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SHARING KEYS USING CIRCULANT MATRICES AND LOGISTIC MAPS
THROUGH QUANTUM CHANNAL
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ABSTRACT. To ensure confidentiality and avoid humain attacks against our data,
we exchange encryption and decryption keys. In our proposal scheme, we use
the commutative properties of the product of circular matrices to create a com-
mon encryption key by applying the protocol of Diffie-Hellman exchange through
a classic channel. To raise the security level of our system we have introduced
the sensibility of chaotic logistic maps in another exchange protocol which is the
BB84 throuth a quantum channal.

INTRODUCTION

In an encryption symmetric system, the sender and receiver of a message share
the same key, which is used for encryption and decryption. however, the asym-
metric system uses two keys, a public key to encrypt messages and a private key
for decryption.
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Symmetric key systems are simpler and faster, but their main drawback is that
both sides must remain secure. Public key encryption avoids this problem, be-
cause the public key can be distributed in an insecure way, and the private key
will never be transmitted.

Symeric key cryptography is sometimes called secret key cryptography. Here,
we are working to share two desired encryption keys [6].

The first one will be a square matrix of ordre n generated by the terms of a
chaotic logistic map [10] after having shared two parameters which we obtained
through a quantum channal that uses a protocol known as quantum exchange
BB84.

The one-dimensional logistic maps used has interest properties, such as: pe-
riodicity and sensitive dependence on the initial values, but its securty is weak.
To overcome the inconvenience of its small key space, we can use several logisic
maps to generate the key in the first step.

Then, with the encryption scheme based on the ideas of Diffie and Hellman [1],
the famous protocol for changing keys, that we used to create the second key from
the first based on the commutativity of the circular matrix multiplication. This
last key will be used to encrypt and decrypt a text or image using a proposed
formula.

1. KEY EXCHANGE PROTOCOLS IN CRYPTOGRAPHY

Cryptology is the science of secrecy, it’s the study of mathematics techninques
that are used to accoplish several goals to ensure the security of our communica-
tions, these goals are:

• The confidentiality of the data;
• The integrity of the data;
• The self-identification of data and communications;
• The none-repudiation of data.

The science of cryptoplogy is embodied in two distinct branchs, but interrlated:

• Cryptography: That proposes solutions to ensure the secret. it has two
types:

– Asymmetric cryptography: two different keys to encrypt and decrypt
a text or an image.
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– Symmetic cryptography: The same key for encryption and decryp-
tion.

• Cryptanalyses: Which seeks to revial the weaknesses of these systems.

Cryptography uses modern cryptographic algorithms and concepts from many
fields as " Computer science, electronics, and specially in applied mathematics using for
example: algebraic structures, elliptic curves, matrices, polynomials, . . . ", used for de-
termine a great possible value for a security variable, and this value is called the
key secret. To determine this key, it is necessary to use techniques more secure
and compliant against attaks, these techniques are called the key exchange pro-
tocols.

A cryptographic protocol is a communication protocol that uses cryptography
tools to achieve a security goal to develop a common secret key. Each protocol is
based on special mechanismes, there are protocols that are based on polynomials
for example: Protocol Bloom KPS, Protocol of Shamir, Protocol of Lagrange, there are
protocols based on the problem of discret-logarithm called Diffie-Hillman protocol.
In this last one, the calculs are very simple, faster and very secure in the same
time.

In our system, we detail how we can obtain a secret key by this protocol using
the properties of circular matrices for encrypting and decrypting images.

The question is: Can we ensured the security of this protocol? For this, to raise
the security levels of our system, we have intoduced chaotic logistic maps with
quantum cryptography which is based on the use of two channals.

Quantum channal: through were objects governed by the laws of quantum
mechanincs transit quantum and classical channals. There are several protocols
of quatium cryptography, the famous one is BB84 which uses the polarisation of
photons ( this is the first protocol of quantum key distribution). The goal of the
BB84 protocol proposed by Charles Bennett and Gilles Brassard in 1984, is to allow
two users to exchange a random and secret key.

2. LOGISTIC MAPS

Sine 1930 iterated maps are considered very important in many fields such as
in population biology, encryption,. . . . One of most famous maps is the logistic
map.
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A logistic map is a simple example of the sequence which recurrence is not
linear. Often cited as an example of complexity which can appear as a simple
non-linear relation, this reccurence was popularized by the biologist Robert in
1976. His relationship reccurence is:

(2.1) xn+1 = µxn(1− xn) ; 3 < µ < 4.

It leads, according to the values of µ to a convergent sequence, a continuation
subject to oscillation or a chaotic sequel.

Towards µ = 3.57, the chaos settles. No oscillation is still visible and slight
variations in the initial population lead to a radically different differences.

Sensitivity to initial conditions: [8]. We can see that a very small changes in the
initial state can lead to behaviors radically different in their final state, as in the
following example ( see Figure 1).

The two graphs correspond to the variation of the same sequence (xn) defined
in (2.1). If we fixe the parameter µ = 3.90 and take two initial values x0 and x′

0

withe a little changing in its values (in the ordre of 10−2 ). In our example we
have chosen x0 = 0.100 and x′

0 = 0.99.

FIGURE 1. State of a logistic map with very small changes in the
initial state
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In Figure 1, we observe that the two sequences trajectories move away from
the begining until some orders nc for the first case and n′

c for the other, the accel-
eration become massive and we get a chaotic phenomenon.

In a concrete problem the initial conditions are never known exactly: after a
certain time, a chaotic phenomenon became unpredictable even though the law
that defines it is perfectly deterministic.

3. QUANTUM CRYPTOGRAPHY

Quantum cryptography is the use of the properties of quantum physics to es-
tablish cryptographic protocols that achieve levels of security that are proven or
conjectured not attainable using only conventional phenomena [12].

An important example of quantum cryptography is the quantum distribution
of keys, which allows to distribute a secret encryption key between two remote
interlocutors, while ensuring the security of transmission through the laws of
quantum physics and information theory. This secret key can then be used in a
symmetric encryption algorithm to encrypt and decrypt confidential data.

The different quantum cryptography protocols:
There are several quantum cryptography protocols. We often present the one

developed by Bennet and Brassard in 1984, which uses photon polarization. We
refer to it as the BB84 protocol. The E91 protocol was conceived by Artur Ek-
ert in 1991. It uses a pair of entangled photons and therefore relies on the EPR
effect well highlighted by the experiments of Alain Aspect and his colleagues.
Applications of quantum cryptography Quantum cryptography has been out of
the realm of theory for years, it is not a laboratory curiosity because it has already
been put into practice, for example, and for the first time in 2004 for a major finan-
cial transaction requiring absolute security and in 2007 when the Swiss company
id Quantique transmitted the results of the national elections in Geneva.

Obviously, quantum cryptography is of great interest to the military. Darpa
(the American agency for advanced military research) has been using a quantum
key distribution network since 2004. The European Union is not left out because
in response to the Echelon spying program, it was at the origin of the Secoqc
network.

The quantum properties of a polarized photon:
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The quantum cryptography protocol is based entirely on the quantum proper-
ties of polarized photons. Knowing and understanding these properties is essen-
tial to understanding quantum cryptography [9].

(1) A photon can be polarized on any axis.
(2) A photon polarized on an angle axis a passing through a b axis polarizing

filter has a chance equal to cos2(b− a) to pass the polarizing filter [7]. So:
• if the filter is oriented precisely in the photon polarization axis (b = a),

the photon will certainly pass through the filter

(proba = cos2(b− a) = cos2(0) = 1).

• if the filter is oriented 900 from the photon polarization axis (b = a +

90), the photon will certainly be stopped by the filter

(proba = cos2(b− a) = cos2(90) = 0).

• if the filter is oriented 45° from the photon polarization axis (b = a +

45), the photon will have a 50% chance of passing the filter

(proba = cos2(b− a) = cos2(45) =
1

2
).

FIGURE 2. The Quantum Key Distribution System using BB84 Protocol
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(3) The above properties are still in the "classic" domain [11]. The purely
quantum properties used by quantum cryptography are:

• When the probability of passing the filter is neither 0 nor 1, the pas-
sage of an individual photon through the filter is fundamentally un-
predictable and indeterminist.

• The polarization axis can only be known by using a polarizing filter
(or more generally, by making a measurement whose result is YES or
NO). There is no direct measurement, giving an angle for example, of
the polarization axis of the photon.

• The initial polarization axis of the photon can only be known if the
filter axis is precisely oriented at 00 or 900 relative to that of the photon.
In the case where the filter is transverse (450 for example), there is
basically no way of knowing what the initial polarization axis of the
photon was.

Key Transmission Protocol. The key to transmit is a series of random bits, thus
taking as value 0 or 1.

The emitter of the key codes each bit of the key in one of two polarization
modes, randomly, at the choice of the emitter:

• Mode 1: 0 is encoded by a 00 polarization axis photon and 1 by a 900

polarization photon.
• Mode 2: 0 is encoded by a 450 polarization axis photon and 1 by a 1350

polarization photon.

The transmitter emits the bit-by-bit, photon-by-photon key, randomly choosing
the polarization mode (Mode 1 or Mode 2) for each emitted photon. The trans-
mitter notes for each bit the selected polarization mode. Each photon is emitted
at regular intervals.

The receiver has a polarizing filter, which can be oriented at will at 00 or 450.
Before the expected arrival of a photon, it positions the filter, also randomly, at
00 or 450. When the photon arrives, it notes the result (the photon has passed the
filter, or the photon has not passed the filter), as well as the chosen orientation of
the filter.

For each bit, two scenarios are possible:
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(1) The transmitter and receiver have randomly chosen the same polarization
orientation. This happens every other time. In this case, the received pho-
ton is representative of the emitted bit and can be translated directly into
bit.

(2) The transmitter and the receiver have chosen a separate orientation of 450,
and in this case the received photon is perfectly random and contains no
information.

Once all the bits have been transmitted (at least 2.N bits must be emitted for a
useful N−bit key), the transmitter communicates to the receiver, by conventional
means and not necessarily reliable, the polarization mode used for each bit.

The receiver can then know which bits have the same polarization orientation.
It knows that these bits are not random. It thus knows in a certain way N bits on
average for 2.N bits transmitted.

So far, this protocol is only a (very complicated) way of communicating ran-
dom N bits from point A to point B. What is the advantage of doing this? The
advantage is that the receiver can have absolute certainty that the key, or part of
the key, has not been intercepted by a spy.

This is possible because, in case a receptor chooses a wrong orientation for the
filter, the received photon is perfectly random and gives no information on its
initial orientation. A possible spy is also obliged to use a polarizing filter to know
the orientation state of the photon that encodes the bit value. To go unnoticed, it
must re-emit a photon, with the same state of polarization as the received photon.
But if the spy has chosen a wrong orientation of the filter to receive the photon
(this happens on average every other time), he will reissue a photon in a random
state. In the case where there is a spy on the line, it can happen the case where
the receiver receives a different bit of the emitted bit when the transmitter and
receiver have chosen the same polarization axis. This never happens (technical
problems aside) when the quantum state of the photon is preserved from one end
of the line to the other.

Therefore, to test the security of the key, the transmitter will, after communi-
cating the polarization modes used for each photon, also communicate the value
of a number of bits [11,12] for which the transmitter/receiver orientations are the
same. These bits are therefore "sacrificed" since they are communicated by an
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unsafe channel. If only one of these bits differs between the transmitter and the
receiver, the key is discarded and the process is restarted.

4. CIRCULANT MATRICES

Assum that k is a field (k = R or C).
In linear algebra, a circulant matrix A is an element of Mn(k) generated by one

vector V (a1a2 · · · an) where a1a2 · · · an in this ordre are the elements of its first line,
and the ith line (2 ≤ i ≤ n) is the target of V by the translation which translate
elements of V by i− 1 times as following:

(4.1) A =


a1 a2 · · · an

an a1 · · · an−1

...
... . . . ...

a2 a3 · · · a1


We can note it:

A = ⟨V ⟩ = ⟨a1a2 · · · an⟩ = C(a1a2 · · · an).

The most important properties of circulant matrices are cited the two following
lemmas:

Lemma 4.1. Let A = C(a1a2 · · · an) and B = C(b1b2 · · · bn) be two circulant matrices
of Mn(C), then

A×B = B × A.

The proof of this lemma is given in [2, 3, 5].

Lemma 4.2. Let A be an invertible circulant matrix, then A−1 is a circulant matrix too.

The proof of this lemma is given in [2–5].

5. APPLICATION WITH A NEW SCHEME

5.1. The idea. Using the logistic maps, we choose an arbitrer couple (µ, x0) where
x0 is the initial term of the sequence 2.1. Through the quantum channal and by
applying the BB84 protocol, we share the encryption key (µ, x0). And the two
prospecters create the same circulant matrix generated by ⟨x1, x2, · · · , xn⟩, where
(x1, x2, · · · , xn) are the terms of the sequence (2.1).
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Then, we will create and exchange an other key using the set of circulant ma-
trices by applying the Diffie-Hellman protocol to get a second common key that
will be used in the encryption and decryption.

The same idea can be realised using several logistic maps for getting a best
level security.

In this work, it is assumed that the constructed matrix is invertible and if not,
the initial parameters are selected again until an invertible matrix is obtained. It
is noted that the probability of having an inverted matrix is greater than 1

2
.

Two people want to communicate each with other:

FIRST STEP:

Through the quantum channal.

(1) Using one logistic map:
• Let (µ, x0) two parameters, where, 3 < µ < 4 and x0 is the initial term

of the sequence (2.1), this couple will be exchanged between the two
interlocutors through the quantum channal using the BB84 protocol.

• After having exchanged (µ, x0), we introduce the logistic map defined
in (2.1) for getting the n terms x1, x2, · · · , xn.

• We create the matrix

Q = ⟨x1, x2, · · · , xn⟩ =


x1 x2 · · · xn

xn x1 · · · xn−1

...
... . . . ...

x2 x3 · · · x1

 .

(2) Using three logistic maps:
• Let (µ1, x

1
0), (µ2, x

2
0) and (µ3, x

3
0) three couples of parameters, where,

{µi : 3 < µi < 4 pour i ∈ {1, 2, 3}} and {xi
0 : i ∈ {1, 2, 3}} is the initial

terms of sequences defiend as in (2.1), these couples will be exchanged
between the two interlocutors through the quantum channal using
the BB84 protocol.

• After having exchanged these three couples of parameters, we intro-
duce the logistic map defined in (2.1) for getting the n terms of each
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sequence:

{x1
1, x

1
2, · · · , x1

n} , {x2
1, x

2
2, · · · , x2

n, · · · , x2
n2−n

2

}

and
{x3

1, x
3
2, · · · , x3

n, · · · , x3
n2−n

2

.}

• We create the matrix

Q =



x1
1 x2

1 x2
2 · · · · · · x2

n−2 x2
n−1

x3
1 x1

2 x2
n · · · · · · x2

2n−4 x2
2n−3

x3
2 x3

3 x1
3 · · · · · · x2

3n−7 x2
3n−6

...
...

... . . . ...
...

...
...

...
...

... . . . ...
...

x3
n2−5n+4

2

x3
n2−5n+6

2

x3
n2−5n+8

2

· · · · · · x1
n−1 x2

n2−n
2

x3
n2−3n+2

2

x3
n2−3n+4

2

x3
n2−3n+6

2

· · · · · · x3
n2−n

2

x1
n


.

In the two case, we managed to build a matrix Q which will be the first secret
commun key between the interlocutors; this key will also be used ti generate
an other key through the classical channal by applying the protocol of Diffie-
Hellman.

In the following table (see Table 1), we show the time required to run the key
Q using one logistic map by Matlab2009 on PC-intel(R) Core(TM) i5-3470CPU@
3.20GHz 3.20GHz.

TABLE 1. Execution time of proposed method of generating the key Q

Size of the 225× 225 256× 256 400× 400 500× 500 512× 512 960× 960

first key Q

Time required 0.010919 0.013829 0.076993 0.152158 0.164088 1.277364

of our method second second second second second second

SECOND STEP:

Through the classical channal.

• Let Q be the previous matrix obtained during the first exchange.
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• Each one of the two interlocutors choose a circular matrix of order n, let
C1 the matrix choosed by the sender and C2 by the receiver.

• Each one send to the other a new matrix S1 and S2 through a classical
channal such that:

(5.1)

{
S1 = C1Q,

S2 = C2Q.

• The first person received S2 and calculates:

K1 = C1S2.

Likewise the second person received S1 and calculates:

K2 = C2S1.

Proposition 5.1. The two interlocutors get the same key K, such that

K = K1 = K2.

Proof. The commutativity of the product of circular matrices seen in Lemma 4.1
gives:

K1 = C1S2 = C1C2Q = C2C1Q = C2S1 = K2.

□

FIGURE 3. Block diagram of the procedure for creating a commun key
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The previous diagram resum the operation how to create the commun keys
through the quantic and classical chanal.

We have managed to build a matrix K which will be the secret commun key
between the interlocutors; It will also be used to encrypt and decrypt.

In the following table (see Table 3), we show the time required to run the key
K using Matlab2009 on PC-intel(R) Core(TM) i5-3470CPU@3.20GHz 3.20GHz.

TABLE 2. Execution time of proposed method of generating the key K

Size of the 225× 225 256× 256 400× 400 500× 500 512× 512 960× 960

second key K

Time required 0.026830 0.029325 0.164801 0.337485 0.365084 2.803810

of our method second second second second second second

APPLICATION:

Encryption and Decryption of an image. Let I be an image of size n × n pixel,
If some one want to send the image to an other person, he must convert it to a
matrix of order n. Let G be the converted matrix, Q and K are the exchanged
keys obtained previousely.

Encryption operation: The sender calculates and sends the encrypted matrix

H = KGQ.

Decryption operation: The receiver get H and calculates

H ′ = K−1HQ−1,

to decrypt H and obtaines the intial matrix G correspending to the initial image
I .

5.2. Performance and security analysis. To study the efficacy of our image in-
cryption, we test its security. The proposed method should resist against several
types of attacks, because its symmetric keys used during the encryption and the
decryption must be transmitted through a secure channal and an other unsecured
one.
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FIGURE 4. Block diagram of the encryption and decryption procedure

For the implementation of the proposed scheme, we choose the size of image
n = 256 or n = 512. The proposed schem key K is none-deterministic, because the
interlocutors use arbitrary circulant matrices (C1 and C2) for getting a commun
key K.

If we use the proposed key generation methode with

xi ∈ {0, · · · , 255}; (xi are the composants of the key K).

This provides uper then 256256 possible case to obtain the key K. We have also
1060 possible case for getting the key Q (with ten digits decimal after the comma)
if we use three logistic maps.

The used 1-dimentional logistic map has intersting properties like periodicity
and sensitivity of intial values, but it has a low security to overcome the incon-
venience of its small key space, for these raison we choose in this phase to use
several logestic maps to generate the key Q.

The key space size of our proposed scheme is greater then 256256×256256×1060

(for the formula K = C1C2Q) and the key space is wide enough for a brute force
attack or exhaustive attack is not possible.

Tests to encrypt and decrypt some images. To confirm the level of security of the
proposed system and its efficiency, in the operation of encryption and decryption
of a digital image, we must test the three properties:
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• Histogram;
• Entropy;
• Correlation.

Histogram. We know that the histogram of an image of an encryption system
must be uniform if we have a good level of securty.

The proposed image encryption scheme is examined using the histogram. We
used two test images, Camera-men of size 256 × 256 and Barbara of size 512 ×
512. The histogram of our encrypted images is almost uniform and considerably
different to the histogram of simple images that makes difficult statistical attacks
(see Figure 5).

FIGURE 5. Encrypted and decrypted Barbara and Camera-men im-
ages and their correspended histogram of original and encrypted
images
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Entropy analysis of information. Entropy is one of the best functions for calcu-
lating and measuring character random of the encrypted image.

Ideally, the entropy of information should be 8 − bit for grayscale images. If
a scheme of encryption generates an output digit image with lower entropy at
8− bits, then there would be a possibility of predictability, which can threaten his
security. The entropy of information is calculated using the equation former. The
simulation results for the entropy analysis concerning some images are presented
in the table:

Encrypted images images size µ x0 Entropy

Pepper 225× 225 3.67 0.87 7.9966

Camera men 256× 256 3.21 0.67 7.9977

Lena 256× 256 3.57 0.47 7.9973

Im 400 400× 400 3.57 0.47 7.9988

Im 500 500× 500 3.47 0.33 7.9994

Barbara 512× 512 3.59 0.41 7.9994

Im 960 960× 960 3.30 0.28 7.9998

TABLE 3. Entropy results of some encrypted images

Correlation analysis of two adjacent pixels. Correlation determines the connec-
tion between two variables. In other terms, correlation is a measure that deter-
mines level of similarity between two variables. Correlation coefficient is a useful
evaluation to judge encryption quality of any cryptosystem. Any image cryp-
tosystem is said to be good, if encryption method hides all attributes and features
of a plain text image, and encrypted image is totally random and extremely un-
correlated. For a regular image, each pixel is highly associated with its nearby
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pixels. An ideal encryption technique should generate the cipher images with
no such correlation in the adjacent pixels. We have examined the correlation of
two adjacent pixels in original image and encrypted image in several images like
Pepper immage; Camera-man image; Lena image; Barbara, Im 400; · · · and we
find theirs correlation very close to 1, we mean there is a perfect match between
the original and decrypted images.
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