, Y n

u , Z
n
u )− g(u, κu, Yu, Zu)|2 du

)
≤ 2In1 + 4In2 + 4In3 + 2In4 ,

where
In1 = E

(∫ T
t
|gn(u, κu, Y n

u , Z
n
u )− g(u, κu, Y

n
u , Zu)|

2 1Bndu
)
,

In2 = E
(∫ T

t
|gn(u, κu, Y n

u , Z
n
u )− gn(u, κu, Y

n
u , Zu)|

2 1Bc
n
du
)
,

In3 = E
(∫ T

t
|gn(u, κu, Y n

u , Zu)− g(u, κu, Y
n
u , Zu)|

2 1Bc
n
du
)
,

In4 = E
(∫ T

t
|g(u, κu, Y n

u , Zu)− g(u, κu, Yu, Zu)|2 du
)
.

Then, we have

E
(∫ T

t

|gn(u, κu, Y n
u , Z

n
u )− g(u, κu, Yu, Zu)|2 du

)
≤ C

N2(1−γ) + C sup
t≤u≤T

(
1

u2H−1

)
E
(∫ T

t

eδuu2H−1 |Zn
u − Zu|2 du

)
+ 4Φ2

N (gn − g)

+ 2E
(∫ T

t

|g(u, κu, Y n
u , Zu)− g(u, κu, Yu, Zu)|2 du

)
.

(3.10)

Since
E
∫ T
0
eδuu2H−1 |Zn

u − Zu|2 du→ 0, as n→ ∞,

there is a sub-sequence of Y n, denoted by Y n, such that Y n → Y a.e., a.s.. There-
fore, the continuity of g in y and Lebesgue’s dominated convergence theorem give
that

lim
n→∞

E
(∫ T

t
|g(u, κu, Y n

u , Zu)− g(u, κu, Yu, Zu)|2 ds
)
= 0.

Then, passing to the limit in inequality (3.11) respectively on n and N , we prove
that (3.10) holds.

It remains to show that the pair (Y, Z) satisfies equation (3.1) on the interval
[0, T ]. We have for any t ∈ [tk, T ],

Y n
t − ξ −

∫ T
t
gn(u, κu, Y

n
u , Z

n
u )du →

n→∞
Yt − ξ −

∫ T
t
g(u, κu, Yu, Zu)du, in L2 (Ω,G,P) .
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And Zn
t 1[t,T ] → Zt1[t,T ] in L2 (Ω,G,Q). Discussing as in the proof of Theorem

23 in [12] we prove that (Y, Z) satisfy BSDE (3.1) on [tk, T ]. By repeating the
above method in finite steps to obtain a solution to the fractional BSDE (3.1) on
[tk−1, tk], [tk−2, tk−1], ..., and then on [0, T ]. Therefore, the proof of Theorem 3.1 is
complete. □

4. COMPARISON THEOREM

In this section we study a comparison theorem for one fractional BSDEs of the
following form:

(4.1) Y i
t = ξi +

∫ T
t
gi(u, κu, Y

i
u , Z

i
u)du−

∫ T
t
Zi
udB

H
u , 0 ≤ t ≤ T.

where for any i ∈ {1, 2}, gi : Ω× [0, T ]× R3 → R. We assume in addition that

(H1.5)


ξ1 ≤ ξ2,

f 1
(
s, κ, y2, z2

)
≤ f 2

(
s, κ, y2, z2

)
,

∀
(
s, κ, y2, z2

)
∈ [0, T ]× R3.

We have the following theorem.

Theorem 4.1. Suppose that (ξ1, f 1) and (ξ2, f 2) satisfy (H1.1)-(H1.5). If (Y i
s , Z

i
s),

i = 1, 2 are solutions to Eq. (4.1), then we have

∀t ∈ [0, T ] , Y 1 ≤ Y 2, P− a.s.

Proof. Let us define ∆Yt = Y 2
t − Y 1

t , ∆Zt = Z2
t − Z1

t , ∆ξ = ξ2 − ξ1 and

∆f (t, κt,∆Yt,∆Zt) = f 2 (t, κt,∆Yt + Y 1
t ,∆Zt + Z1

t )− f 1(t, κt, Y
1
t , Z

1
t ).

It follows that (∆Yt,∆Zt)t∈[0,T ] satisfies the fractional BSDE

∆Yt = ∆ξ +
∫ T
t
∆f (u, κu,∆Yu,∆Zu) du−

∫ T
t
∆ZudB

H
u , 0 ≤ t ≤ T.

Applying Itô-Tanaka’s formula to
∣∣∆Y −

t

∣∣2, we obtain

E
(∣∣∆Y −

t

∣∣2 + 2
M

∫ T
t
1{∆Yu<0}u

2H−1 |∆Zu|2 du
)

≤ E (∆ξ−)− 2E
∫ T
t
1{∆Yu<0}∆Y

−
u ∆f (u, κu,∆Yu,∆Zu) du.
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Since f 2 (u, κu, Y
2
u , Z

2
u)− f 1(u, κu, Y

2
u , Z

2
u) ≥ 0 and ∆ξ = ξ1 − ξ2 ≥ 0, we have

E
(∣∣∆Y −

t

∣∣2 + 2
M

∫ T
t
1{∆Yu<0}u

2H−1 |∆Zu|2 du
)

≤ 2E
∫ T
t
∆Y −

u (f 1 (u, κu, Y
2
u , Z

2
u)− f 1(u, κu, Y

1
u , Z

1
u)) du.

From (H1.3), (H1.4) and Young’s inequality, we have

2∆Y −
u f

1
(
u, κu, Y

2
u , Z

2
u

)
− f 1(u, κu, Y

1
u , Z

1
u)

≤ CM, H (u) ρ̄
(∣∣∆Y −

u

∣∣2)+ u2H−1

M
|∆Zu|2 .

where CM, H (u) = M
u2H−1 > 2 and ρ̄ (v) = ρ (v)+v for v > 0 such that

∫
0+

dv
ρ̄(v)

= +∞.
Then

E
(∣∣∆Y −

t

∣∣2) ≤ E
∫ T
t
CM, H (u) ρ̄

(
|∆Y −

u |2
)
du,

using Fubini’s theorem and Jensen’s inequality, we get

E
(∣∣∆Y −

t

∣∣2) ≤
∫ T
t
CM, H (u) ρ̄

(
E |∆Y −

u |2
)
du.

Bihari’s inequality implies that ∆Yt = Y 2
t − Y 1

t ≥ 0 P− a.s. for all t ∈ [0, T ]. □
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