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SEMI RECURSIVE ESTIMATION OF CONDITIONAL CUMULATIVE
DISTRIBUTION FUNCTION FOR FUNCTIONAL DATA UNDER MIXING

CONDITION

Bouadjemi Abdelkader

ABSTRACT. This article studies the problem of nonparametric estimation of the
conditional model of a scalar response variable Y given a functional random vari-
able X. Our estimate is based on semi recursive approach. The asymptotic prop-
erties of the proposed estimators are established Under Mixing Conditions.

1. INTRODUCTION

Functional statistics are dedicated to the study of models involving data of a
functional nature, this field of research has experienced an explosion of work un-
der the impetus of the work of Ferraty and Vieu [12] which studies the almost
complete convergence of the regression in fractal dimension.

One of the innovations existing in the functional framework since the last decade
is the introduction of the conditional allocation function estimator by Laksaci et
al [12]. Ezzahrioui and Ould said [8] study the asymptotic normality of the con-
ditional distribution function in both cases (i.i.d and α-mixing) using the Laksaci
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estimator et al [12]. However, Laksaci and Maref [17] establish the almost com-
plete convergence speed for spatially dependent explanatory variable. Results of
uniform convergence of the estimator were established by Laksaci and Maref [17].
For robustness, we refer to Azzedine and al [2], and Attouch and al [1]. The
originality of the work of Tadj and al [21] focuses on the study of uniform conver-
gence on the two real and functional arguments of the estimator of several condi-
tional models including the accuracy of the convergence speed. A pioneering work
that was highlighted by Laksaci et al [12] developing a robust alternative method
of conditional quantile estimator. Laksaci and Hachemi [18] study the conditional
distribution function by the local linear estimator. The generalization of this latter
result to spatial data was published by Rahmani it et al [22]. Thus Demongeot
and al [22] to model the conditional distribution function for a local linear esti-
mator specify the almost complete convergence speed. Laksaci and Mechab [18]
provided a new basis for estimating the conditional chance function.

Historically the recursive kernel estimation method was introduced by Wolver-
ton and Wagner [26], for recent results we refer to kharedani et al [18] and Amiri
and al [4], and Bouadjemi [7]. Recently two main approaches have been devel-
oped in the paper of Benziad it and al [22], the first is based on the recursive
double-kernels estimate of the conditional distribution function and the second
is obtained using the robust approach, This work focuses on functional ergodic
data. Notably Ardjoun and Laksaci [5] contribute to this dynamic by their study
of conditional mode through the recursive approach.

Our contribution is to introduce a semirecursive approach to the estimation of
the conditional distribution function for functional explanatory variable i.e. of
random variables with values in a space of infinite dimension.

The outline of this paper is as follows: We present our semi-recursive estima-
tion in Section 2. The asymptotic normality of the proposed estimator is given in
Section 3. The proofs of the auxiliary results are relegated to the Appendix.

2. MODEL AND NOTATIONS

We beging by recalling the definition of the strong mixing proprety. For this we
introduced the following notations let ℑk

i (Z) denote the σ-algebra generated by
{Zi, i ⩽ j ⩽ k}.
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Definition 2.1. Let {Zi, i = 1, 2, . . .} be sticly stationary sequence of random vari-
ables. Given a positive integer n set

α(n) = Sup{|IP(A ∩B)− IP(A)IP(B)| : A ∈ ℑk
1(Z) and B ∈ ℑ∞

k+n(Z), k ∈ N∗}.

The sequence is said the α mixing ( strong mixing ) if the mixing coefficient

(2.1) α(n) → 0 as n → ∞.

In the remainder of the paper, we suppose that (Xi, Yi)i=1,2,... is strongly mixing,
the process valued in ℑ × IR where ℑ is semi metric vector space. d(., .) denoting
the semi metric. Assume that exists a version of the conditional cummultative
distribution function of y given X = x ⧸x is fixed point in ℑ:

∀x ∈ F and ∀y ∈ IR F x(y) = P (Y ≤ y|X = x).

The kernel estimate of the distribution function F x denoted F̂ x, is defined by

∀x ∈ F and ∀y ∈ IR F̂ x(y) =

∑n
i=1K(h−1

K d(x,Xi))H(h−1
H (y − Yi))∑n

i=1K(h−1
K d(x,Xi))

,

where K is a kernel, H is a distribution function and hK = hK,n (resp. hH = hH,n)
is a sequence of positive real numbers. Note that this last estimator has been used
by Laksaci & al. ( [12] and [10])
A semi recursive version of the previous kernel estimator is defined by

∀x ∈ F and ∀y ∈ R F̂ x(y) =

∑n
i=1 E[Ki]

−1K(a−1
i d(x,Xi))H(b−1

i (y − Yi))∑n
i=1 E[Ki]−1K(a−1

i d(x,Xi))
,

The function H is a strictly increasing distribution function and bi (resp.ai) is a
sequence of positive real numbers limn→∞bn = 0.

All along the paper, when no confusion is possible, we will denote by C and C ′

some strictly positive generic constants. Consider now the following notations, for
any x ∈ ℑ, and for i = 1, 2, . . .:

Ki = K(a−1
i d(x,Xi)), Hi = H(b−1

i (y − Yi)),

F̂ x
N(y) =

1

n

n∑
i=1

E[Ki]
−1KiHi and F̂D(x) =

1

n

n∑
i=1

E[Ki]
−1Ki.
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3. THE MAIN RESULT

We introduce now some assumptions that are needed to state our results:

(H1) ∀r > 0, IP(X ∈ B(x, r)) =: ϕx(r) > 0, where B(x, r) = {x′ ∈ F/d(x, x′) <

r}.
(H2) For all y ∈ IR ∀(x1, x2) ∈ N2

x ,

|F x1(t1)− F x2(t2)| ≤ C
(
d(x1, x2)

β1 + |t1 − t2|β2
)
,

with C > 0, β1 > 0, β2 > 0 and Nx is a fixed neighborhood of x.
(H3) The bandwidths (ai, bi) satisfy:

i. ∀t ∈ [0, 1] limn→∞
ϕx(tan)
ϕx(an)

= βx(t),

ii. nϕn(x) → ∞ and 1√
n

∑n
i=1

√
ϕn(x)

(
aβ1

i + bβ2

i

)
→ 0 as n → ∞

iii. βn,r :
1

n

∑n
i=1

(
ϕx(an)

ϕx(ai)

)r

= βir < ∞ as n → ∞

(H4) H has even bounded derivative verifies∫
R
|t|β2 H ′(t)dt < ∞.

(H5) α-mixing sequence whose coefficients of mixture satisfy:

∃ a > 0, ∃ c > 0 : ∀ n ∈ N, α(n) ⩽ cn−a.

Theorem 3.1. (Normality asymptotic) Under assumptions (H1)-(H6),then for any
(x, y) ∈ ℑ × IR, we have(

nϕn(x)

σ2

)1/2 (
F̂ x(y)− F x(y)

)
D→ N (0, 1) as n → ∞,

where σ2 =

F x(y)(1− F x(y))β1

(
K2(1)−

∫ 1

0
(K2(s))′βx(s)ds

)
(
K(1)−

∫ 1

0
(K(s))′βx(s)ds

)2
,

A(x, y) =

(x, y) such that
F x(y)(1− F x(y))β1

(
K2(1)−

∫ 1

0
(K2(s))′βx(s)ds

)
(
K(1)−

∫ 1

0
(K(s))′βx(s)ds

)2 ̸= 0


and D→ means the convergence in distribution.
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Proof. We consider the decomposition

F̂ x(y)− F x(y) =
1

F̂ x
D

([[
F̂ x
N(y)− F x(y)F̂ x

D

]
− E

[
F̂ x
N(y)− F x(y)F̂ x

D

]]

(3.1) +E
[
F̂ x
N(y)− F x(y)F̂ x

D

])
The structure of the proof is based on the decomposition (3). Note first that the
result to state asymptotic normality will be obtained of first term of the right hand
side of numerator suitably normalized is asymptotically normally distributed, the
second term is negligible, and the denominator converge in probability. Therefore,
Theorem 3.1 is a consequence of the following results. □

Lemma 3.2. Under the hypotheses of Theorem (3.1), we have

E
[
F̂ x
N(y)− F x(y)F̂ x

D

]
= O

(
1

n

n∑
i=1

(
aβ1

i + bβ2

i

))
.

Lemma 3.3. Under the hypotheses of Theorem (3.1), we have

var
([

F̂ x
N(y)− F x(y)F̂ x

D

])
=

F x(y)(1− F x(y))β1

(
K2(1)−

∫ 1

0
(K2(s))′βx(s)ds

)
nϕx(an)

(
K(1)−

∫ 1

0
(K(s))′βx(s)ds

)2
+ o

(
n∑

i=1

1

ϕx(ai)

)
.

Lemma 3.4. Under the hypotheses of Theorem (3.1), we have

(nϕn(x))
1/2
([

F̂ x
N(y)− F x(y)F̂ x

D

]
− E

[
F̂ x
N(y)− F x(y)F̂ x

D

])
→N (0, σ2).

Lemma 3.5. Under the hypotheses of Theorem (3.1), we have

F̂ x
D → 1 in probability.
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4. APPENDIX

Proof. (Proof of Lemma 3.2)

E[F̃ x
N(y)] =

1

n

n∑
i=1

E
[
KiE[Ki]

−1E[Hi|Xi]
]

with E [Hi|Xi] =

∫
R

H ′(t)FXi(y− bit)dt.

|E[Hi|Xi]− F x(y)| ≤
∫
R

H ′(t)
∣∣FXi(y − bit)− F x(y)

∣∣
|E[Hi|Xi]− F x(y)| ≤ C

(
aβ1

i + bβ2

i

)
∣∣∣E [F̃ x

N(y)
]
− F x(y)

∣∣∣ ≤ C
1

n

n∑
i=1

(
aβ1

i + bβ2

i

)
E
[
F̂ x
N(y)− F x(y)F̂ x

D

]
= O

(
n∑

i=1

ϕx(an)
(
aβ1

i + bβ2

i

))
.

□

Proof. (Proof of Lemma 3.3)

var
([

F̂ x
N(y)− F x(y)F̂ x

D

]
− E

[
F̂ x
N(y)− F x(y)F̂ x

D

])
= var[F̂ x

N(y)− F x(y)F̂ x
D]

= var
[
F̂ x
N(y)

]
+ F x(y)2var[F̂ x

D]

− 2F x(y)cov
[
F̂ x
N(y), F̂

x
D

]
To calculate

var
[
F̂ x
N(y)

]
= var

[
1
n

∑n
i=1E[Ki]

−1KiHi

]
= 1

n2

∑n
i=1 var

[
E[Ki]

−1KiHi

]
+ 2

n2

∑n
i ̸=j cov

[
E[Ki]

−1KiHi, E[Kj]
−1KjHj

]
= 1

n2

∑n
i=1 E[Ki]

−2var
[
KiHi

]
+ 2

n2

∑n
i ̸=j E[Ki]

−1E[Kj]
−1cov

[
KiHi, KjHj

]
= I1 + I2

V ar [KiHi] = E [K2
i H

2
i ]− (E [KiHi])

2

V ar [KiHi] = F x(y)
(
ϕx(ai)K

2(1)−
∫ 1

0
(K2(s))′ϕx(ais)ds

)
+ o (ϕx(ai))
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E [Ki] = ϕx(ai)K(1)−
∫ 1

0

(K(s))′ϕx(ais)ds+ o(1)

E
[
Kj

iH
j
i

]
=

(
F x(y)

∫
(Hj(t))′dt+O

(
aβ1

i + bβ2

i

))
E
[
Kj

i

]
, j = 1, 2,

(4.1)

(4.2) E
[
Kj

i

]
= ϕx(ai)K

j(1)−
∫ 1

0

(Kj(s))′ϕx(ais)ds+ o(1), j = 1, 2.

For I1:

1

n2

∑n
i=1E[Ki]

−2var
[
KiHi

]
=

1

n2

∑n
i=1

F x(y)
(
ϕx(ai)K

2(1)−
∫ 1

0
(K2(s))′ϕx(ais)ds

)
+ o (ϕx(ai))(

ϕx(ai)K(1)−
∫ 1

0
(K(s))′ϕx(ais)ds+ o(1)

)2
=

1

n2ϕx(an)

∑n
i=1

ϕx(an)

ϕx(ai)

F x(y)
(
K2(1)−

∫ 1

0
(K2(s))′βi(s)ds

)
+ o (ϕx(ai))(

K(1)−
∫ 1

0
(K(s))′βi(s)ds+ o(1)

)2

var
[
F̂ x
N(y)

]
=

F x(y)β1

(
K2(1)−

∫ 1

0
(K2(s))′βx(s)ds

)
nϕx(an)

(
K(1)−

∫ 1

0
(K(s))′βx(s)ds)

)2 + o

(∑n
i=1

1

ϕx(ai)

)
var
[
F̂ x
D

]
= var

[
1
n

∑n
i=1E[Ki]

−1Ki

]
= 1

n2

∑n
i=1 var

[
E[Ki]

−1Ki

]
+ 2

n2

∑n
i ̸=j cov

[
E[Ki]

−1Ki, E[Kj]
−1Kj

]
= 1

n2

∑n
i=1E[Ki]

−2var
[
Ki

]
+ 2

n2

∑n
i ̸=j E[Ki]

−1E[Kj]
−1cov

[
Ki, Kj

]
V ar [Ki] =

(
ϕx(ai)K

2(1)−
∫ 1

0
(K2(s))′ϕx(ais)ds

)
+ o (ϕx(ai)) .

1

n2

∑n
i=1E[Ki]

−2var
[
Ki

]
=

1

n2

∑n
i=1

(
ϕx(ai)K

2(1)−
∫ 1

0
(K2(s))′ϕx(ais)ds

)
+ o (ϕx(ai)) .(

ϕx(ai)K(1)−
∫ 1

0
(K(s))′ϕx(ais)ds+ o(1)

)2
=

1

n2ϕx(an)

∑n
i=1

ϕx(an)

ϕx(ai)

(
K2(1)−

∫ 1

0
(K2(s))′βi(s)ds

)
+ o (ϕx(ai)) .(

K(1)−
∫ 1

0
(K(s))′βi(s)ds+ o(1/ϕx(ai))

)2
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var
[
F̂ x
D

]
=

β1

nϕx(an)

(
K2(1)−

∫ 1

0
(K2(s))′βx(s)ds

)
(
K(1)−

∫ 1

0
(K(s))′βx(s)ds

)2 + o

(∑n
i=1

1

ϕx(ai)

)
cov
[
F̂ x
N(y), F̂

x
D

]
= E[F̂ x

N(y)F̂
x
D]− E[F̂ x

N(y)]E[F̂ x
D]

= 1
n2

∑n
i=1E[Ki]

−2E[K2
i Hi]− 1

n2

∑n
i=1E[Ki]

−2E[KiHi]E[Ki]

= 1
n2

∑n
i=1

(
F x(y)

∫
(H(t))′dt+O

(
aβ1

i + bβ2

i

))
E [K2

i ](
ϕx(ai)K(1)−

∫ 1

0
(K(s))′ϕx(ais)ds+ o(1)

)2
− 1

n2

∑n
i=1

(
F x(y)

∫
(H(t))′dt+O

(
aβ1

i + bβ2

i

))
E [Ki]

ϕx(ai)K(1)−
∫ 1

0
(K(s))′ϕx(ais)ds+ o(1)

= I − II

So,

II = O
(

1
n

∑n
i=1

(
aβ1

i + bβ2

i

))
I = 1

n2

∑n
i=1

(F x(y))
(
ϕx(ai)K

2(1)−
∫ 1

0
(K2(s))′ϕx(ais)ds

)
+ o(ϕx(ai))(

ϕx(ai)K(1)−
∫ 1

0
(K(s))′ϕx(ais)ds+ o(1)

)2
=

1

n2ϕx(an)

∑n
i=1

ϕx(an)

ϕx(ai)

F x(y)
(
K2(1)−

∫ 1

0
(K2(s))′βi(s)ds

)
+ o (ϕx(ai))(

K(1)−
∫ 1

0
(K(s))′βi(s)ds+ o(1)

)2
cov
[
F̂ x
N(y), F̂

x
D

]
=

F x(y)β1

nϕx(an)

(
K2(1)−

∫ 1

0
(K2(s))′βx(s)ds

)
(
K(1)−

∫ 1

0
(K(s))′βx(s)ds

)2 + o

(
n∑

i=1

1

ϕx(ai)

)
So,

var[F̂ x
N(y)− F x(y)F̂ x

D] =
(1− F x(y))β1

nϕx(an)

(
K2(1)−

∫ 1

0
(K2(s))′βx(s)ds

)
(
K(1)−

∫ 1

0
(K(s))′βx(s)ds

)2
+ o

(
n∑

i=1

1

ϕx(ai)

)
.

□
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Proof. (Proof of Lemma 3.4) We use the technique of masry [19] for proof of
lemma. For beguin we need further notations:

Qn := 1
n2

∑n
i=1E[Ki]

−1KiHi − Fx(y)
n

∑n
i=1E[Ki]

−1E[KiHi]

− E
[
1
n

∑n
i=1 E[Ki]

−1KiHi − Fx(y)
n

∑n
i=1 E[Ki]

−1E[KiHi]
]

= 1
n

∑n
i=1 [E[Ki]

−1Ki[Hi − F x(y)]− E[E[Ki]
−1Ki[Hi − F x(y)]]]

= 1
n

∑n
i=1 Zi(x, y).

To establish the asymptotic normality of Qn. We normalize Zi(x, y) by: Z̃i =√
ϕ(an)Zi, Sn =

∑n
i=1 Z̃i. So, that V ar(Z̃i) = ϕ(an)varZi −→ σ2 as n → ∞. Now

we can write: √
nϕ(an)Qn = 1

n

√
nϕ(an)

∑n
i=1 Zi(x, y)

= 1√
n

∑n
i=1

√
ϕ(an)Zi(x, y)

= 1√
n

∑n
i=1 Z̃i

= 1√
n
Sn.

We need show that:
1√
n
Sn

D→ N(0, σ2).

The proof of asymptotic normality for Sn we employ bernstein’s "big block-small
block" procedure use in Masry [19]. partition the set {1, . . . , n} into 2k+1 subsets
with large blocks of size u = un and small blocks of size v = vn and set k = kn =[

n

vn + un

]
.

Let {vn} be a sequence of positive integers satisfying vn → ∞ such that vn =

o(
√

nϕ(an)) and

√
n

ϕ(an)
α(vn) → 0 as n → ∞ implies that there exists a sequence

of positive integers {qn}, qn → ∞ such that:

(4.3) qnvn = o(
√

nϕ(an)) qn

√
n

ϕ(an)
α(vn) → 0 as n → ∞.

Now define the large block size as un =

[√
nϕ(an)

qn

]
. When n → ∞ we have:

(4.4)
vn
un

→ 0,
un

n
→ 0,

n

un

α(vn) → 0.
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Let δj Ψj ζj be define as follows:

(4.5) δj :=

j(u+v)+u∑
i=j(u+v)+1

Z̃i 0 ⩽ j ⩽ k − 1,

(4.6) Ψj :=

(j+1)(u+v)∑
i=j(u+v)+u+1

Z̃i 0 ⩽ j ⩽ k − 1

and

(4.7) ζk :=
n∑

i=k(u+v)+1

Z̃i.

Then Sn can be writtes as:

Sn =
k−1∑
j=0

δj +
k−1∑
j=0

Ψj + ζk = S(1) + S(2) + S(3).

The technique consists to show that:

(4.8)
1

n

[
E[S(2)]2

]
→ 0,

1

n

[
E[S(3)]2

]
→ 0,

(4.9) |E[exp(itn−1/2S(1)]−
k−1∏
j=0

E[exp(itn−1/2δj]| → 0,

(4.10)
1

n

[
S(1)

]
→ σ2,

(4.11)
1

n

k−1∑
j=0

E[δ2j I|δj |>ϵ
√
nσ2 ] → 0.

For ϵ > 0 equation (4.8) show that S(2) and S(3) are asymptotically negligible, (4.9)
implies the summands {δj} in S(1) are asymptotically independent, and (4.10)-
(4.11 ) are the standar Linderberg-Feller conditions for asymptotic normality of
S(1) under independence. Since E[Zi] = 0, we have E[δj] = E[Ψj] = E[ζk] = 0.
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We begin by verified (4.8).

(4.12)

1

n

[
E[S(2)]2

]
=

1

n

[
E[
∑k−1

j=0 Ψj]
2
]

=
1

n

[
var[

∑k−1
j=0 Ψj]

]
=

1

n

∑k−1
j=0 [var[Ψj]] +

2

n

∑
|i−j|>0 [cov[Ψi,Ψj]]

= A1 + A2

Now, from the Davydov’s inequality we get:

(4.13)

1

n

∑k−1
j=0 [var[Ψj]]

=
1

n

[
var[

∑(j+1)(u+v)
i=j(u+v)+u+1 Z̃i]

]
=

1

n

∑v
i=0

[
var[Z̃i]

]
+

1

n

∑v
i=0

∑v
j=0

[
cov[Z̃i, Z̃j]

]
⩽

1

n

∑v
i=0

[
var[Z̃i]

]
+

4

n

∑v
i=0

∑v
j=0 α(i− j)

[
[E[Z̃i]

2]1/2[E[Z̃j]
2]1/2]

]
.

Here
1

n

v∑
i=0

[
var[Z̃i]

]
=

ϕ(an)

n

v∑
i=0

[var[Zi]] ,

so that a constant Cx exists independent of i, such that

1

n

v∑
i=0

[
var[Z̃i]

]
⩽

Cx

n
for all i = 1, 2, . . . .

Hence, by (4.13),

1

n
[var[Ψj]] ⩽

v

n
Cx + 4

∑v
i=0

∑v
j=0 α(i− j)

⩽ vCx + 4
∑v

i=0(v − i)α(i)

⩽ C ′′ v

n
.

Thus,

A1 ⩽ C ′′kv

n
.

Next,

A2 ⩽
2

n

k−1∑
i=0

k−1∑
i=0

(j+1)(u+v)∑
i=j(u+v)+u+1

(j+1)(u+v)∑
i=j(u+v)+u+1

cov[Z̃i, Z̃j] ⩽ C3

v∑
i=0

α(i).
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Therefore
1

n

[
E[S(2)]2

]
⩽ C4

[
kv

n
+

v∑
i=0

α(i)

]
→ 0 as n → ∞.

By similar arguments for [4.12], we find

1

n

[
E[S(3)]2

]
⩽ C5

u

n

[
1 +

v

u

]
→ 0 as n → ∞.

This yields the proof of (4.8).
Property (4.9) is an sequence of the following lemma of Volkonsky and Rozanov

(see the lemma (5) in Masry [19] ). Using this lemma, we have

|E[exp(itn−1/2S(1)]−
k−1∏
j=0

E[exp(itn−1/2δj]| ⩽ 16Kn(α(vn)) ∽ 16
n

un

(α(vn)),

which tends to zero by (4.4).
Now we establish 4.10:

1

n

∑k−1
j=0 E[δj]

2

=
1

n

∑k−1
j=0 var[δj]

=
1

n

∑k−1
j=0

∑j(u+v)+u
i=j(u+v)+1 var[Z̃i] +

1

n

∑k−1
j=0 i ̸=j

∑j(u+v)+u
i=j(u+v)+1 cov[Z̃i, Z̃j]

=
un + vn

n
σ2 + o(un).

The definition of un and vn, we get the result which completes the proof of 4.10.
By the hypothesis on H(.) and F (. | x), we have | H(y) − F (y | x) |⩽ 2, it follows
that

1

n

n∑
i=1

E
[
(Λ2

i )1I{|Λi|>ϵσSn}

]
≤ C

n∑
i=1

P [|Λi| > ϵσSn ] .

On the other hand, we have

|Λi|
σSn

≤ C

(nφn(x))
→ 0.

So, for all ϵ, and if n us biggish, then P [|Λi| > ϵσSn ]=0 which implies that
1

n

n∑
i=1

E
[
Λ2

i 1I{|Λi|>ϵσSn}

]
= 0 for n biggish. We finish the proof. □
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Proof. (Proof of Lemma 3.5) So, by using the same arguments as those used by
Bouadjemi [7] we get

E
[
(F̂ x

D − 1)
]
→ 0

V ar
[
F̂ x
D

]
→ 0

F̂ x
D − 1 → 0 in probability.

□
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