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ADOMIAN DECOMPOSITION METHOD FOR SOLVING SPATIALLY
INHOMOGENUOUS POPULATION BALANCE EQUATION

Imane Achour1 and Abdelghani Bellagoun

ABSTRACT. In this article, Adomian Method is applied for spatially inhomoge-
neous Population Balance Equation incorporating breakage and coalescence pro-
cesses in both batch and continuous flow systems. It should be Note that the
analytical solutions obtained using this technique are not available in the litera-
ture.

1. INTRODUCTION

Energy and mass balances are essential tools in process modeling to describe
the changes that occur during the physical and chemical reactions. An additional
balance for particulate processes is generally referred to as the population balance.
Population balances may be considered as an old subject that has its origin in the
Boltzmann equation more a century ago [26].

Particulate processes are the processes by which two particles or more undergo
changes in its physical properties. they are modeled by equations called Population
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balance equations which are partial integro-differential equations. These equa-
tions are widely used in engineering applications such as precipitation, crystalliza-
tion, atmospheric physics, pharmaceutical production, aerosol formation, colloid
chemistry, polymerization and emulsions and many others [9,14,24,27,28].

The population balance equations use a particle number density distribution
f(t, v, z) defined in a phase space in order to balance a population of particles. It
describes the dynamic evolution of the density function. This evolution depends
on two kinds of interactions, the first kind is the interaction between particles and
called particle-particle interactions while the second is the interaction of particles
and the continuous flow field in which these particles are dispersed and this type
of interaction namely particle-continuous phase interactions. These PBEs are char-
acterized by a source term, this source term accounts for different mechanisms in
which particles of a specific state can either appear or disappear from the system.
these mechanisms are instantaneous compared to a system scale such as parti-
cle breakage , aggregation, growth and nucleation [26]. However, in this work
only breakage and coalescence processes will be considered. Such examples of
breakage process are The size reduction of solid materials and the growth of a
population of bacteries in which reproduction occurs by binary cell division .

In literature, there are several numerical methods that are used to solve these
equations such as method of moments, method of finite elements, method of suc-
cessive approximations, pivot technique, method of weighted residuals [20–23,
25].

At the beginning of the 1980’s, the American mathematician George Adomian
presented a powerful technique. this method can solve linear or nonlinear, de-
terministic or stochastic operator equations, including algebraic, ordinary differ-
ential, partial differential, integral, integro-differential, delay differential. . . . it
allows solution without discretizing the equation or even approximating the op-
erators by such schemes as linearization or perturbation [1]. When the solution
exists, it is found as a rapidly converging series such that the variables are not
discretized.

Recently, The Adomian method has attained high interest in the area of series
solutions in particular. It is basically decomposing the solution in the form of a
series, also the nonlinear operator into a series. The components of the series
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solution are obtained by a specific kind of polynomials called "Adomian’s polyno-
mials" recursively.

Many authors compared this technique with other analytical and numerical
techniques. For instance, in [34] A.M. Wazwaz compared the method with the
power series solutions, also N. Bellomo, D. Sarafyan and M. A. Golberg with the
Picard method of successive iterations [6] [15], as well as J. Y. Edwards, J. A.
Roberts, and N. J. Ford with the Runge-Kutta [13] and others.

It is important to note that the decomposition method does not require dis-
cretization of variables. By compare it with other method, it is not much affected
by computational round-off and there is no necessity of large computer memory
and time. usually, The solution obtained using the Adomian method in the form of
series converging to the solution in a closed form which is reliable and effective.

In recent works, the decomposition method has been applied to solve PBEs for
pure breakage for both batch and continuous systems [16], and for coalescence
but only for the batch system [17]. In [19], the Adomian and the variational it-
eration methods have applied to particle breakage equation for both batch and
continuous flow systems. Furthermore, the variational iteration and projection
methods have used to solve certain spatially distributed population balance equa-
tion [18].

It should be mentioned that most of papers dealing with solving this type of
nonlinear equation use numerical methods to solve them. The purpose of this pa-
per is to solve a class of such equations analytically. Our objective is to derive exact
solutions of spatially inhomogenuous PBEs that incorporate breakage, coalescence
in batch and continuous systems.

This article is organized as follows. In section 2, we begin with a general for-
mulation of the PBE. In section 3, a general description of the method of analysis
which is the Adomian decomposition method is given with some convergence re-
marks. In section 4, the efficiency of the ADM is demonstrated by several exam-
ples. In the last section 5, we make some conclusions.

2. FORMULATION OF POPULATION BALANCE EQUATION

In this paper, we consider the following one-dimensional spatially inhomoge-
neous population balance equation (PBE). It describes the time-space evolution of
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the particle number distribution function f(t, v, z) under the simultaneous affect
of breakage and coalescence processes in a continuous flow system [26, 29]. The
PBE reads

∂ (f(t, v, z))

∂t︸ ︷︷ ︸
the accumulation

term

+
∂(Udf(t, v, z))

∂z︸ ︷︷ ︸
convection in
physical space

− ∂2(Ddf(t, v, z))

∂z2︸ ︷︷ ︸
diffusion in

physical space

=
1

θ

(
f feed(v)− f(t, v, z)

)

+ ϕ(f, t, v, z)︸ ︷︷ ︸
the source

term

(2.1)

This equation needs to be supplemented with appropriate initial or boundary con-
ditions.

Here it is assumed that the number of particles f(t, v, z) depends on time t ≥ 0,
an internal and external coordinates. The internal coordinate refer to the proper-
ties attached to each individual particle, an example of internal coordinate is size
(i.e., volume, diameter or mass), whereas the external coordinates refer to the
spatial distribution of the particles in the particulate system.

The left hand side of 2.1 is devoted to the time and space evolution of the
particle number density: it includes a convection term with the particle velocity
Ud and a diffusion term including a diffusion rate Dd. In the right hand side,
the first term is the net bulk flow into the vessel. The source term ρ(f, t, v, z)

represents the contribution to f(t, v, z) of the change in the number of particles.
due to particle breakage and coalescence [32,33]:

ρ(f, t, v, z) = −Γ(v)f(t, v, z) +

∫ +∞

v

β(v, v′)Γ(v′)f(t, v′, z) dv′

−
∫ +∞

0

ω(v, v′)f(t, v′, z)f(t, v, z) dv′

+
1

2

∫ v

0

ω(v − v′, v′)f(t, v − v′, z)f(t, v′, z) dv′,

(2.2)

where Γ(v) and ω(v, v′) are the breakage and coalescence frequencies, respectively,
β(v, v′) dv′ is the number of daughter droplets having volume in the range from
v to v + dv formed upon breakage of the droplet of volume v′. In the source
term ρ(f, t, v, z), the first two terms represent the particle formation and loss due
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to breakage succeeded by two terms represent particle formation and loss due to
coalescence.

The following is the list of relevant combinations of processes for which the
continuous PBE has been solved analytically.

Case study I. PBE with convection term in batch system

(2.3)
∂f(t, v, z)

∂t
+Ud

∂f(t, v, z)

∂z
= −Γ(v)f(t, v, z)+

∫ +∞

v

β(v, v′)Γ(v′)f(t, v′, z) dv′

Case study II. PBE with diffusion term in batch system

(2.4)
∂f(t, v, z)

∂t
= Dd

∂2(f(t, v, z))

∂z2
−Γ(v)f(t, v, z)+

∫ +∞

v

β(v, v′)Γ(v′)f(t, v′, z) dv′

Case study III. PBE with convection term in continuous system

∂f(t, v, z)

∂t
+ Ud

∂f(t, v, z)

∂z
=

1

θ

(
f feed(v)− f(t, v, z)

)
− Γ(v)f(t, v, z)

+

∫ +∞

v

β(v, v′)Γ(v′)f(t, v′, z) dv′
(2.5)

Case study IV. PBE with convection term (Pure Coalescence)

∂f(t, v, z)

∂t
+ Ud

∂(f(t, v, z))

∂z
=

1

2

∫ v

0

ω(v − v′, v′)f(t, v − v′, z)f(t, v′, z) dv′

−
∫ +∞

0

ω(v, v′)f(t, v′, z)f(t, v, z) dv′
(2.6)

3. METHOD OF ANALYSIS AND SOME CONVERGENCE REMARKS

Let us review the main principles of the Adomian decomposition method by
considering the nonlinear differential equation ( [2]):

(3.1) Lf +Rf +N(f) = g,

where

- L is the linear operator to be inverted and usually taken as the highest-
ordered partial derivative. its inverse operator is defined by:
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(3.2) L−1(.) =

∫ ∫
. . .

∫
︸ ︷︷ ︸

n−fold

(.) dt . . . dt dt;

- R is the linear remainder operator;
- N is the nonlinear operator;
- g is a given function;
- f is the unknown function.

Transforming the equation (3.1) to the canonical form, we have

(3.3) f = f0 − L−1(Rf +N(f))

According to the problem if it is an initial or boundary value problem, equation
(3.3) is to be determined by the appropriate initial or boundary condition. Using
the ADM the unknown function f can be expressed by the sum

(3.4) f =
+∞∑
m=0

fm.

The nonlinear term N(f) has the Adomian polynomials representation

(3.5) N(f) =
+∞∑
m=0

Am(u0, u1, . . . , um),

where the An can calculated for a wide class of nonlinearities and are defined
implicitly by the classical formula [2]

(3.6) Am =
1

m!

dm

dϵm
[N(

+∞∑
i=0

ϵifi)]ϵ=0, m ≥ 0.

The components of the series solution (3.4) are determined by the standard Ado-
mian recursion scheme:

(3.7)

{
f0 = L−1(g) + ψ

fm+1 = −L−1(Rfm + Am), m ≥ 0.

Note Here that ψ is the solution of the linear homogenous equation

(3.8) Lψ = 0.
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All the components of the (3.4) are determined. So the solution constructed as

(3.9) lim
n→+∞

φn = f,

where {φn}n≥0 is a rapidly convergent sequence of analytic approximants

(3.10) φn =
n−1∑
m=0

fm.

As example in the last case study which is nonlinear case, we consider

(3.11) L =
∂

∂z
, R =

∂

∂t
,

whereas the nonlinear term can be written as the sum of two nonlinearities (i.e:
N = N1 +N2):

N1(f) = −1

2

∫ v

0

f(t, v − u, z)f(t, u, z) du(3.12)

N2(f) = f(t, v, z)

∫ +∞

0

f(t, u, z) du.(3.13)

Seeing that our article focuses on the analytical forms induced by the conver-
gence of series, we just give a remark on the notion of convergence related to
our model. General studies of the convergence of ADM is introduced in several
works [4,5,7,8], [31]. Concerning the initial value problems, a reliable approach
for the convergence of Adomian’s method is discussed by [3]. Indeed, the formal-
ism of Cauchy Kovalevskaya gives the convergence analysis sufficient reliability to
estimate the truncated maximum absolute error of the Adomian series. Similarly,
the work of Turkyilmazoglu [31] based on the disturbance of the initial terms of
the iterations allows to better identify the error. Our method converges in the
sense that the model is a nonlinear partial differential equation with an integral
term so we can apply the same convergence scheme described by [3] and [31].

In [30], R.Singh, J. Saha and J. Kumar were discussed the convergence of the
series solution for the fragmentation and aggregation population balance equation
and the convergence analysis is reliable enough to estimate the maximum absolute
truncated error of the series solution.
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4. APPLICATIONS AND RESULTS

In all case studies, the population balance equation are solved by the ADM and
all symbolic calculations are done using the MATHEMATICA software.

4.1. Linear case: Pure breakage.
In a breakage process, Drops break into two or many fragments. The total

number of drops in this process increases while the total mass remains constant.
Therefore, Breakage has a significant effect in the number of drops.

In this section, we present three case studies for pure breakage in batch and
continuous systems to illustrate how to use this technique. In all these cases,
we have a linear breakage frequency Γ(v) = v and a uniform daughter droplet
distribution β(v, v′) = 2

v′
.

4.1.1. PBE in batch system.
Case study I. PBE with convection term Consider the PBE

(4.1)
∂f(t, v, z)

∂t
+Ud

∂f(t, v, z)

∂z
= −Γ(v)f(t, v, z)+

∫ +∞

v

β(v, v′)Γ(v′)f(t, v′, z) dv′

Subjected to the boundary condition f(t, v, 0) = te−v. And assuming that Ud = 1.
The equation (4.1) becomes

(4.2)
∂f(t, v, z)

∂t
+
∂f(t, v, z)

∂z
= −vf(t, v, z) +

∫ +∞

v

2f(t, v′, z) dv′.

Transforming equation (4.2) to the canonical form and Operating both sides by
L−1
z (.) =

∫ z

0
(.) dz, we obtain

f(t, v, z)− f(t, v, 0) =

∫ z

0

(
−∂f(t, v, z)

∂t
− vf(t, v, z)

+

∫ +∞

v

2f(t, v′, z) dv′
)
dz.

The solution by ADM is written as follow:

f(t, v, z) =
+∞∑
m=0

fm(t, v, z).
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The solution components fm(t, v, z) are obtained by the following Adomian recur-
sion scheme:

f0(t, v, z) = te−v

f1(t, v, z) =

∫ z

0

(
−∂f0(t, v, z)

∂t
− vf0(t, v, z) +

∫ +∞

v

2f0(t, v
′, z) dv′

)
dz

= −(1 + t(−2 + v))z

ev
.

2 4 6 8 10
Particlevolume

5

10

15

Densitynumber

Analytical

m=10

m=9

m=8

m=7

m=6

m=5

FIGURE 1. The effect of the truncation solution on the density
number distribution for droplet breakage in batch system with the
boundary condition to be equal to n(v, t, 0) = te−v at z = 1 and
t = 50.

Generally, fm(t, v, z) is the solution of

fm(t, v, z) =

∫ z

0

(
−∂fm−1(t, v, z)

∂t
− vfm−1(t, v, z)

+

∫ +∞

v

2fm−1(t, v
′, z) dv′

)
dz.

(4.3)

Then we calculate the general term as:

fm(t, v, z) = (−vz)m
(
vt
(
v(v − 2m) + (m− 1)m

)
+mv

(
v − 2(m− 1)

)
v3evm!
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+
(m− 2)(m− 1)m

v3evm!

)
.

So,

f(t, v, z) =
+∞∑
k=0

(−vz)m
(
vt
(
v(v − 2m) + (m− 1)m

)
+mv

(
v − 2(m− 1)

)
v3evm!

+
(m− 2)(m− 1)m

v3evm!

)
,

which converges to

f(t, v, z) =
(z + 1)2(t− z)

ev(z+1)
.

Case study II. PBE with diffusion term Consider the PBE

∂f(t, v, z)

∂t
= Dd

∂2(f(t, v, z))

∂z2
− Γ(v)f(t, v, z)

+

∫ +∞

v

β(v, v′)Γ(v′)f(t, v′, z) dv′.

(4.4)

Subjected to the boundary conditions f(t, v, 0) = te−v and ∂f(t,v,0)
∂z

= e−v, and
assuming that Dd = 1. The equation (4.4) becomes

(4.5)
∂2(f(t, v, z))

∂z2
=
∂f(t, v, z)

∂t
+ vf(t, v, z)−

∫ +∞

v

2f(t, v′, z) dv′.

In this case Lzz(.) =
∂2

∂z2
(.) and its inverse is L−1

zz (.) =
∫ z

0

∫ z

0
(.) dz dz. Applying the

inverse operator to (4.5) gives

f(t, v, z) = f(t, v, 0) +
∂f(t, v, 0)

∂z
z +

∫ z

0

∫ z

0

(
∂f(t, v, z)

∂t
+ vf(t, v, z)

−
∫ +∞

v

2f(t, v′, z) dv′
)
dz dz.

The solution by the ADM is determined by the following Adomian recursion scheme:

f0(t, v, z) = te−v + e−vz



ADM FOR SOLVING SPATIALLY INHOMOGENUOUS PBES 125

fm+1(t, v, z) =

∫ z

0

∫ z

0

(
∂fm(t, v, z)

∂t
+ vfm(t, v, z)

−
∫ +∞

v

2fm(t, v
′, z) dv′

)
dz dz,m ≥ 0.

From here we calculate the solution components

f1(t, v, z) = z2
(
3 + 3t(−2 + v) + (−2 + v)z

6ev

)
,

fm(t, v, z) =
e−vvm−3z2m

4m(1)m
(
3
2

)
m

((
v(v − 2m) + (m− 1)m

)(
(2m+ 1)tv + vz

)

+m(2m+ 1)

(
v(v − 2(m− 1)) + (m− 2)(m− 1)

))
.

2 4 6 8 10
Particlevolume

-10

-5

5

10

15

Densitynumber

ana sol

m=2

m=1

m=0

FIGURE 2. The effect of the truncation solution on the density
number distribution for droplet breakage in batch system with the
boundary condition to be equal to f(t, v, 0) = te−v, ∂f(t,v,0)

∂z
= e−v at

z = 1 and t = 50.

So,

f(t, v, z) =
+∞∑
m=0

e−vvm−3z2m

4m(1)m
(
3
2

)
m

((
v(v − 2m) + (m− 1)m

)(
(2m+ 1)tv + vz

)

+m(2m+ 1)

(
v(v − 2(m− 1)) + (m− 2)(m− 1)

))
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f(t, v, z) =
z2 3F4

(
2, 2, 2; 1, 1, 1, 5

2
; vz

2

4

)
3evv2

+
cosh (

√
vz)

8evv3

(
2tv2

(
4v + z2

)
− vz

(
4v(z + 2) + 5z + 6

)
+ 1

)
+

sinh (
√
vz)

8evv7/2z

(
2vz

(
v
(
2v(−2tz

+ z + 2) + z(−t+ z + 2) + 4
)
+ z + 3

)
− 1

)

4.1.2. PBE in continuous systems.
Case study III. PBE with convection term In this case, the boundary condition
is f(t, v, 0) = te−v, the feed distribution is exponential and assuming that Ud = 1.
We consider the following PBE:

∂f(t, v, z)

∂t
+ Ud

∂f(t, v, z)

∂z
=

1

θ

(
f feed(v)− f(t, v, z)

)
− Γ(v)f(t, v, z)

+

∫ +∞

v

β(v, v′)Γ(v′)f(t, v′, z) dv′.

Rewrite the above equation to the following form

∂f(t, v, z)

∂z
= −∂f(t, v, z)

∂t
+

1

θ
f feed(v)−

(
v +

1

θ

)
f(t, v, z)

+

∫ +∞

v

2f(t, v′, z) dv′.

(4.6)

Integrating the equation 4.6 with respect to z,

f(t, v, z) = f(t, v, 0) +
1

θ
f feed(v)z +

∫ z

0

(
−∂f(t, v, z)

∂t

−
(
v +

1

θ

)
f(t, v, z) +

∫ +∞

v

2f(t, v′, z) dv′
)
dz.

Then the Adomian recursion scheme is

f0(t, v, z) = te−v +
ze−v

θ
,
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fm+1(t, v, z) =

∫ z

0

(
−∂fm(t, v, z)

∂t
− (v +

1

θ
)fm(t, v, z)

+

∫ +∞

v

2fm(t, v
′, z) dv′

)
dz, m ≥ 0.

The second term is

f1(t, v, z) = z

(
2 + (−2 + 1

θ
+ v)(2t+ z

θ
)

ev

)
.

The general term is

fm(t, v, z) =
(−1)m(1

θ
+ v)m−3zm

(1)1+mev

(
(1 +m)

(
m(m− 1)(m− 2) +

1

θ3
t

+
1

θ2

(
m+ t(−2m+ 3v)

)
+ v
(
m(−2(m− 1) + v) + t

(
m(m− 1)

+ (−2m+ v)v
))

+
1

θ

(
2m((1−m) + v) + t

(
m(m− 1) + v(−4m+ 3v)

))
+

1

θ

(
1

θ
+ v

)(
m(m− 1) + (

1

θ
)2 +

2

θ
(−m+ v) + (−2m+ v)v

)
z

)
.

2 4 6 8 10
Particlevolume

5

10

15

Densitynumber

Ana sol

m=10

m=9

m=8

m=7

m=6

m=

FIGURE 3. The effect of the truncation solution on the density num-
ber distribution for droplet breakage in continuous system with the
boundary condition to be equal to f(t, v, 0) = te−v with exponential
feed distribution at z = 1 and t = 50.
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Then

f(t, v, z) =
+∞∑
m=0

(−1)m(1
θ
+ v)m−3zm

(1)1+mev

(
(1 +m)

(
m(m− 1)(m− 2) +

1

θ3
t

+
1

θ2

(
m+ t(−2m+ 3v)

)
+ v
(
m(−2(m− 1) + v) + t

(
m(m− 1)

+ (−2m+ v)v
))

+
1

θ

(
2m((1−m) + v) + t

(
m(m− 1) + v(−4m+ 3v)

))
+

1

θ

(
1

θ
+ v

)(
m(m− 1) + (

1

θ
)2 +

2

θ
(−m+ v) + (−2m+ v)v

)
z

)
.

So,

f(t, v, z) =
1

(1
θ
+ v)3evez(

1
θ
+v)

(
1

θ3

(
ez(

1
θ
+v) + (z + 1)2(t− z − 1)

)
+

1

θ2

(
2(v + 1)

ez(
1
θ
+v) − (z + 1)

(
2− v(z + 1)(3t− 3z − 2)

))
+

1

θ

((
v(v + 2) + 2

)
ez(

1
θ
+v) − v(z + 1)

(
2− v(z + 1)(3t− 3z − 1)

)
− 2

)
+ v3(z + 1)2(t− z)

)
.

4.2. Nonlinear case: Pure Coalescence. In PBE the machanism of coalescence
term poses the greatest numerical difficulty occurred by the non-linearity of this
phenomena. we will consider the solution of equation (2.1) in the presence of only
two terms which are the convection and coalescence terms in batch flow system
in order to show the great accuracy of this technique.

4.2.1. PBE with convection term. In this section, we present only one case study
for pure coalescence in batch systems .

∂f(t, v, z)

∂t
+ Ud

∂(f(t, v, z))

∂z
=

1

2

∫ v

0

ω(v − v′, v′)f(t, v − v′, z)f(t, v′, z) dv′

−
∫ +∞

0

ω(v, v′)f(t, v′, z)f(t, v, z) dv′.

(4.7)

Here we take ω(v, v′) = 1, Ud = 1 and the boundary condition f(t, v, 0) = te−v.
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By considering Lt =
∂
∂t

and Lz = ∂
∂z

, and operating both sides of equation 4.7
by L−1

z ( defined as L−1
z (.) =

∫ z

0
(.) dz), then we obtain the canonical form

f(t, v, z) = f(t, v, 0) +

∫ z

0

(
−∂f(t, v, z)

∂t
+

1

2

∫ v

0

f(t, v − v′, z)f(t, v′, z) dv′

−
∫ +∞

0

f(t, v′, z)f(t, v, z) dv′
)
dz.

(4.8)

And the nonlinear terms have the Adomian polynomial representation:

1

2

∫ v

0

f(t, v − v′, z)f(t, v′, z) dv′ =
1

2

∫ v

0

+∞∑
m=0

Am(v − v′, v′, t, x) dv′

−
∫ +∞

0

f(t, v′, z)f(t, v, z) dv′

= −
∫ +∞

0

+∞∑
m=0

Bm(v, v
′, t, x) dv′.

(4.9)

The polynomials Am and Bm are obtained by the definitional formula (3.6).
The solution by the ADM is calculated by the following Adomian recursion

scheme:

f0(t, v, z) = te−v

fm+1(t, v, z) =

∫ z

0

(
∂fm(t, v, z)

∂t
+

1

2

∫ v

0

Am(t, v − v′, v′, z) dv′

−
∫ +∞

0

Bm(t, v, v
′, z) dv′

)
dz,m ≥ 0.

The first few terms are

f1(t, v, z) =

(
−2− 2t2 + t2v

ev

)
z,

f2(t, v, z) = t

(
−8(−2 + v) + t2(6− 6v + v2)

8ev

)
z2.

By rearrangement of terms, we can obtain the general term (See the Appendix
6 for more details)

(4.10) f ∗
m(t, v, z) =

4vmzm(t− z)m+1

m!ev(z(t− z) + 2)m+2
.
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FIGURE 4. The effect of the truncation solution on the density num-
ber for droplet Coalescence with the boundary condition to be equal
to f(t, v, 0) = te−v at z = 0.1 and t = 5.

Then,

(4.11) f(t, v, z) =
+∞∑
m=0

4vmzm(t− z)m+1

m!ev(z(t− z) + 2)m+2
.

So, the exact solution is

(4.12) f(t, v, z) =
4(t− z)e

vz(t−z)

tz−z2+2

ev(z(t− z) + 2)2
.

For nonlinear models, more efficient algorithms and programs in MATHEMATICA
for fast generation of Adomian polynomials to high orders have been provided by
Duan in [10–12].

The Figure 2 and 4 shows that from the second iteration the m term approxi-
mant solutions were nearly identical to the analytical solutions. A rapid conver-
gence was observed in these figures which shows the efficiency of the method.

The Figure 1 and 3 represent the effect of the truncation on the density number
for droplet breakage in batch and continuous flow particulate processes, respec-
tively.

5. CONCLUSION

The decomposition method was employed successfully for solving droplet pop-
ulation balance equations in batch and continuous flow systems. It provides a
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closed form continuous approximation for the solutions unlike other methods as
the mesh point techniques which provide the approximation at mesh points only.

Some problems still open until now. For instance, practical convergence of the
Adomian decomposition series may be ensured even if the hypotheses of known
method are not satisfied. which means that there still exist opportunities for fur-
ther theoretical studies of convergence for more general situations. In addition,
it is not always easy to take into account the boundary conditions for complex
domains.

ABBREVIATIONS

ADM Adomian decomposition method.
PBE Population Balance Equation.

NOTATIONS

v Volume.

t Time.

z Spatial location.

f(t, v, z) The particle number density.

fm(t, v, z) Solution components.

θ Residence time.

Γ(v) The breakage frequency.

β(v, v′) dv′ The number of daughter droplets having volume in the range
from v to v + dv formed upon breakage of the droplet
of volume v′.

ω(v, v′) The coalescence frequency between two droplets of volumes
v and v′.

Ud Droplet velocity.

Dd Diffusion rate.

6. APPENDIX

(1) Here we summarize only all different cases symbols and functions defined
as
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• Pochhammer Symbol:
Given a ∈ R \ Z− and n ∈ N the Pochhammer symbol is defined by

(a)n :=
Γ(a+ n)

Γ(a)
,

where Γ is the Gamma function which is given by

Γ(a) =

∫ +∞

0

e−tta−1 dt.

• The generalized Hypergeometric function: The generalized hyper-
geometric function, denoted pFq(α1, . . . , αp; γ1, . . . , γq; z) and defined
by

pFq(α1, . . . , αp; γ1, . . . , γq; z) =
∞∑
k=0

∏p
i=1(αi)k∏q
j=1(γj)k

zk

k!
.

In the last example, by rearrangement of the terms according to the
powers tivjzm, the series solution could be written as

f(t, v, z) =
+∞∑
k=0

fk(t, v, z)

=
+∞∑
k=0

f ∗
k (t, v, z)

=
+∞∑
j=0

+∞∑
i=0

+∞∑
m=0

(
ai,j,mt

ivjzm
)

=
+∞∑
j=0

vj

(
+∞∑
i=0

ti

(
+∞∑
m=0

(ai,j,mz
m)

))

=
+∞∑
j=0

vj

(
+∞∑
i=0

tibi,j(z)

)
Examples of ai,j,m

• for i = 0
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– for j = 0

a0,0,0 = 0

a0,0,1 = −1

a0,0,2 = 0

...

– for j = 1

a0,1,0 = 0

a0,1,1 = 0

a0,1,2 = 0

a0,1,3 =
1

2
...

• for i = 1

– for j = 0

a1,0,0 = 1

a1,0,1 = 0

a1,0,2 = 2

...

– for j = 1

a1,1,0 = 0

a1,1,1 = 0

a1,1,2 = −1

a1,1,3 = 0

a1,1,4 =
−9

4
...

Examples of bi,j(z)
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• for i = 0

b0,0(z) =
−4z

ev(−2 + z2)2

b0,1(z) =
−4vz3

ev(−2 + z2)3

b0,2(z) =
−2v2z5

ev(−2 + z2)4

...

• for i = 1

b1,0(z) =
−4t(2 + z2)

ev(−2 + z2)3

b1,1(z) =
−4vtz2(4 + z2)

ev(−2 + z2)4

b1,2(z) =
−2v2tz4(6 + z2)

ev(−2 + z2)5

...

Therefore

f(t, v, z) =
+∞∑
j=0

vj

(
+∞∑
i=0

tibi,j(z)

)
=

+∞∑
j=0

vjcj(t, z)

=
+∞∑
j=0

vj
4zj(t− z)j+1

j!ev(z(t− z) + 2)j+2
=

4(t− z)e
vz(t−z)

tz−z2+2

ev(z(t− z) + 2)2
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