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AN INTERIOR-POINT ALGORITHM FOR SIMPLICIAL CONE CONSTRAINED
CONVEX QUADRATIC OPTIMIZATION

Merzaka Khaldi1 and Mohamed Achache

ABSTRACT. In this paper, we are concerned with the numerical solution of sim-
plicial cone constrained convex quadratic optimization (SCQO) problems. A re-
formulation of the K.K.T optimality conditions of SCQOs as an equivalent linear
complementarity problem with P-matrix (P-LCP) is considered. Then, a feasible
full-Newton step interior-point algorithm (IPA) is applied for solving SCQO via
P-LCP. For the completeness of the study, we prove that the proposed algorithm is
well-defined and converges locally quadratic to an optimal of SCQOs. Moreover,
we obtain the currently best well-known iteration bound for the algorithm with
short-update method, namely, O(

√
n log n

ϵ ). Finally, we present a various set of
numerical results to show its efficiency.

1. INTRODUCTION

Consider the following simplicial cone constrained convex quadratic optimiza-
tion SCQO:

(1.1) min
x

[
f(x) =

1

2
xTQx+ xT b+ c

]
s.t. x ∈ S,
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where Q ∈ Rn×n is a given symmetric positive definite matrix, b ∈ Rn, c ∈ Rn and

S =
{
Ax | x ∈ Rn

+

}
is the simplicial cone associated with the nonsingular matrix A ∈ Rn×n. Simplicial
cone constrained convex quadratic optimization problems arise as an important
problem in its own right, it has an important subclass of positively constrained con-
vex quadratic programming, or equivalently the problem of projecting the point
onto a simplicial cone (see [8]).

Since the path-breaking work of Karmarkar [15] for linear optimization (LO),
several algorithmic variants of interior-point methods (IPMs) were developed for
LO. The primal-dual path-following methods introduced by Kojima and al. [16]
and Monteiro and al. [20] are the most attractive methods in IPMs. The lat-
ter is a powerful tool to solve a wide large of mathematical problems such as
LO, (see [1, 11, 14, 16]), convex quadratic optimization (CQO) (see [2, 13], LCP
(see [12,17–19]), the linear semidefinite optimization (SDO) and the semidefnite
linear complementarity problem (SDLCP) (see [6, 7, 9, 21]). Recently, Achache
[4] presented a short-step feasible IPMs for solving monotone standard LCP. He
showed that the algorithm enjoys the iteration bound, namely, O(

√
n log(n

ε
)). Fur-

thermore, he reported some numerical results which confirmed the efficiency of
this algorithm.

In this paper, motivated by this work, we solve the SCQO by using IPMs and
linear complementarity problems. First, across the Karish-Khun-Tucker (K.K.T)
optimality conditions of SCQO (1.1), we reformulate it as an equivalent LCP. Fur-
ther, we show that the corresponding LCP is a P-LCP. Hence, due to Cottle et
al. [10], the P-LCP has a unique solution and so is the SCQO. Second, across the
P-LCP, we introduce a simple feasible short-step interior-point algorithm for solv-
ing the SCQO. In fact the latter uses at each iteration, only full-Newton steps with
the advantage that no line search is required. For its well-definiteness and its local
quadratic convergence to an optimal solution of SCQO, we suggest new appro-
priate defaults to ensure that the algorithm converges to the unique minimizer of
SCQO (1.1). Moreover, the best known iteration bound, namely, O(

√
n log n

ϵ
) is

derived. Here, for its polynomial complexity, we have reconsidered the basic anal-
ysis used in [4] and other references and developed them to be suited for SCQOs.
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Finally, some numerical results are provided to illustrate its efficiency for solving
the SCQOs.

The outline of this paper is organized as follows. In section 2, the reformulation
of SCQO as a P-LCP is given. In section 3, a feasible full-Newton step primal-dual
interior-point algorithm is proposed for solving SCQOs via the P-LCP. In section
4, the complexity analysis and the currently best known iteration bound for short-
step methods are established. In section 5, some numerical results are provided to
show the efficiency of the proposed algorithm.

The following notations are used throughout the paper. For a vector x ∈ Rn, the
Euclidean and maximum norms are denoted by ∥x∥ and ∥x∥∞, respectively. Given
two vectors x and y in Rn, xy = (xiyi)1≤i≤n denotes their coordinate-wise product
and the same as for the vectors x/y = (xi/yi)1≤i≤n for y ̸= 0,

√
x = (

√
xi)1≤i≤n and

x−1 = (1/xi)1≤i≤n. The nonegative orthant of Rn is denoted by Rn
+. For x ∈ Rn,

X denotes the diagonal matrix having the components of x as diagonal entries,
i.e., X :=diag(x). The identity and the vector of all ones are denoted by I and e,
respectively.

2. REFORMULATION OF SCQO AS AN P -LCP

In this section, some necessary definitions and theorems are required. A matrix
M is positive definite if xTMx > 0 for all nonzero x ∈ Rn. M ∈ Rn×n is called
a P-matrix if all its principal minors are positive. As a consequence, any positive
definite matrix is a P-matrix. Next, we define the standard LCP.

Definition 2.1. The standard LCP consists to find vectors z, y in Rn such that

(2.1) z ≥ 0, y ≥ 0, z = My + q, zTy = 0,

where M ∈ Rn×n is a given matrix and q ∈ Rn.

The following result was proved by Cottle, Pang and Stone [10], where any
P-LCP has a unique solution for every q ∈ Rn.

Theorem 2.1. [10, Theorem 3.3.7] A matrix M ∈ Rn×n is a P-matrix if and only if
the LCP has a unique solution for q ∈ Rn. In this case the LCP is denoted by P-LCP.

Next task is to reformulate the SCQO (1.1) as a standard LCP. Starting from the
definition of the simplicial cone S associated with the nonsingular matrix A, letting
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x = Ay, then the problem (1.1) can be reformulated as the following convex
quadratic optimization problem under positive constraints:

(2.2) min
y

[
f(y) =

1

2
yTMy + yT q + c

]
s.t. y ∈ Rn

+,

where
M = ATQA, q = AT b.

As the problem (2.2) is a continuous convex optimization and the constraints are
positive then the optimality conditions of K.K.T are necessary and sufficient. Then,
y ∈ Rn

+ is an optimal solution of problem (2.2) if and only if there exists z ∈ Rn
+

such that:

(2.3) z = My + q, zTy = 0, y ≥ 0, z ≥ 0.

Due to (2.1), system (2.3) is only a standard LCP with M = ATQA and q = AT b.

Theorem 2.2. Let Q ∈ Rn×n be symmetric positive definite and A is nonsingular
then M = ATQA is a P-matrix. Hence, the LCP (2.3) is a P-LCP.

Proof. Since Q ∈ Rn×n is assumed to be symmetric positive definite and A is non-
singular then for all nonzero v ∈ Rn, vTMv = vTATQAv = ∥Qs∥2 > 0 where
s = Av ̸= 0, M is positive definite, therefore M is a P-matrix and so the LCP (2.3)
is a P-LCP. By Theorem 2.1, the P-LCP has a unique solution and so is the SCQO
(1.1). □

Corollary 2.1. The vector x⋆ = Ay⋆ is the unique minimizer of SCQO if and only if
the pair of vectors (y⋆, z⋆) is the unique solution of P-LCP (2.3).

3. A FEASIBLE FULL-NEWTON STEP INTERIOR-POINT ALGORITHM FOR SCQO

In this section, we solve the SCQO (1.1) by the application of a feasible full-
Newton step interior-point algorithm to the equivalent P-LCP(2.3). To do so, we
discuss first the notion of central-path of P-LCP and the Newton search direction.
Then the generic feasible interior-poin algorithm for SCQO (1.1) is presented. In
the sequel, we assume that P-LCP (2.3) satisfies the interior-point condition (IPC),
i.e., there exists y0 > 0 and z0 > 0 such that z0 = My0 + q.
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3.1. The central-path for P-LCP. The basic idea of the path-following interior-
point algorithm is to replace the second equation in (2.3), the so-called comple-
mentarity condition by the perturbed equation zy = µe where µ > 0. Hence, we
obtain the following system of equations:

(3.1) z = ATQAy + AT b, zy = µe, y ≥ 0, z ≥ 0.

By IPC assumption it is shown that for any µ > 0 the parameterized system (3.1)
has a unique solution denoted by (y (µ) , z (µ)) , which is called the µ−center of
P-LCP. The set of µ -centers constructs the so-called central-path. Moreover, if µ
tends to zero then the limit of central-path exists and converges to a solution of
P-LCP ( [22]).

3.2. The search direction for P-LCP. Applying Newton’s method to system (3.1)
for a given strictly feasible point (y, z) and the Newton search direction (∆y,∆z)

at this point is the unique solution of the system:

(3.2)

(
−ATQA I

Z Y

)(
∆y

∆z

)
=

(
0

µe− yz

)
,

where Y :=diag(y), Z:=diag(z). By simple calculations, the system (3.2) can be
written as follows:

(3.3)

{
(ATQA+ Y −1Z)∆y = Y −1(µe− yz)

∆z = ATQA∆y.

The system (3.3) is nonsingular since for any nonzero v ∈ Rn, we have vT (ATQA+

Y −1Z)v = vTATQAv + vTY −1Zv > 0 because vT (ATQA)v > 0 and vTY −1Zv > 0

for any nonzero v ∈ Rn and for all y > 0 and z > 0 (Y, Z are positive definite
matrices), then the matrix (ATQA + Y −1Z) is positive definite too and so it is
nonsingular.

The new iterate is obtained by taking a full-Newton step as follows:

(3.4) y+ := y +∆y, z+ := z +∆z.

To simplify matters, we introduce the following vectors:

(3.5) v =

√
yz

µ
, d =

√
y

z
.
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So the scaled directions are given by

(3.6) dy =
∆y

y
, dz =

∆z

z
,

where y > 0, z > 0 and µ > 0. Then we have:

(3.7) µdydz = ∆y∆z and y∆z + z∆y = µv (dy + dz) .

Hence the system defining Newton search directions can be written as:

(3.8)

{
−Mdy + dz = 0

dy + dz = pv

where M = DMD−1 = DATQAD−1,D:=diag(d), and

(3.9) pv = v−1 − v.

For the analysis of the algorithm and according to (3.9), we use a norm-based
proximity measure δ (v) defined by:

(3.10) δ := δ (yz;µ) =
1

2
∥pv∥.

Clearly, the value of δ (v) can be considered as a measure for the distance between
the given pair (y, z) and the corresponding µ center (y (µ) , z (µ)) and we have:

δ (v) = 0 ⇐⇒ v = e ⇐⇒ yz = µe.

3.3. The algorithm. Let ϵ > 0 be a given tolerance and θ ∈ ]0, 1[ the update pa-
rameter (default θ = 1√

3n
), the algorithm starts with a strictly feasible initial point

(y0, z0) such that δ(y0z0;µ0) ≤ τ where 0 < τ < 1. Determining the search direc-
tions (∆y,∆z), the algorithm produces a new iterate (y+, z+) = (y +∆y, z +∆z).
Then, it updates the barrier parameter µ to (1− θ)µ and solves the Newton sys-
tem. This procedure is repeated until the stopping criterion yT+z+ ≤ ϵ is satisfied.
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The generic feasible full-Newton step interior-point algorithm for SCQOs is pre-
sented in Figure 1.

Input:
An accuracy parameter ϵ > 0;

A threshold parameter 0 < τ < 1 (default τ =
√

3
7
);

A barrier update parameter 0 < θ < 1 (default θ = 1√
3n
);

A strictly feasible point (y0, z0) and µ0 =
1
2

s.t. δ(y0z0, µ0) ≤ τ ;

begin
y := y0, z := z0, µ := µ0;

While nµ ≥ ϵ do
Solve system (3.3) to obtain (∆y,∆z);
Update y := y +∆y; z := z +∆z;
µ := (1− θ)µ;

end while
end.

Fig 1. Algorithm 3.3

4. COMPLEXITY ANALYSIS

In this section, we will show under our new defaults τ =
√

3
7

and θ = 1√
3n

that Algorithm 3.3 solves the SCQOs in polynomial and ensures the locally qua-
dratic convergence of the Newton process through the algorithm. Our analysis is
straightforward to monotone LCPs ( [4]).

We first quote the following technical lemma which will be used later.

Lemma 4.1. [7, Lemma 2.2.1] Let δ > 0 and (dy, dz) be a solution of system (3.8).
Then, we have

(4.1) 0 ≤ dTy dz ≤ 2δ2,

and

(4.2) ∥dydz∥∞ ≤ δ2, ∥dydz∥ ≤
√
2 δ2.

In the following lemma, we show that the feasibility of the full-Newton step
when the proximity δ (yz, µ) < 1.
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Lemma 4.2. [7, Lemma 2.2.3] Let δ = δ (yz, µ) < 1.Then y+ > 0 and z+ > 0,which
means that the full-Newton step is strictly feasible.

For convenience, we may write

v+ =

√
y+z+
µ

.

The next lemma shows the influence of the full-Newton step on the proximity
measure.

Lemma 4.3. [7, Lemma 2.2.4] If δ < 1. Then

δ+ := δ (v+;µ) ≤
δ2√

2 (1− δ2)
.

In addition, if δ ≤
√

3
7
, thus δ+ ≤ δ2 which means the full-Newton step converges

locally quadratically through the algorithm.

In the following lemma, we obtain the upper bound of a duality gap after a
full-Newton step.

Lemma 4.4. Let δ ≤
√

3
7

and suppose that the vectors y+ and z+ are obtained by
using a full-Newton step, thus y+ = y +∆y and z+ = z +∆z we have

(4.3) yT+z+ ≤ 2µn.

Proof. Using (3.6) and (3.7) we have

y+z+ = (y +∆y)(z +∆z)

= yz + y∆y + z∆z +∆y∆z

= µ (e+ dydz) ,

then
yT+z+ = µeT

(
e+ dTy dz

)
= µ

(
n+ dTy dz

)
.

Next, let δ ≤
√

3
7

then δ2 ≤ 3
7
, using (4.1) we deduce that

yT+z+ ≤ µ

(
n+

6

7

)
.

But as n+ 6
7
≤ 2n,∀n ≥ 1, this gives the required result. □
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In the following theorem, we investigate the influence on the proximity measure
of Newton process followed by a step along the central-path.

Theorem 4.1. Let δ ≤
√

3
7

and µ+ = (1− θ)µ, where 0 < θ < 1. Then

δ2 (y+z+;µ+) ≤
9

56
+

θ2
(
n+ 6

7

)
4 (1− θ)

+
15

56
θ.

In addition, if θ = 1√
3n

and n ≥ 3, then δ (y+z+, µ+) ≤
√

3
7
.

Proof. We have

4δ2 (y+z+;µ+)

=∥
√
1− θv−1

+ − 1√
1− θ

v+∥2

= ∥
√
1− θ

(
v−1
+ − v+

)
− θ√

1− θ
v+∥2

= (1− θ) ∥v−1
+ − v+ ∥2 + θ2

1− θ
∥v+ ∥2 −2θ

(
v−1
+ − v+

)T
v+

= (1− θ) ∥ v−1
+ − v+ ∥2 + θ2

1− θ
∥v+∥2 − 2θ

(
v−1
+

)T
v+ + 2θvT+v+

= 4δ2+ (1− θ) +
θ2

1− θ
∥v+∥2 − 2θn+ 2θ∥v+∥2.

Because
(
v−1
+

)T
v+ = n and vT+v+ =∥ v+ ∥2 and according Lemma 4.4 we get

∥ v+∥2 =
1

µ
yT+z+ ≤

(
n+

6

7

)
,

which implies that

δ2 (y+z+;µ+) ≤ (1− θ) δ2+ +
θ2
(
n+ 6

7

)
4 (1− θ)

+
3θ

7
.

As δ ≤
√

3
7

Lemma 4.3 implies that δ2+ ≤ δ2√
2(1−δ2)

= 9
56

. Therefore, after some

simplifications we obtain

δ2 (y+z+;µ+) ≤
9

56
+

θ2
(
n+ 6

7

)
4 (1− θ)

+
15

56
θ.
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Let θ = 1√
3n

then θ2 = 1
3n
, this imply that

δ2 (y+z+;µ+) ≤
9

56
+

n+ 6
7

3n

4 (1− θ)
+

15

56
θ.

And since n+ 6
7

3n
≤ 3

7
for n ≥ 3 then

δ2 (y+z+;µ+) ≤
9

56
+

3

28 (1− θ)
+

15

56
θ.

For n ≥ 3, θ ∈
[
0, 1

3

]
, we consider the following function:

f (θ) =
9

56
+

15

56
θ +

3

28 (1− θ)
.

As
f

′
(θ) =

1

28 (1− θ)2
+

15

56
> 0,

so f is continuous and monotone increasing on
[
0, 1

3

]
. Consequently

f (θ) ≤ f

(
1

3

)
≃ 0.4107 ≤ 3

7
, for all θ ∈

[
0,

1

3

]
.

Then, after the barrier parameter is update to µ+ = (1− θ)µ with θ = 1√
3n

and if δ ≤√
3
7
, we get δ (y+z+;µ+) ≤

√
3
7
. This completes the proof . □

A consequence of Theorem 4.1 is that under our defaults the algorithm is well-

defined since the conditions y+ > 0, z+ > 0 and δ (y+z+;µ+) ≤
√

3
7

hold through
the algorithm.

4.1. Iteration bound. In the following lemma, we derive the upper bound for the
total number of iterations produced by the algorithm.

Lemma 4.5. Suppose that y0 and z0 are strictly feasible starting point such that
δ (y0z0;µ+) ≤

√
3
7

for each µ0 > 0. Moreover, let yk and zk be the vectors obtained

after k iterations. Then the inequality
(
yk
)T

zk ≤ ϵ is satisfied if

k ≥ 1

θ
log

(
2nµ0

ϵ

)
.

Proof. From (4.1), it follows that:(
yk
)T

zk ≤ 2nµk = 2n (1− θ)k µ0.
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Then the inequality
(
yk
)T

zk ≤ ϵ holds if 2n (1− θ)k µ0 ≤ ϵ. We take logarithms, so
we may write

k log (1− θ) ≤ log ϵ− log (2nµ0) .

We know that − log (1− θ) ≥ θ for 0 ≤ θ ≤ 1. So the inequality holds only if

kθ ≥ log ϵ− log (2nµ0) = log

(
2nµ0

ϵ

)
.

This completes the proof. □

We end this subsection with a theorem that gives the iteration bound of the
algorithm .

Theorem 4.2. Using defaults θ = 1√
3n

and µ0 = 1
2
, we obtain that the algorithm

given in Fig 1 at most requires at O
(√

n log n
ϵ

)
iterations for getting an ϵ− approxi-

mated solution of P-LCP.

Proof. Let θ = 1√
3n

and µ0 =
1
2
, by using Lemma 4.5 , the result follows. □

5. NUMERICAL RESULTS

In this section, we present some numerical problems of different sizes for testing
the effectiveness of the Algorithm 3.3, each example is followed by a table con-
taining the computational results obtained by the algorithm. All programs were
implemented in MATLAB R2016a on a personal PC with 1.40 GHZ AMD E1-2500
APU Radeon(TM) HD Graphic, 8 GB memory and Windows 10 operating system.
In the implementation, we use ϵ = 10−6, different values of the barrier parameter
µ0, θ = 1√

3n
and we use some constant values of θ in order to improve the per-

formances of our algorithm. Here, the starting point and the unique solution of
P-LCP are denoted by (y0, z0) and (y⋆, z⋆) respectively with x⋆ = Ay⋆ the unique
solution of SCOO. The number of iterations required and the time executed by
the algorithm are denoted by "Iter" and "CPU" respectively. For a comparison we
implement the algorithm (3.1) in [4] with θ = 1

2
√
n
.

Example 1. Consider the SCQO problem with

b = (−1,−4, 4,−2, 1, 10, 4, 0, 5,−11)T ,
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Q =



6 0.5 6 1 3 2 −2 0 0 4

0.5 8.25 −3.5 1 −3.5 2 1.5 −2.5 −6 −4.5

6 −3.5 38 −1.5 7 −6 −1 2.5 16 3

1 1 −1.5 8.25 −2 2 −1.5 0. 0 −6

3 −3.5 7 −2 11 −4 −1 −0.5 0 −5

2 2 −6 2 −4 8 −4 0 −2.5 8

−2 1.5 −1 −1.5 −1 −4 7 −4 1 −4

0 −2.5 2.5 0 −0.5 0 −4 7.25 −0.5 4

0 −6 16 0 0 −2.5 1 −0.5 16.25 9.5

4 −4.5 3 −6 −5 8 −4 4 9.5 41



A =



0 3 3 3 0 0 0 0 0 0

−2 0 3 3 3 3 3 3 3 3

−1 −2 0 3 3 3 3 3 3 3

−1 −1 −2 0 3 3 3 3 3 3

−1 −1 −1 −2 0 3 3 3 3 3

−1 −1 −1 −1 −2 0 3 3 3 3

−1 −1 −1 −1 −1 2 0 3 3 3

−1 −1 −1 −1 −1 −1 −2 0 3 3

−1 −1 −1 −1 −1 −1 −1 −2 0 3

−1 −1 −1 −1 −1 −1 −1 −1 −2 0



.

The unique solution of the P-LCP is given by

y⋆ = (0, 0.09, 0, 0, 0.0549, 0, 0, 0, 0, 0, )T ,

z⋆ = (4.3634, 0, 1.5624, 5.5552, 0, 19.9944, 9.3423, 69.6119, 86.007, 48.1573)T .

Then the unique minimizer of this problem is:

x⋆ = Ay⋆

= (0.27, 0.1646,−0.0154, 0.0746,−0.09,−0.1998,−0.1449, . . . ,−0.1449)T .

The obtained number of iterations and the elapsed time via specified different values
of µ0 and θ are summarized in Table 1:
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TABLE 1. The numerical results, after the algorithm reaches nµ ≤ 10−6

µ0 −→ 0.5 0.05 0.005 0.0005
θ ↓ Iter CPU Iter CPU Iter CPU Iter CPU
0.7 13 0.05229 11 0.04637 9 0.04747 8 0.04486
0.5 23 0.05135 19 0.04978 16 0.04944 13 0.04537
1√
3n

77 0.06364 66 0.05992 54 0.05507 43 0.05120

Example 2. Consider the SCQO problem with

Q =


3 1 . . . 0

1 3
. . . 0

... . . . . . . ...
0 . . . 0 3

 , A =


1 2 . . . n

0 1
. . . n− 1

... . . . . . . 2

0 . . . 0 1

 ,

b = (AT )−1(e−ATQAe). The strictly feasible initial point taken in the algorithm is :

y0 =
1

2
(1, 1, . . . , 1)T > 0, z0 = My0 + q > 0.

A solution of P-LCP is given by:

y⋆ = (0, 1.2154, 1.0615, 1, . . . , 1)T , z⋆ = (0.1846, 0, 0, . . . , 0).

For example if n = 10, then the unique minimizer of this problem is

x⋆ = Ay⋆ = (54.6154, 45.3385, 36.0615, 28, 21, 15, 10, 6, 3, 1)T .

The details of obtained numerical results with different values of µ0 and θ with the
size n = 10, are presented in table 2:

TABLE 2. The numerical results, after the algorithm reaches nµ ≤ 10−6

µ0 −→ 0.5 0.05 0.005 0.0005
θ ↓ Iter CPU Iter CPU Iter CPU Iter CPU
1

2
√
n

99 0.0345 77 0.0271 63 0.0229 50 0.0177
1√
3n

77 0.0227 66 0.0213 54 0.0169 43 0.0128

The details of obtained numerical results with different sizes of n, relaxed values of
µ0 and θ = 1√

3n
are presented in Table 3 .
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TABLE 3. The numerical results, after the algorithm reaches nµ ≤ 10−6

µ0 −→ 0.5 0.05 0.005 0.0005
size n ↓ Iter CPU Iter CPU Iter CPU Iter CPU
20 117 0.0559 100 0.0483 84 0.0446 67 0.0255
50 200 0.2569 173 0.1967 146 0.1554 119 0.1336
100 299 2.0932 260 1.8765 221 1.4960 182 1.3049
200 442 13.141 387 11.439 332 10.012 277 8.350
1000 624 39.152 552 35.992 481 33.301 409 30.751

Example 3. Consider the SCQO problem with

Q =



4 -1 0 · · · 0

-1 4 . . . . . . ...

0 . . . . . . . . . 0
... . . . . . . 4 -1
0 · · · 0 -1 4

1 0 0 · · · 0

0 1 . . . . . . ...

0 . . . . . . . . . 0
... . . . . . . 1 0
0 · · · 0 0 1

1 0 0 · · · 0

0 1 . . . . . . ...

0 . . . . . . . . . 0
... . . . . . . 1 0
0 · · · 0 0 1

5 -2 0.25 · · · 0.5

-2 5 . . . . . . ...

0.25 . . . . . . . . . 0.25
... . . . . . . 5 -2

0.25 · · · 0.25 -2 5



,

A =



-2 -1 0.5 · · · 0.5

4 -2 . . . . . . ...

3 . . . . . . . . . 0.5
... . . . . . . -2 -1
3 · · · 3 4 -2

1 0 0 · · · 0

0 1 . . . . . . ...

0 . . . . . . . . . 0
... . . . . . . 1 0
0 · · · 0 0 1

-1 0 0.1 · · · 0

0 -1 . . . . . . ...

0.1 . . . . . . . . . 0.1
... . . . . . . -1 0
0 · · · 3 0.1 -1

-2 -1 0.5 · · · 0.5

4 -2 . . . . . . ...

3 . . . . . . . . . 0.5
... . . . . . . -2 -1
3 · · · 3 4 -2



,
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and
b = −2QAe.

The strictly feasible initial point taken in the algorithm is:

y0 = (5, 5, . . . , 5)T , z0 = My0 + q.

The solution of P-LCP is given by

y⋆ = (2, 2, . . . , 2)T , z⋆ = (0, 0, . . . , 0)T .

So the optimum of this problem is computed via x⋆ = Ay⋆. The numerical results
with different size of n are summarized in next Table.

TABLE 4. The numerical results, after the algorithm reaches nµ ≤ 10−6

µ0 −→ 0.5 0.05 0.005 0.0005
size n ↓ Iter CPU Iter CPU Iter CPU Iter CPU
10 13 0.0347 11 0.0342 9 0.0335 8 0.0315
50 15 0.0517 13 0.0492 11 0.0465 9 0.0449
100 15 0.1255 13 0.1082 11 0.1011 9 0.0944
200 16 0.5258 14 0.3967 12 0.3443 10 0.2927
1000 17 35.252 15 27.392 13 26.955 11 23.156
1600 18 176.126 16 158.173 14 98.691 12 80.873

6. CONCLUSION

In this paper, a convex quadratic programming problem under simplicial cone
constraints is studied, and via its K.K.T optimality conditions is transformed into
a P-LCP. For its numerical solution, a feasible full-step primal-dual path follow-
ing interior-point algorithm is proposed. First for the sake of benefit of readers
we have reconsider the analysis of certain authors, and we make it suited for

SCQOs. Here, we suggested new defaults such as δ ≤
√

3
7

and θ = 1√
3n

for its
well-definiteness and its convergence to the unique minimizer of SCQOs. Further,
its best iteration bound is derived. The obtained numerical results illustrate that
the algorithm is efficient and valid to solve the SCQO problems. An interesting
topic of research in the future is to solve the SCQOs by introducing the active set
methods.
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