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ABSTRACT. We propose a scalable computational framework for the hybrid CPU-
GPU implementation ofa traffic-induced and finite element-based air quality model.
The hybrid computing paradigm we investigate consists in combining the CPU-
based distributed-memory programming approach using Message Passing Inter-
face (MPI) and a GPU programming model for the finite element numerical in-
tegration using Compute Unified Device Architecture (CUDA), a general purpose
parallel computing platform released by NVIDIA Corporation and featured on its
own GPUs. The scalability results obtained from numerical experiments on two
major road traffic-induced air pollutants, namely the fine and inhalable particulate
matter PM2.5 and PM10, are illustrated. These achievements, including speedup
and efficiency analyses, support that this framework scales well up to 256 CPU
cores used concurrently with GPUs from a hybrid computing system.

1. INTRODUCTION

Air pollution is a real concern for public health and the environment. It is nowa-
days considered as an increased priority for joint action worldwide to fight against
its harmful effects. Ambient air pollution comes from natural and anthropogenic
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sources. Natural sources include wildfires, volcanic eruptions and dust storms. An-
thropogenic sources are mostly resulting from the combustion of different kinds of
fuels. They include motor vehicles, factories, industrial facilities and power plants.

Air pollution is particularly prevalent in urban areas subject to high population
density and strong economic and industrial activities. Several illnesses like chronic
obstructive pulmonary disease (COPD), schemic heart disease, stroke and lung
cancer are associated with ambient air pollution, classified as carcinogenic to hu-
mans by the International Agency for Research on Cancer (IARC) [20]. The World
Health Organization (WHO) estimates that 4.2 million premature deaths world-
wide in 2016 were attributable to ambient air pollution [21]. Low-income and
middle-income countries are the most experienced since 91% of the mentioned
pollution-related deaths occur in these countries. The affects of air pollution,
indoor and outdoor sources combined, on health, human capital and economic
development are particularly severe in Africa [6]. In this continent, 16.3% of total
deaths, i.e. about 1.1 million fatalities, in 2019 were associated with air pollu-
tion [19]. As a result, it appears that air pollution is now the second leading cause
of death in Africa, surpassed only by HIV/AIDS.

Efforts have been made at local and global scales for reducing the adverse ef-
fects of air pollution. They are mainly based on the implementation of ambient
air quality monitoring stations in order to better identify pollution sources and to
assist in making decisions on binding policies. In contrast to advanced countries,
there are very few of these regulatory grade monitors in use in Sub-Saharan Africa,
mainly due to their high acquisition cost on the one hand and the limited finan-
cial resources of the countries on the other. This fact argues that this approach is
not always adequate for developing countries and it is therefore essential to in-
vestigate alternative methods. Credible alternatives to these classical techniques
include mathematical modeling and numerical simulation. They are fundamental
and efficient tools widely used for understanding and predicting the dynamics of
pollutants in the atmosphere [13]. They deal with the transport and diffusion of
pollutants in the atmosphere and address the mechanism of chemical reactions
and deposition processes. Rapid growth in computational power and recent ad-
vances in robust numerical methods have largely contributed to the remarkable
success of these tools.
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Let us focus now on the city of Bamako, the political and economic capital of the
landlocked Sahelian country of Mali. Bamako is built on a territory that represents
only 0.02% of the total area of the country but houses more than 12% of the
Malian population. It is undoubtedly among the most polluted capitals in West
Africa. Indeed, in this capital, the daily mean concentration of PM10, an inhalable
particulate matter with a diameter of 10 µm or less, nears 600 µg/m3 while the
WHO guideline recommends a maximum daily limit of 45 µg/m3 [1]. In addition,
the daily mean concentration of PM2.5, the fine particulate matter with a diameter
of 2.5 µm or less, in Bamako reaches 165 µg/m3, far above the maximum daily limit
recommended by WHO and fixed to 15 µg/m3 [22].

In order to make our contribution, we have proposed a unified framework
for the mathematical modeling and numerical simulation of traffic-induced air
pollution in Bamako [27], We were interested in a deterministic model, the so-
called chemical transport model, characterized by its high accuracy and flexibility
and suited for practical and long term simulation-based applications. Performing
high spatial resolution simulations using such a complex three-dimensional (3D)
model is very challenging and requires high computational power. In this con-
text, we have proposed in [28] a parallel computational framework centered on
the CPU-based distributed-memory programming approach using Message Pass-
ing Interface (MPI) library and modern C++ features. This work has allowed to
accurately reproduce the temporal and spatial dynamics of PM2.5 and PM10, two
traffic-induced primary pollutants widely used in the survey of air quality, while
presenting good speedup and efficiency properties up to 128 CPU cores.

The objective of this paper is to present an extension of this existing CPU-based
parallel framework to a hybrid computational approach that consists in combining
Central Processing Units (CPUs) and Graphics Processing Units (GPUs) to obtain
better computing performance by using more computational resources on the one
hand, and on the other hand, to allow the achievement of simulations with finer
spatial resolutions for more accurate knowledge on the urban air pollution pat-
terns.
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This paper is organized as follows. Section 2 describes the atmospheric chemical
transport model we are interested in. Section 3 focuses on the spatial discretiza-
tion and the time integration of the model. Section 4 deals with the hybrid CPU-
GPU implementation of the model. In Section 5, we present the scalability results
and discuss their attainment. The main conclusions are summarized in Section 6.

2. MODEL DESCRIPTION

Let Ω be a bounded domain of R3 and ∂Ω the boundary of Ω. We consider a
partition of ∂Ω of the form ∂Ω = ∂ΩG ∪∂ΩH ∪∂ΩL, where ∂ΩG denotes the ground
boundary of Ω, ∂ΩH is the upper limit of Ω and ∂ΩL represents the lateral bound-
aries of Ω. Let c be the vector field of concentrations, where the ith component
ϕi denotes the scalar concentration field of air pollutant tagged i. The spatial and
temporal dynamics of the concentration ϕi in the domain Ω over the time interval
(0, T ) are governed by the atmospheric chemical transport model (2.1), already
introduced in [28].

(2.1)



∂ϕi

∂t
+∇ · (uϕi)−∇ · (µi∇ϕi)− χi(c)

+ Λi(x, t)ϕi = Si(x, t) in Ω× (0, T )

ϕi(x, 0) = cin in Ω

µi∇ϕi · n = vdi ϕi − Ei on ∂ΩG × (0, T )

µi∇ϕi · n = 0 on ∂ΩH × (0, T )

ϕiu · n = Φi on ∂ΩL × (0, T )

The parameters and physical fields of the model (2.1) and their units are listed
in Table 1. The vector field n is the unit outward normal vector to the boundary
∂Ω. The variable x = (x, y, z) describes the spatial dimensions, where z represents
the altitude. The variable t denotes the model time.

Table 1: Fields and physical parameters of the model
(2.1).

Symbol Name Unit
c concentration of pollutant kg m−3

u wind flow speed m s−1
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µ diffusion coefficient m2 s−1

χ chemical sources kg m−3 s−1

Λ scavenging coefficient s−1

S source terms kg m−3 s−1

E surface emissions kg m−2 s−1

vd dry deposition velocity m s−1

cin initial concentration kg m−3

Φi advective mass flux kg m−2 s−1

In the model (2.1), it is assumed that there is no feedback between the flow
fields and the pollutants. We suppose that the urban topography is homogeneous
and that the flow is incompressible. The maximum altitude, denoted H, we are in-
terested in is assumed to be included in the atmospheric boundary layer [10]. We
consider a first-order chemical reaction, where the balance of physical and chemi-
cal processes can be written in the form χi = −κiϕi, where κi denotes the reaction
rate. The losses from wet deposition and scavenging are assumed to be negligible,
which holds that Λi = 0. For more details about the deposition and scavenging
processes and the chemical kinetics, readers can refer to [27]. The wind flow
speed u is obtained from the meteorological data sources of the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF). The initial concentration cin

and the advective mass fluxes Φi from external pollution sources to the computa-
tional domain are collected from the Copernicus Atmosphere Monitoring Service
(CAMS), implemented by ECMWF.

An important aspect in the study of air pollution consists in understanding the
essential properties of the pollutants of interest, in particular their characteristic
time, also called residence time. It defines the average length of time a pollutant
remains in the atmosphere before being removed during chemical reactions or
scavenging and deposition processes. The characteristic times of the principal
atmospheric species are reported in [31, Fig. 1.7].

The chemical reaction rate κi of a species tagged i is related to its characteristic
time, denoted τi, by the following formula:

(2.2) κi =
1

τi
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Furthermore, the dry deposition velocity of this species can be computed from
its characteristic time as follows:

(2.3) vdi = Hτi,

where H is the maximum altitude of interest.

3. MODEL DISCRETIZATION

The discretization is an essential step for the numerical solution of complex
partial differential equations (EDP). It consists in transposing a continuous model
into an equivalent discrete model that can be solved using numerical algorithms.
The discretization of the model (2.1) will be done in two phases. First, the tem-
poral discretization of the continuous model and then, the spatial discretization
of the discrete-time model. The time integration of the model (2.1), already de-
veloped in [28], is achieved using the forward Euler method, a basic first-order
numerical scheme. Following the assumptions listed in section 2 and introducing
a discretization time-step ∆t ∈ R∗

+, this integration is presented as follows:

(3.1)
ϕn
i − ϕn−1

i

∆t
+ un · ∇ϕn

i −∇ · (µi∇ϕn
i ) + κiϕ

n
i = Sn

i ,

where ϕn
i = ϕi(x, tn), un = u(x, tn), Sn

i = Si(x, tn) and tn = n∆t, n ∈ N∗.
The spatial discretization of the model, earlier discussed in [28], is conducted

using the finite element method [5, 17]. It is a poweful and general numerical
approach that provides an approximate solution of complex problems, expressed
in terms of partial differential equations (PDEs), in various fields of science and
engineering. It is able to handle complex geometries and allow an insightful error
analysis. The finite element method relies on the principle of minimization of the
potential energy of the system. The main idea consists in finding an approximation
of a problem written in the variational form in an infinite-dimensional Hilbert
space V in a finite-dimensional subspace Vh ⊂ V .

Let Tδ be a mesh of the domain Ω, where δ denotes the maximum characteristic
length of the mesh. We denote VΦi,δ the piecewise linear finite element space
defined on Tδ as follows:

(3.2) VΦi,δ =
{
v ∈ C0(Ω)

∣∣ v is linear on K,K ∈ Tδ

}⋂
H1

Φi,∂ΩL
,
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where H1
Φi,∂ΩL

is the Hilbert-Sobolev space of order 1 satisfying the Dirichlet con-
dition on ∂ΩL, see model (2.1). The space C0(Ω) is the set of continuous functions
defined on Ω, the closure of Ω. The variational (or weak) form of the problem
(2.1) is written: find ϕi ∈ VΦi,δ such that

(3.3)
∫
Ω

(
ϕn
i +∆tu ·∇ϕn

i −∆t∇· (µi∇ϕn
i )+∆tκiϕ

n
i

)
v =

∫
Ω

(
∆tSi(x, t)+ϕ

n−1
i

)
v,

for all v ∈ V0,δ, where ϕi refers to ϕn
i . Integrating equation (3.3) by parts and

considering the boundary conditions prescribed in (2.1), the following weak form
holds: find ϕi ∈ VΦi,δ such that

(3.4)
∫
Ω

µi∆t∇ϕi · ∇v +
(
ϕi +∆tu · ∇ϕi +∆tκiϕi

)
v −

∫
∂ΩG

∆tvdi ϕiv = R(v),

for all v ∈ V0,δ, where

R(v) =

∫
Ω

(
∆tSi + ϕn−1

i

)
v −

∫
∂ΩG

∆tEiv.

The existence and uniqueness of the weak solution of (3.4) is ensured by the
Lax-Milgram theorem [5], a key tool in finite element analysis. Denoting by Q the
left-hand-side form of (3.4), this equation can be written:

(3.5) Q(ϕi, v) = R(v).

Let B =
{
ψj

}Nδ

j=1
be a set of basis functions of VΦi,δ. The approximate solution

ϕi ∈ VΦi,δ can be expressed as

(3.6) ϕi =

Nδ∑
j=1

ϕi,jψj,

where ϕi,j, j = 1, . . . , Nδ, are nodal values. By replacing in (3.5) the trial function
ϕi by its expression (3.6) and the test function v by the basis elements of B, the
following discrete form of the problem holds:

(3.7)
Nδ∑
j=1

ϕi,jQ(ψj, ψk) = R(ψk), ∀k = 1, . . . , Nδ.

The discrete problem (3.7) can finally be written as a linear system:

(3.8) Ax = b,
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where A ∈ RNδ×Nδ and x and b belong RNδ . The entries of the matrix A are
computed by ajk = Q(ψk, ψj), 1 ≤ j, k ≤ Nδ. The components of the force vector
b are determined by bj = R(ψj), 1 ≤ j ≤ Nδ. The vector solution x is composed
of the unknown coefficients ϕi,j.

4. HYBRID CPU-GPU IMPLEMENTATION

4.1. Background. Awesome progress in the design of powerful parallel comput-
ers and the recent advances in semiconductor manufacturing and multicore tech-
nologies have ushered a new era in the field of high-performance Computing
(HPC). This consists in practice of aggregating computing resources from multiple
servers in such a way as to deliver much higher computing power than standard
servers for solving highly demanding and large complex problems in simulation-
based applied science and engineering. It is indeed at the core of recent major
scientific and technological breakthroughs. The investigation of advanced numer-
ical methods and algorithms that can optimally exploit the full potential of modern
computing architectures is a significant challenge and an integral part of academic
research in the field of scientific computing.

The CPU-based distributed message passing paradigm, a dominant program-
ming model used to parallelize applications across computing clusters, has been
employed in [28] to implement a slightly simplified version of the model (2.1).
However, the continued evolution of parallel computing architectures and recent
trends in processor and memory technologies, marked by a rapid increase in CPU
core count and a decrease in the memory capacity per core, have shown the limita-
tions of this approach with respect to its performance and scalability. As a result,
robust and quite successful hybrid approaches, coupling MPI [30] and shared-
memory models such as OpenMP [3] and GPU [23], have been introduced as
alternatives for overcoming these restrictions. They provide greater flexibility in
parallel decomposition in mainstream heterogeneous computing systems and al-
low a significant reduction in the amount of memory consumed by read-only data
structures that are replicated across CPU cores.

GPUs, originally designed to accelerate graphics intensive applications, are cur-
rently a promising and most important platform widely used in HPC. The success
and attractiveness of this technology in this field is due, in part, to the fact that
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GPUs have higher core count and memory bandwidth than CPUs and are much
more energy efficient. These features make GPUs more flexible, allowing them
to perform far fewer tasks at high speed and with massive data throughput and
to support demanding compute workloads far better than CPUs. These advan-
tages provide additional motivation of using the hydrid MPI-GPU programming
model [24] in preference to pure MPI for parallel general-purpose computations,
including the solution of numerically complex models. However, despite its im-
mense strengths, this cooperative MPI-GPU approach is very challenging since it
requires both a advanced knowledge of CUDA [4] or OpenCL [32] APIs and manu-
ally managed data communication between distributed CPUs and GPUs using MPI
and GPU programming interfaces.

4.2. Contribution. In the literature, several works have been dedicated to the
use of GPUs in the finite element computations [11, 15, 25, 29]. In General, the
main steps involved in the finite element analysis can be recapped as follows:
(i) definition of variational formulation (ii) discretization: mesh generation and
definition of approximation space (iii) local assembly on each mesh element by
numerical integration (iv) global assembly on the entire mesh (v) solution of the
resulting linear system.

The most computationally and time consuming steps in finite element analysis
are usually the assembly, including local and global, and the solution of the re-
sulting sparse linear system [8]. Significant advances have already been made in
the development of robust and scalable solvers [12, 26] for the efficient solution
of sparse linear systems. So, we propose in this framework an efficient approach
directed on boosting the performance of the finite element assembly by computing
numerical integration, inherently parallel, in GPUs.

We first proceed in pre-processing to the generation of the serial computational
mesh over the concerned region using Gmsh [7]. We consider a mesh of 4-node
tetrahedral elements for three-dimensional linear finite element analysis. This
serial mesh will then be partitioned, again in pre-processing, into several subdo-
mains using a useful embedded feature of Gmsh called METIS [14]. The pre-built
parallel finite element mesh is fully loaded separately and concurrently by each
deployed CPU core, which will only retrieves the partition that fits its local CPU
rank enlarged to inter-process (ghost) elements.
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The task which succeeds consisted in building concurrently in each processor
core over its local mesh a table of degrees of freedom (DOFs). It is achieved using
a local DOF numbering from a minimum-bandwidth algorithm [16]. A global
table of degrees of freedom, distributed across all processor cores and associated
with the entire problem, is then built. It is connected to local tables of degrees of
freedom through a relation called local-to-global map (LtGM). Creating this map
is done once but requires global communication involving all CPU ranks.

Following these first tasks performed completely on the CPUs (hosts), all nodal
data related to the local mesh and specific to each CPU rank are transferred from
CPUs, on which they reside, to GPUs (device) using functions of CUDA kernel,
prior launched asynchronously by the host. Then, the kernel execution starts on
the device and the local element matrices generation by numerical integration
is fully realized in parallel on GPUs. The GPU parallelization approach used for
numerical integration consists in partitioning the finite elements into subsets ac-
cording to the GPU ressource availability and the number of CUDA warps. The
subsets are executed in serial on the device and the numerical integration over
the elements in each subset is achieved in parallel within CUDA warps. A finite
element will be assigned to each thread within a warp. Once all these calculations
are completed on GPUs, element matrices and load vectors data are moved back
to CPUs for further operations. The data transfers between the host (main) mem-
ory and the device memory are done through the PCI-Express bus. The hybrid
algorithm proposed here has been designed to ensure better load balancing and
to reduce host-GPU communication patterns, which remain a bottleneck for many
heterogeneous applications [9] since the speed of such transfer is much lower than
GPU bandwidth.

The parallel assembly of global right-hand side vector and global finite element
matrix, created using PETSc [2] wrappers and stored in CSR format, is carried
out on CPUs using LtGMs and element matrices and vectors earlier received from
GPUs. The parallel algebraic operations involving data structures of matrices and
vectors, including solvers and preconditioners for the solution of linear systems,
are handled using advanced algebraic interfaces from PETSc wrappers.
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5. NUMERICAL EXPERIMENTS

The numerical simulations are performed on two major air pollutants commonly
used in air quality survey, namely the fine and inhalable particulate matter PM2.5

and PM10. Consisting of a mixture of solid and liquid particles, these pollutants
are an important metric since they are among the most common traffic-related air
pollutants with both short-term and long-term health impacts.

The maximum altitude of interest we consider is settled to H = 10m. The cor-
responding physico-chemical parameters for PM2.5 are given by µ = 6.36 × 10−6

m2s−1, κ = 3.17 × 10−6 s−1 and vd = Hκ = 3.17 × 10−5 ms−1. Likewise, the
physico-chemical parameters for PM10 are reported by µ = 1.59 × 10−6 m2s−1,
κ = 2.73 × 10−5 s−1 and vd = Hκ = 2.73 × 10−4 ms−1. The three-dimensional
computational domain and a mesh of 4-node tetrahedral elements over this do-
main with an average spatial resolution of 5 m are shown in Figure 1. The spatial
discretization of the model is based on the first-order Lagrangian finite element
approximation. The meteorological data, including wind speed and wind direc-
tion, are collected from European Centre for Medium-Range Weather Forecasts
(ECMWF). The initial concentration and the advective mass fluxes from external
pollution sources to the computational domain are collected from the Copernicus
Atmosphere Monitoring Service (CAMS), implemented by ECMWF.

The input traffic emissions data for the model were generated in pre-processing
from a model-based traffic simulations on major roads subject to heaviest traffic
jams during daily rush hours. Traffic simulations have been released using a micro-
scopic and continuous traffic simulation suite called SUMO [18]. The SUMO input
parameters, such as traffic volume, traffic density, vehicle type, vehicle engine,
average speed, are extracted from a national database provided by the Malian
Department responsible for Transport and Infrastructure.

The numerical simulations have been performed at the “Centre de Calcul, Mod-
élisation et Simulation” (CCMS) of the Faculty of Science and Technology (FST) of
Bamako. CCMS hosts a cluster of ten compute nodes (servers) connected by an
infiniband QDR network. There are two groups of these nodes, each consisting of
two distinct machine types. In the first gathering of five Dell PowerEdge servers,
each node has two Intel Xeon Silver 4110 processors with 8 cores running at 2.10
GHz and 64 GB of RAM. Still in this group, two nodes are featured with two
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NVIDIA Tesla V100 GPUs each. In the second group of five HPE ProLiant servers,
each node is equipped with two Intel Xeon E5-2623 v4 processors with 4 cores ca-
denced at 2.60 GHz and 16 GB of RAM. Based on Volta architecture, NVIDIA Tesla
V100 GPU provides 5120 CUDA computational cores over 84 Streaming Multipro-
cessors (SM) and 32 GB onboard memory. It delivers up to 7 and 14 TFLOPS of
peak floating-point performance at single and double precision, respectively.

(a) Three-dimensional domain of Bamako (b) Three-dimensional computational
mesh

FIGURE 1. Three-dimensional computational domain and a mesh
with an average spatial resolution of 5m. Source: [28].

The computational scalability is an important tool for expressing the perfor-
mance of parallel algorithms [28]. It refers to two usual metrics, namely the
strong scaling (or speedup) and weak scaling (or efficiency). The speedup is de-
fined as the ratio of the time required to complete a given problem in serial on
a single CPU core to the time spent to achieve the same problem in parallel on
p (p > 1) CPU cores. Let T1 be the time consumed for running a problem on a
single CPU core and Tp be the parallel execution time of the same problem using
p (p > 1) CPU cores. The speedup with p CPU cores is computed as follows:

(5.1) Sp = T1/Tp.
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Furthermore, The efficiency with p (p > 1) CPU cores is computed as follows:

(5.2) Ep = Sp/p.

Based on the expression (5.2), it can be shown that the best possible efficiency is
reached when the speedup is linear, i.e. Sp = p. For large scale computing, the
concepts of relative speedup and relative efficiency, a more general approach of
the usual metrics of speedup and efficiency, have been introduced [33]. Let Tr be
the parallel execution time of a problem on r CPU cores and Tp be the parallel
execution time of the same problem on p (r < p) CPU cores. The speedup relative
to r CPU cores when using p cores is defined as follows:

(5.3) Sr,p = Tr/Tp.

The best possible relative speedup is the linear speedup computed as Sℓ
r,p = p/r.

Consequently, the efficiency relative to r CPU cores when using p cores, expressed
as a percentage, is defined as follows:

(5.4) Er,p = rSr,p/p.

From equations (5.3) and (5.4), we denote Scpu
r,p and Scpu+gpu

r,p the speedup rela-
tive to r CPU cores when using p cores (pure MPI) and the speedup relative to r
CPU cores when employing p cores and the GPUs (hybrid MPI-GPU), respectively.
Similarly, Ecpu

r,p and Ecpu+gpu
r,p represent the efficiency relative to r CPU cores when

using p cores (pure MPI) and the efficiency relative to r CPU cores when employing
p cores and the GPUs (hybrid MPI-GPU), respectively.

The strong and weak scalability results up to 256 CPU cores, achieved on a
computational mesh of about 3.94 × 106 tetrahedral elements, when using pure
MPI and hybrid MPI-GPU computing approaches are plotted in Figure 2.

According to the strong scaling analysis presented in Figure 2(a), the speedup
relative to 16 cores when using 256 CPU cores is Scpu

16,256 ≈ 12.77. This fits a perfor-
mance gain of about 79.81% compared to the linear relative speedup Sℓ

16,256 = 16.
This speedup, which is below expectations, has been improved thanks to the use
of GPUs, employed together with CPU cores, to achieve a relative speedup of
Scpu+gpu
16,256 ≈ 15.56. This enhanced speedup corresponds to a gain of about 97.24%

compared to the linear relative speedup Sℓ
16,256.
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FIGURE 2. Strong and weak scaling analyses

Regarding the weak scaling analysis shown in Figure 2(b), the efficiency rela-
tive to 16 cores when using 256 CPU cores is Ecpu

16,256 ≈ 80.89%. However, when
using GPUs, together with CPU cores, we obtain an improved relative efficiency of
Ecpu+gpu

16,256 ≈ 98.01%.
As we can see, the weak and strong scalability results presented here highlight

the contribution of GPUs to achieve much better performance for this framework.
They support that the proposed framework scales well up to 256 CPU cores, used
together with GPUs, from a hybrid computing system.

6. CONCLUSIONS

We presented a scalable computational framework for the hybrid CPU-GPU im-
plementation of a traffic-induced and finite element-based air quality model. The
mathematical model governing the temporal and spatial dynamics of air pollutants
has been briefly described. The model discretization, including temporal and spa-
tial integration, was developed. The hybrid CPU-GPU implementation, based on
the coupling of the CPU-based distributed-memory programming approach using
MPI and a GPU programming model for finite element numerical integration us-
ing CUDA, has been exhaustively presented. The numerical simulations were per-
formed on two major road traffic-induced air pollutants, namely the inhalable and
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fine particulate matter PM2.5 and PM10. The meteorological data, including wind
speed and wind direction, required for running simulations were collected from
European Centre for Medium-Range Weather Forecasts (ECMWF). The model ini-
tial data, including concentration and advective mass fluxes were collected from
the Copernicus Atmosphere Monitoring Service (CAMS), implemented by ECMWF.
The traffic simulations have been released on major roads subject to heaviest traf-
fic jams during daily rush hours using the microscopic and continuous traffic sim-
ulation suite SUMO. A national database provided by the Malian Department re-
sponsible for Transport and Infrastructure was used to retrieve SUMO input pa-
rameters, such as traffic volume, traffic density, vehicle type, vehicle engine, aver-
age speed. The scalability results, including speedup and efficiency, obtained from
numerical experiments, have been illustrated and discussed. These achievements
have clearly demonstrated that the proposed framework scales well up to 256 CPU
cores, used together with GPUs, from a hybrid computing system.
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