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APPLICATION OF THE GENERALISED XLINDLEY MODEL FOR RELIABILITY
DATA

Ahlem Ghouar1, Assma Yousfi, and Zohra Djeridi

ABSTRACT. In this study, we presented a new two-parameter model termed the
Generalized XLindely distribution. This novel model is a combination of the expo-
nential and the Two-Parameter lindley distributions. After exploring the statistical
characterization of this model, we estimated its parameters using the maximum
likelihood method and the Maximum Product of Spacings Method. The approxi-
mate confidence interval, based on a normal approximation is additionally calcu-
lated. We applied our model to real lifetime data sets to demonstrate its validity,
and it was discovered that our distribution fits significantly better than other cur-
rent distributions.

1. INTRODUCTION

In overall, the objective of establishing new distributions is to develop flexible
mathematical models that can handle lifetime data. This flexibility can be obtained
simply by combining or generalizing several distributions. Several authors showed
their interest in this type of work.

To deal with lifetime data, Lindley [6] presented a distribution that carries his
name and is identified by a combination of exponential and gamma distributions.
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In the present, the researchers present many extended forms of this distribution.
For example, in 2009, Zakerzadeh and Dolati [13] introduced a generalization of
this distribution namely a three-parameter generalization of the Lindley distribu-
tion and studied various properties of this new distribution. Also, Zakerzadeh and
Dolati provided numerical examples to show the flexibility of this model. Gen-
eralized Poisson Lindley [7] given by Mahmoudi and Zakerzadeh, Shanker and
Shukla [8] have conducted a thorough comparison of the three-parameter gener-
alized gamma distribution and the generalized Lindley distribution.

In 2015, Chouia and Zeghdoudi [4] proposed the one-parameter model with
probability density function (pdf) and cumulative distribution function (CDF) that
are respectively given by

(1.1) f(y;α) =
α2(2 + α + y)

(1 + α)
exp(−αy), α > 0, y > 0,

(1.2) F (y;α) = 1− (1 +
αy

(1 + α)2
) exp(−αy), α > 0, y > 0;

This distribution combines the Exponentiel distribution and the Lindley distri-
bution with the same parameter α and mixing proportion p = α

α+1
. We developed

our new model based on this concept by combining the exponential and Two-
parameter lindley distributions [10], whose pdfs are given by:

(1.3) g1(x;λ) = λ exp (−λx) , x > 0, λ > 0.

(1.4) g2(x;λ, γ) =
λ2 (1 + γx)

λ+ γ
exp (−λx) , x > 0, λ > 0, γ > 0.

The rest of the research paper includes six important sections. Firstly, it in-
troduces Generalized XLindley distribution with its pdf, CDF, releability, and the
hazard function. Secondly, it presents the statistical properties of this distribu-
tion as moments and stochastic orderings. The maximum likelihood estimator, the
maximum Product of Spacings Method and the asymptotic confidence interval of
the unidentified parameters of the GXLindley distribution are raised in section 4.
Section 5 includes an application to sets of real data. Finally, section 6 draws a
conclusion.
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2. GXL DISTRIBUTION

Let X1 and X2 be two independent random variables distributed according to
exponential with parameter λ and Two-Parameter lindley with parameters λ and
γ. Consider the random variable Z = X1 with probability p = λ

λ+γ
, and Z = X2

with probability 1− p = γ
λ+γ

, the pdf of the random variable Z can be shown as a
mixture as follows:

(2.1) f(z,Θ) = pg1(x) + (1− p)g2(x).

By using the pdfs given in equations (1.3) and (1.4). We define the pdf for the
new distribution namely Generalized XLindley, by substituting in equation (2.1).
This pdf is

(2.2) f(z; Θ) =
λ2 (λ+ 2γ + γ2z)

(λ+ γ)2
exp (−λz) , z > 0, λ > 0, γ > 0,

where Θ is parameter vector (λ, γ) .
This distribution contains the XLindley distribution as a particular case wher

γ = 1, if γ = 0, the equation (2.2) reduces to the pdf of the Two-Parameter
Lindley distribution.

The CDF of the GXL distribution is given by

(2.3) F (z; Θ) = 1−
[
1 +

λγ2

(λ+ γ)2
z

]
exp (−λz) , z > 0, λ > 0, γ > 0.

The reliability and hasard rate functions of the GXL distribution have been respec-
tively showed as

(2.4) S(z; Θ) = 1 +
λγ2

(λ+ γ)2
z exp (−λz) , z > 0, λ > 0, γ > 0,

(2.5) H(z; Θ) =
λ2 (2γ + γ2z)

(λ+ γ)2 + λγ2z
, z > 0, λ > 0, γ > 0.

Figures 1 demonstrate certain plots of the GXL distribution for the values speci-
fied for λ and γ.

It is necessary to find the maximum of equation (2.2) in order to identify the
mode of the pdf’s GXL distribution. As a result, the point at which the first deriv-
ative of the function (2.2) is equal to zero should be found. The first derivative is
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FIGURE 1. GXL pdf plots for different parameter values
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provided by:

∂

∂x
f(z; Θ) =

(
λ

λ+ γ

)2 [
γ2(1− λz)− λ2 + 2λ

]
exp (−λz) , z > 0, λ > 0, γ > 0,

if we take ∂
∂x
f(z; Θ) = 0, so

Mo =
γ2 − λ2 − 2λγ

λγ2
.

The pdf of the GXL distribution is:

(i) increasing in z for z ∈ [0,Mo];
(ii) decreasing in z for z ∈ [Mo,∞].

3. STATISTICAL PROPERTIES OF THE GXL DISTRIBUTION

3.1. Moments and related measures. The rth moment of the GXL distribution
has been calculated as

(3.1) µ
′

r =
λ [(γ2 (r + 1) + λ2 + 2λγ) r!]

λr (λ+ γ)2
, r = 1, 2, . . . .

Using r = 1, 2, 3 and 4 in (3.1) the first four moments about the origin are gained
as

µ
′

1 = 1 +

(
γ

λ+ γ

)2

,

µ
′

2 =
2

λ
+

4γ2

λ (λ+ γ)2
,

µ
′

3 =
6

λ2
+

18γ2

λ2 (λ+ γ)2
,

µ
′

4 =
24

λ3
+

96γ2

λ3 (λ+ γ)2
.

It is simple to demonstrate that for γ = 1, the distribution’s moments about the
origin decrease to the respective moments of the XLindley distribution. Further-
more, the distribution is positively skewed because the mean is always higher than
the mode. As a result, the mean and variance of the proposed distribution can be
calculated as

E(z) =
(λ+ γ)2 + γ2

(λ+ γ)2
,
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V (z) =
(λ+ γ)2 (2− λ)

[
2γ2 + (λ+ γ)2

]
− λγ4

λ (λ+ γ)4
.

The skewness and kurtosis measures can now be computed from the following
expressions

Skewness =
µ

′
3 − 3µ

′
1µ

′
2 + 2µ

′3
1

(µ
′
2 − µ

′
1)

3

Kurtosis =
µ

′
4 − 4µ

′
1µ

′
3 + 6µ

′
2µ

′2
1 − 3µ

′4
1

(µ
′
2 − µ

′
1)

2

The mean (M), variance (V ar), coefficient of variation (CV ), skewness (SK) and
kurtosis (KU) of the GXL distribution for various values of Θ = (λ, γ) are listed in
Table 1.

TABLE 1. Mean, Variance, coefficient of variation, skewness and kur-
tosis of the GXLD

(λ, γ) ( 0.25,0.5) ( 0.5,1.2) ( 0.75,2) ( 1,0.5)
M 1.1111 1.0865 1.0743 1.4444

Var 6.8819 3.0417 1.6115 0.3580
CV 2.3610 1.6051 1.1815 0.4142
SK 7.0899 5.6981 6.3773 65.3519
KU 46.8457 27.9326 28.4220 520.0951

3.2. Stochastic ordering. The use of stochastic orderings of non-negative contin-
uous random variables to assess comparative behavior is a useful technique. The
variable Z is stated to be greater than the variable Y in the case when Z and Y

are independent with CDFs FZ and FY , respectively, in the following contexts:

- Stochastic order (Z ≤s Y ) if FZ (z) ≥ FY (z) ∀ z,

- Mean residual life order (Z ≤mrl Y ) if mZ (z) ≥ mY (z) ∀ z,

- Hazard rate order (Z ≤hr Y ) if hZ (z) ≥ hY (z) ∀ z,

- Likelihood ratio order (Z ≤lr Y ) if fZ(z)
fy(z)

is an decreasing function of z.

Remark 3.1. The next consequences (see [11]) are particularly remarkable:

(Likelihood ratio order ⇒ Hasard rate order ⇒ Mean residual life order)︸ ︷︷ ︸
⇓

Stochastic order
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Theorem 3.1. Let Z and Y be two independent random variables with parameters
(λ1, γ1) and (λ2, γ2) respectively, that follow the GXL distribution. If λ1 = λ2, then
Z ≤lr Y and hence (Z ≤hr Y ), Z ≤mrl Y, and Z ≤s Y .

Proof. We have, for all z > 0,

fZ (z)

fy (z)
=

(
λ1

λ2

)2(
λ2 + γ2
λ1 + γ1

)2(
λ1 + 2γ1 + γ2

1z

λ2 + 2γ2 + γ2
2z

)
exp {−(λ1 − λ2)z} .

Now,

log
fZ (z)

fy (z)
= 2 log

(
λ1

λ2

)
+ 2 log

(
λ2 + γ2
λ1 + γ1

)
+ log

(
λ1 + 2γ1 + γ2

1z
)

− log
(
λ2 + 2γ2 + γ2

2z
)
+ (λ2 − λ1) z.

Thus,

(3.2)
d

dz
log

fZ (z)

fy (z)
=

γ2
1

λ1 + 2γ1 + γ2
1z

− γ2
2

λ2 + 2γ2 + γ2
2z

+ (λ2 − λ1) .

Clearly, we have two different cases:

(i) If λ1 = λ2 and γ1 ≤ γ2, then (2.2) is negative. This means that Z ≤lr Y

and hence (Z ≤hr Y ), Z ≤mrl Y, and Z ≤s Y.

(ii) If γ1 = γ2 and λ1 ≤ λ2,then (2.2) is negative. This means that Z ≤lr Y and
hence (Z ≤hr Y ), Z ≤mrl Y, and Z ≤s Y.

□

4. METHODS OF ESTIMATION FOR THE DISTRIBUTION PARAMETERS

4.1. Maximum Likelihood Estimators. Let Z1, Z2, . . . , Zm be m independent and
identical random variables again from the GXL distribution with parameters λ and
γ. For establishing the MLE of Θ, we now have likelihood function based on
observed sample z

¯
= (z1, z2, . . . , zm) provided by

ℓ(z; Θ) =

(
λ

λ+ γ

)2m m∏
k=1

[
λ+ 2γ + γ2z

]
exp(−λ

m∑
k=1

zk).

The log likelihood function is calculated as

log ℓ(z; Θ) = 2m log λ− 2m log (λ+ γ) +
m∑
k=1

(
λ+ 2γ + γ2zk

)
− λ

m∑
k=1

zk.
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The partial derivatives of log ℓ(z; Θ) with respect to the proposed model param-
eters λ and γ are respectively given by

∂ log ℓ(z; Θ)

∂λ
=

2m

λ
− 2nm

λ+ γ
+

m∑
k=1

(
1

λ+ 2γ + γ2zk

)
−

m∑
k=1

zk

∂ log ℓ(z; Θ)

∂γ
=

2m

λ+ γ
+

m∑
k=1

(
2 + 2γ

λ+ 2γ + γ2zk

)
It is frequently more convenient to solve these equations numerically using non-

linear optimization methods. The need for numerical approaches like the Newton-
Raphson method, the Monte Carlo method, the BB method, and others is because
the explicit formula for the maximum likelihood estimator of the parameter is not
close. So, in our case, the R software and specifically the package "maxLik" can be
used to optimize the log-likelihood and obtain the MLE’s.

The corresponding Fisher information matrix that we observed is provided by

I (Θ) =

(
∂2 log ℓ(Θ;z)

∂λ2

∂2 log ℓ(Θ;z)
∂λ∂γ

∂2 log ℓ(Θ;z)
∂γ∂λ

∂2 log ℓ(Θ;z)
∂γ2

)
.

When m is large enough, the distribution of the adjacent random vector next to(
λ̂, γ̂
)

can be approximated by a two-dimensional normal distribution of mean

vector (λ, γ) and covariance matrix I
(
λ̂, γ̂
)−1

. We can create asymptotic confi-
dence intervals for λ and γ by indicating Vλ̂and Vγ̂, the diagonal elements of this
matrix. Indeed, the asymptotic confidence intervals (CIs) of λ and γ at the level
100 (1− τ)% are respectively provided by

CIλ =
[
λ̂− zτ/2

√
Vλ̂, α̂ + zτ/2

√
Vγ̂

]
,

CIγ =
[
γ̂ − zτ/2

√
Vγ̂, γ̂ + zτ/2

√
Vγ̂

]
,

where zτ/2 is the upper (τ/2) th percentile of the standard normal distribution

4.2. Maximum Product of Spacings Method. In this part, we are using an al-
ternative way to the MLE method known as the maximum product of spacings
(MPS). This technique is used to estimate the parameters of continuous univariate
models and was created by Cheng and Amin [3]. This method is also used for
censored application by Almetwally and Almongy [1] and Alshenawy et al. [2].
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Let Z1, Z2, . . . , Zm be a random sample of size m, the GXL distribution’s uniform
spacing can also be described by

Dj (Θ) =

∫ z(j)

z(j−1)

f (z; Θ) dz; j = 1, . . . ,m+ 1,

where, F
(
z(0); Θ

)
= 0 and F

(
z(m+1); Θ

)
= 1, we take the geometric mean of the

differences Dj (Θ) as

D̄ = m+1

√√√√m+1∏
j=1

Dj (Θ).

The geometric mean D̄ of the differences is maximized to obtain the maximum
product spacing estimators (MPS) λ̂ and γ̂ of λ and γ and taking the logarithm of
the previous expression, we now have

log D̄ =
1

m+ 1

m+1∑
j=1

log

[(
1 +

λγ2

(λ+ γ)2
z(j−1)

)
exp

{
−λz(j−1)

}
−
(
1 +

λγ2

(λ+ γ)2
z(j)

)
exp

{
−λz(j)

}]
.

The MPS estimators λ̂ and γ̂ can be calculated by solving the following non
linear equations concurrently

∂ log D̄

∂λ

=
1

m+ 1

m+1∑
j=1

 z(j−1)

(
γ2(γ−λ)

(λ+γ)3
− λγ2

(λ+γ)2
z(j−1) − 1

)
exp

{
−λz(j−1)

}(
1 + λγ2

(λ+γ)2
z(j−1)

)
exp

{
−λz(j−1)

}
−
(
1 + λγ2

(λ+γ)2
z(j)

)
exp

{
−λz(j)

}
−

z(j)

(
γ2(γ−λ)

(λ+γ)3
− λγ2

(λ+γ)2
z(j) − 1

)
exp

{
−λz(j)

}(
1 + λγ2

(λ+γ)2
z(j−1)

)
exp

{
−λz(j−1)

}
−
(
1 + λγ2

(λ+γ)2
z(j)

)
exp

{
−λz(j)

}
 ,

∂ log D̄

∂γ

=
1

m+ 1

m+1∑
j=1

 z(j−1)

(
2λγ(γ+λ)(1−γ)

(λ+γ)3

)
exp

{
−λz(j−1)

}(
1 + λγ2

(λ+γ)2
z(j−1)

)
exp

{
−λz(j−1)

}
−
(
1 + λγ2

(λ+γ)2
z(j)

)
exp

{
−λz(j)

}
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−
z(j)

(
2λγ(γ+λ)(1−γ)

(λ+γ)3

)
exp

{
−λz(j)

}(
1 + λγ2

(λ+γ)2
z(j−1)

)
exp

{
−λz(j−1)

}
−
(
1 + λγ2

(λ+γ)2
z(j)

)
exp

{
−λz(j)

}


5. APPLICATION OF REAL DATA ANALYSIS

This section demonstrates the utility of the GXL distribution for two real data
sets. The proposed model is especially in comparison to other competing models,
these: Lognormal distribution (LND), Weibull distribution (WD) [12], Generaliza-
tion of Two-Parameter Lindley Distribution (GTPLD) [9] and Generalized Lindley
distribution (GLD) [13], the densities associated with those distributions are of-
fered by the following functions (for x > 0):

fLND(z;λ, γ) =
1√
2πγz

exp

{
−1

2
(
log z − λ

γ
)2
}
, z > 0, λ > 0, γ > 0,

fWD(z;λ, γ) = λγzγ−1 exp (−λzγ) , z > 0, λ > 0, γ > 0,

fGTPLD(z;λ, γ, ζ) =
γλ2

ζλ+ 1
zγ−1(ζ + zγ) exp (−λz) , z > 0, λ > 0, γ > 0, ζ > 0,

fGLD(z;λ, γ, ζ) =
λγ+1

λ+ ζ

z
γ−1

Γ (γ + 1)
(γ + ζz) exp (−λzγ) , z > 0, λ > 0, γ > 0, ζ > 0.

The unknown parameters of the preceding pdf’s are all non-negative real values.
We take the following criteria when comparing distributions:

- The Akaike Information Criterion (AIC),
- Hannan-Quinn Information (HQIC),
- Bayesian Information Criterion (BIC), and
- Consistent Akaike Information Criterion (CAIC).

These statistics are presented by

AIC = −2L+ 2J,

BIC = −2L+ J log(m),

CAIC = −2L+
2Jm

(m− J − 1)
,

HQIC = −2L+ 2J log[log(m)],
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where L represents the MLE’s log-likelihood function, J the number of above
model parameters and m the sample size.

The model with smaller values for each of these statistics may be selected as the
best fit for the data. The R program was used to obtain all of the results.

Tables 2 and 4 display the MLEs of the parameters, whereas Tables 3 and 5
compare the GXL model with the above distributions. With all fitted models based
on two real data sets, the new proposed model has the smallest AIC, BIC, CAIC,
and HQIC statistics. As a result, it can be selected as the best model between
them. Figures 2 and 3 represent the estimated pdf, estimated CDF and the P-P plot
for the two real data sets from Lawless (2003), pp: 204 and 263 [5].

5.1. Application 1. The first data represents the failure times (in minutes) for a
sample of 15 electronic components in an accelerated life test, this data are: 1.4
5.1 6.3 10.8 12.1 18.5 19.7 22.2 23.0 30.6 37.3 46.3 53.9 59.8 and 66.2. The
results of application 1 are shown in Table 2, Table 3 and Figure 2.

TABLE 2. MLEs for the real data 1.

Estimates
Model λ̂ γ̂ ζ̂
GXLD MLE 0.0622 0.3403 -

SE 0.0172 0.6091 -
LND MLE 2.9305 1.0252 -

SE 0.2647 0.1871 -
WD MLE 0.0119 1.3058 -

SE 0.0112 0.2492 -
GTPLD MLE 0.0247 1.2027 54.9930

SD 0.0388 0.3371 214.2735
GLD MLE 0.0641 1.2025 0.0832

SD 0.0213 0.8131 0.2706

5.2. Application 2. The second set of data represents the number of cycles to
failure for 25 100-cm specimens of yarn, tested at a particular strain level, this
data are: 15 20 38 42 61 76 86 98 121 146 149 157 175 176 180 180 198 220
224 251 264 282 321 325 653. The results of application 1 are shown in Table 4,
Table 5 and Figure 3:
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TABLE 3. AIC, BIC, CAIC, and HQIC statistics for the real data 1.

Statistics
Model AIC BIC CAIC HQIC
GXLD 132.21 133.631 133.215 132.200
LND 135.23 136.646 136.23 135.214
WD 132.04 133.456 133.04 132.024

GTPLD 133.94 136.064 136.121 133.917
GLD 134.16 136.284 136.341 134.137

TABLE 4. MLEs for the real data 2.

Estimates
Model λ̂ γ̂ ζ̂
GXLD MLE 0.0107 0.2595 -

SE 0.0019 0.8183 -
LND MLE 4.8795 0.8743 -

SE 0.1746 0.1235 -
WD MLE 0.0025 1.1480 -

SE 0.0006 0.0589 -
GTPLD MLE 0.0085 1.0372 19.0247

SD 0.0075 0.1443 61.3271
GLD MLE 0.0101 0.8186 3.9740

SD 0.0030 0.4858 63.1287

TABLE 5. AIC, BIC, CAIC, and HQIC statistics for the real data 2.

Statistics
Model AIC BIC CAIC HQIC
GXLD 309.74 312.179 310.287 310.418
LND 312.16 314.597 312.705 312.836
WD 310.56 312.997 311.105 311.236

GTPLD 310.89 314.536 312.022 311.894
GLD 310.88 313.004 313.061 310.857

6. CONCLUSION

The interest, in the present work, is given to a two-parameter model, namely
the GXL distribution. The latter is a combination of the exponential and the Two-
Parameter lindley distributions. The mathematical expression of its probability
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FIGURE 2. Estimated pdf, CDF and P-P plot for the failure times of
the 15 electronic components.

density is workable. Consequently, this enables us to determine its different sta-
tistical properties. The method of maximum likelihood and maximum product of
spacings are employed to estimate the parameters. With the support of the maxi-
mum likelihood estimators, the asymptotic confidence intervals for model param-
eters are also obtained. The study of two real data sets shows the applicability of
this new model (GXL distribution). This application demonstrates that it has the
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FIGURE 3. Estimated pdf, CDF and P-P plot for the number of cycles
to failure for 25 100-cm specimens of yarn.

potential to significantly affect other commonly used statistical models in terms of
fit. The suggested distribution could be regarded as a proven alternative to other
distributions such as GL distribution, GG distribution,. . .
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Finally, we anticipate that our suggested model will find widespread applica-
tion for real data in several fields for example medicine, engineering, and social
sciences.
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