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ASYMPTOTICALLY STABLE PROCESS AND APPLICATIONS

Andrianantenainarinoro Tsilavina Ravo Hasina1, Ravelonantoandro Sedra,
and Razafindrakoto Raft

ABSTRACT. We remark that some stationary processes do not verify x∞|x∞ is
equal to its value. To do this, we propose a new definitions to differentiate it
in which a process is asymptotically stable if it verifies this property. We also re-
mark that all processes in all financial models have missed this property. Which
leads us to re–examine the models and look the impact and importance of this
property.

1. INTRODUCTION

It is not the asymptotic stability of Lyapunov on the dynamic system or these
derivatives.

Let xt be a process, for instance, the price of an action in time t. If we know
x in time T ≥ t, then xT is logic equal to its value. If T < ∞, then all processes
must verify this argument, but in the long term (that is for T = ∞), there exist a
process which verifies or not this argument, see the Example 1. Hence the use of
the definitions 2.1 and 2.2.

The asymptotically stable process makes more sense compared to its opposite.
However, we have also noticed that the processes used by the authors in their fi-
nancial models are non–stable, for instance, the volatilities in the Heston model
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in [6], SV model in [5], WASC model in [3]. These findings therefore lead us
to introduce this new process in the domain of finance and to show its impor-
tance. We will so modify the SV and WASC models to have the new models whose
the specificity is the asymptotic stability. Our task is so to know its law (Laplace
transform), stylized facts and the change du to this new specificity.

Our objective is to show the existence, the importance and the contribution of
this new process.

2. ASYMPTOTICALLY STABLE PROCESS

Let (Rn, (Ft)t≥0, P ) be a filtrate and probability space where

- Ft is the natural filter representing the information available in time t;
- P is the probability density.

Let xt be a stationary process.

Definition 2.1. A process xt is asymptotically strongly Ft–stable if xt+h|Ft 7−→ x∞

in law for all h ≥ 0, as t ↗ ∞ (that is, x∞|F∞ exists and has its true value).

Definition 2.2. A process xt is asymptotically weakly Ft–stable if xt+h|Ft 7−→ a ∈ R
in law for all h ≥ 0, as t ↗ ∞ (that is, x∞|F∞ has a single value).

The interest of this process is that a model driven by this process has an infor-
mation which is stable in long term. In other words, any information on a product
x for every moment remains itself and will last a very long time. Moreover, if the
stability is a strong type then the past information of a long life remains itself. For
the weak type, the information is to be estimated. In this case, we can give a the-
ory on this estimated or another method of estimation so that the estimated value
is not open to criticism. But for the moment, we will estimate this value using an
available method so as not to inflate this article. In fact, the estimation method
only has a criticism if there is any on the asymptotically weakly stable process.

Example 1.

(i) The OU type process used in the volatility of Heston model (cf. [6]):

(2.1) dxt = αxtdt+ βdBt
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is not asymptotically Ft–stable where α < 0, β > 0 and Bt is a Brownian
motion. Indeed, xt+h|Ft ⇝ N

(
eαhxt,

−β2(1−e2αh)
2α

)
. Thus xt is stationary

where x∞|Ft ⇝ N
(
0, −β2

2α

)
and it doesn’t depend of the information in time

t, for any t ≥ 0. So, if the limit exists, then we have x∞|F∞ ⇝ N
(
0, −β2

2α

)
which is aleatory.

Thus, the information carried by this process will not last a very long time
but it becomes variable in long term.

(ii) The process xt defined by:

(2.2) dxt = t(γ + αxt)dt+
√
te−

1
2
βt2dBt

is asymptotically weakly Ft–stable where α < 0, β > 0 and α+β ̸= 0. Indeed,
let

(2.3) zt = e−
1
2
αt2xt.

We have

(2.4) dzt = γte−
1
2
αt2dt+

√
te−

1
2
(β+α)t2dBt

through the Ito’s Lemma. Integrating in t to t+ h, we get

zt+h = zt −
γ

α
(e−

1
2
α(t+h)2 − e−

1
2
αt2) +

∫ t+h

t

√
ue−

1
2
(β+α)u2

dBu.

So,

xt+h = xte
αth+ 1

2
αh2 − γ

α
(1− eαth+

1
2
αh2

)

+ e
1
2
α(t+h)2

∫ t+h

t

√
ue−

1
2
(β+α)u2

dBu

through the equation (2.3). Thus xt+h|Ft is a Gaussian random variable with
mean and variance:

E(xt+h|Ft) = xte
αth+ 1

2
αh2 − γ

α
(1− eαth+

1
2
αh2

)(2.5)

V ar(xt+h|Ft) =
−1

2(α + β)
(e−β(t+h)2 − e−βt2+2αth+αh2

).(2.6)

Since α < 0 and β > 0, then E(xt+h|Ft) −→ − γ
α

and V ar(xt+h|Ft) −→ 0, as
h ↗ ∞. So xt is stationary where xt+h|Ft −→ − γ

α
in law for any t ≥ 0, as
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h ↗ ∞. Moreover, we have E(xt+h|Ft) −→ − γ
α

and V ar(xt+h|Ft) −→ 0, as
t ↗ ∞ for all h ≥ 0, then xt+h|Ft −→ − γ

α
in law for all h ≥ 0, as t ↗ ∞.

(iii) The process xt defined by:

(2.7) dxt =
1

(1 + t)2
(γ + αxt)dt+

β

1 + t
dBt

is asymptotically strongly Ft–stable where α ̸= 0. Indeed, by doing

(2.8) zt = e
−αt
1+t xt

and by following the reasoning above, we have xt+h|Ft ⇝ N
(
e

αh
(1+t)(1+t+h)xt −

γ
α

(
1− e

hα
(t+1)(t+h+1)

)
, (2α)−1β2

(
e

2hα
(t+1)(t+h+1) − 1

))
.

So, xt is stationary where x∞|Ft ⇝ N
(
e

α
1+txt− γ

α

(
1−e

α
t+1

)
, (2α)−1β2

(
e

2α
(t+1)−

1
))

for all t ≥ 0. Moreover, the law of xt+h|Ft: N
(
e

αh
(1+t)(1+t+h)xt − γ

α

(
1 −

e
hα

(t+1)(t+h+1)
)
, (2α)−1β2

(
e

2hα
(t+1)(t+h+1) − 1

))
−→ δx∞ (density of Dirac in x∞),

as t ↗ ∞. Thus xt+h|Ft 7−→ x∞ in law for all h ≥ 0, as t ↗ ∞.
(iv) The stability means that to infinite time, x∞+h = x∞ for all step time h ≥ 0.

This stability therefore eliminates which say the opposite. For instance, let xt

be a process defined by:

(2.9) dxt = (β + αxt)dt+ e−βtdBt,

where α < 0 and β > 0. Let

(2.10) zt = e−αtxt

We have

(2.11) dzt = βe−αtdt+ e−(β+α)tdBt

through the Ito’s Lemma. Integrating in t to t+ h, we get

zt+h = zt −
β

α
(e−α(t+h) − e−αt) +

∫ t+h

t

e−(β+α)udBu.

So,

xt+h = xte
αh − β

α
(1− eαh) + eα(t+h)

∫ t+h

t

e−(β+α)udBu
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through the equation (2.3). Thus xt+h|Ft is a Gaussian random variable with
mean and variance:

E(xt+h|Ft) = xte
αh +

β

α
(eαh − 1)(2.12)

V ar(xt+h|Ft) =
−1

2(α + β)
(e−2β(t+h) − e2(−βt+αh)).(2.13)

Since α < 0 and β > 0, then E(xt+h|Ft) −→ −β
α

and V ar(xt+h|Ft) −→ 0, as
h ↗ ∞. So xt is stationary where xt+h|Ft −→ −β

α
in law for any t ≥ 0, as

h ↗ ∞. However, xt+h|Ft −→ x∞eαh + β
α
(eαh − 1) in law where h ≥ 0, as

t ↗ ∞, which means that for a h > 0, x∞+h|F∞ ̸= x∞|F∞. That is, there
exists a difference of infinite. This process is not asymptotically Ft–stable.

(v) The OU type process used in the volatility of WASC model (cf. [3]) is not
asymptotically Ft–stable. Indeed, xt+h|Ft ⇝ N

(
eΦhxt,

∫ h

0
eΦuQQ′eΦ

′udu
)

.
So xt is stationary where x∞|Ft ⇝ N(0,Ω1) where vec(Ω1) = −(In ⊗ Φ +

Φ⊗ In)
−1 ◦ vec(QQ′) (cf. [2]) and Φ is a negative definite matrix. But, if the

limit exists, x∞|F∞ is always a random variable N(0,Ω1).
(vi) The process xt in Rn solution of SDE (Stochastic Differential Equation):

(2.14) dxt =
1

(1 + t)2
Φxtdt+

1

1 + t
QdBt

is asymptotically strongly Ft–stable.

Indeed, by following the same reasoning and using the Lemma in [7]:

Lemma 2.1. Let A ∈ Mp(R) and A : X ∈ Sp 7−→ A(X) = AX +XA′ ∈ Sp. Then
if A−1 exists, we have

A−1 = vec−1 ◦ (Ip ⊗ A+ A⊗ Ip)
−1 ◦ vec,

we have xt+h|Ft ⇝ N(mt,h, σ
2
t,h) where

mt,h = e
h

(t+1)(t+h+1)
Φxt

vec(σ2
t,h) = (In ⊗ Φ + Φ⊗ In)

−1 ◦ vec
(
e

h
(t+1)(t+h+1)

ΦQQ′e
h

(t+1)(t+h+1)
Φ′
−QQ′

)
,

xt is stationary and x∞|Ft ⇝ N(mt, σ
2
t ) where

mt = e
1

t+1
Φxt

vec(σ2
t ) = (In ⊗ Φ + Φ⊗ In)

−1 ◦ vec
(
e

1
t+1

ΦQQ′e
1

t+1
Φ′ −QQ′

)
.
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Moreover, the law of xt+h|Ft: N(mt,h, σ
2
t,h) 7−→ δx∞ for all h ≥ 0, as t ↗ ∞.

3. APPLICATIONS IN FINANCIAL MARKET

Lemma 3.1. For any symmetrical positive definite matrix Ω and µ ∈ Rn, we have∫
Rn

e−x′Ωx+µ′xdx =

√
π
n

√
detΩ

e
1
4
µ′Ω−1µ.

Proof. The left integral is equal to∫
Rn

e−(x− 1
2
Ω−1µ)′Ω(x− 1

2
Ω−1µ)dx︸ ︷︷ ︸

by doing y=x− 1
2
Ω−1µ, which is equal to

∫
Rn e−y′Ωydy=

√
πn

√
det Ω

e
1
4
µ′Ω−1µ.

□

Let xt be a Gaussian process in Rn such that xt+h|Ft ⇝ N
(
M(t, h)xt+R(t, h), σ2

t,h

)
where M(t, h), R(t, h) and σ2

t,h are the deterministic functions which don’t depend
of x.

We define the volatility of model by

(3.1) Γt =
ν∑

i=1

xi,t(xi,t)
′,

where ν is a positive integer nonzero.

3.1. Laplace transform of volatility and stationarity.
Let Λ be a n× n dimensional symmetrical matrix. The conditional Laplace trans-

form of Γt+h given the information Ft is defined by:

(3.2) ΨΓt+h,Ft(Λ, h) = E
{
etr(ΛΓt+h)|Ft

}
where t, h ≥ 0.

Proposition 3.1. If ν = n = 1 and ∥2σ2
t,hΛ∥ < 1, then we have

ΨΓt+h,Ft(Λ, h) =
e(R(t,h)+M(t,h)

√
Γt)2Λ[1−2σ2

t,hΛ]
−1

[1− 2σ2
t,hΛ]

1
2

.(3.3)
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Proof. Since ν = n = 1, then we have Γt = x2
t+h and

E{etr(ΛΓt+h)|Ft} = E{eΛx2
t+h|Ft}

= e(R(t,h)+M(t,h)xt)2ΛE
[
e(2R(t,h)+2xtM(t,h))σt,hξΛ+ξ2σ2

t,hΛ|Ft

]
where ξ is the random variable of density

1√
2π

e−
1
2
ε2

= e(R(t,h)+M(t,h)xt)2Λ

∫
R
e(2R(t,h)+2xtM(t,h))Λσt,hε− 1

2
(1−2σ2

t,hΛ)ε
2 1√

2π
dε

=
e(R(t,h)+M(t,h)

√
Γt)2Λ[1−2σ2

t,hΛ]
−1

[1− 2σ2
t,hΛ]

1
2

through the Lemma 3.1.

□

Proposition 3.2. If n ≥ 2, R(t, h) = 0 and ∥2σ2
t,hΛ∥ < 1, then we have

ΨΓt+h,Ft(Λ, h) =
etr[M(t,h)′Λ[In−2σ2

t,hΛ]
−1M(t,h)Γt]

[det(In − 2σ2
t,hΛ)]

ν
2

.(3.4)

Proof. Let firstly ν = 1. We have Γt = xt+hx
′
t+h and

E{etr(ΛΓt+h)|Ft} = E{ex′
t+hΛxt+h|Ft}.

Hence

E[ex′
t+hΛxt+h|Ft] = E

[
ex

′
tM(t,h)′ΛM(h)xt+2x′

tM(t,h)′Λσt,hξ+ξ′σt,hΛσt,hξ|Ft

]
where ξ is the random variable of density

1(√
2π
)n e− 1

2
ε′ε

= ex
′
tM(t,h)′ΛM(t,h)xtE

[
e2x

′
tM(t,h)′Λσt,hξ+ξ′σt,hΛσt,hξ)|Ft

]
= ex

′
tM(t,h)′ΛM(t,h)xt

∫
Rn

e2x
′
tM(t,h)′Λσt,hε−ε′ 1

2
(In−2σt,hΛσt,h)ε

1(√
2π
)ndε

=
etr[M(t,h)′Λ[In−2σ2

t,hΛ]
−1M(t,h)Γt]

[det(In − 2σ2
t,hΛ)]

1
2

through the Lemma 3.1.

Now, let ν ≥ 2. We have

(3.5) Γt =
ν∑

k=1

Γk,t,
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where Γk,t is a matrix process above such that ν = 1 and

ΨΓk,t+h,Ft(Λ, h) =
etr[M(t,h)′Λ[In−2σ2

t,hΛ]
−1M(t,h)Γk,t]

[det(In − 2σ2
t,hΛ)]

1
2

.

The result follows using ΨΓt+h,Ft(Λ, h) =
ν∏

k=1

ΨΓk,t+h,Ft(Λ, h). □

Hence, if M(t+ h) −→ M(t), R(t+ h) −→ R(t) and σ2
t+h −→ σ2

t as h ↗ ∞ then
ΨΓt+h,Ft(Λ, h) converges. Thus, Γt is a stationary process.

The following proposition is obvious:

Proposition 3.3. If the function g where Γt = g(xt) is continuous, then Γt and xt

are the same nature on the stationarity.

3.2. Some natures of volatilities.

• Unidimensional model (n=1): Using the results above,
– If xt is the process in the Examples 1 (i), then Γt is a stationary process

and the conditional Laplace transform of Γ∞|Ft is

(3.6) ΨΓ∞,Ft(Λ) =
1[

1 + β2

α
Λ
] 1

2

.

So, Γ∞|Ft follows the law of chi–square which doesn’t depend of the
information in time t, for all t ≥ 0. Thus, the volatility of Heston
model is not asymptotically Ft–stable.

– If xt is the process in the Examples 1 (ii), then Γt is a stationary pro-
cess. Moreover, the Laplace transform of Γt+h|Ft:

ΨΓt+h
(Λ, t)

=
e

[
− γ

α

(
1−eαth+1

2αh2
)
+eαth+1

2αh2√Γt

]2
Λ
[
1+ 1

α+β
(e−β(t+h)2−e−βt2+2αth+αh2 )Λ

]−1

[
1 + 1

α+β
(e−β(t+h)2 − e−βt2+2αth+αh2)Λ

] 1
2

7−→ e
γ2

α2Λ,

as t ↗ ∞. So, Γt+h|Ft 7−→ γ2

α2 in law for all h ≥ 0, as t ↗ ∞. Then,
this volatility is asymptotically weakly Ft–stable.
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– If xt is the process in the Examples 1 (iii), then Γt is a stationary
process. Moreover, the Laplace transform of Γt+h|Ft:

ΨΓt+h
(Λ, t)

=
e

[
− γ

α

(
1−e

hα
(t+1)(t+h+1)

)
+e

αh
(1+t)(1+t+h)

√
Γt

]2
Λ

[
1−α−1β2

(
e

2hα
(t+1)(t+h+1)−1

)
Λ

]−1

[
1− α−1β2

(
e

2hα
(t+1)(t+h+1) − 1

)
Λ
] 1

2

7−→ eΛΓt ,

as t ↗ ∞. So, Γt+h|Ft 7−→ Γ∞ in law for all h ≥ 0, as t ↗ ∞. Then,
this volatility is asymptotically strongly Ft–stable.

• Multidimensional model (n ≥ 2): from the expression (3.4), the volatility
of WASC model is not asymptotically Ft–stable, while the volatility associ-
ated to process in Examples 1 (v) is asymptotically strongly Ft–stable.

The following proposition is obvious:

Proposition 3.4. If the function g where Γt = g(xt) is continuous, then Γt and xt

are the same nature on the stability.

3.3. Application on the unidimensional models.
Let be a model of the form:

(3.7)


d logSt = (r − 1

2
Γt)dt+

√
ΓtdWt

Γt = g(xt), g ≥ 0

dxt = c(t)µ(xt)dt+ a(t)σ(xt)dBt

dWtdBt = ρdt

where

- r and ρ are the reals;
- Bt and Wt are the Brownian motions;
- a and c are the functions of R+ into R;
- µ and σ are the functions of R into R.

We have three unidimensional models with theirs specificities that we study below.
If we use for pricing option or hedging, then r is the interest rate associated

with risk–neutral probability P.
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TABLE 1. Features of some unidimensional models.

Model Specification Return
to aver-
age

clusters
of
volatil-
ity

leverage
effect
on
volatil-
ity

stationa-
rity

stability of in-
formation in
volatility

c(t) = 1;
a(t) = 1

Heston µ(xt) = αxt;
σ(xt) = β

✓ ✓ ✓ ✓

β > 0, α < 0;
g(x) = x2

c(t) = t;
a(t) =√
te−

1
2
βt2;

(ii) µ(xt) = γ +
αxt; σ(xt) =
1

✓ ✓ ✓ ✓ ✓

β > 0; α < 0;
g(x) = x2

weak

c(t) = 1
(1+t)2

;

a(t) =
√

c(t)
(iii) µ(xt) = γ +

αxt; σ(xt) =
β

✓ ✓ ✓ ✓ ✓

α ̸= 0 ; β > 0
; g(x) = x2

strong

3.3.1. Estimating of parameters and Pricing option.
To estimate the parameters of model and determine the option price, we use the

common technical in the work of [8].

3.3.2. Empirical result.
In this article, we propose to estimate the current price of Nasdaq and S&P500.

We used the daily data. The time series start the May 5, 2021 and end the June
15, 2021 which are presented by the following Figures 1.
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FIGURE 1. Historical Volume of Nasdaq and S&P500 Indexes

pricing number= 3; r = 0.000045 (daily interest rate), sample number N= 1000000.

TABLE 2. Estimating parameters by Monte–Carlo method using
S&P500 index.

Model α β γ ρ objective
Heston -0.4500398 0.2500076 - -0.4630357 735.93

(ii) -5.320534 5.05862848 0.0035096 -0.258254 834.3932
(iii) -1.23354233 0.06893966 -0.02220208 0.15752659 809.3575

TABLE 3. Pricing option of S&P500 index.

K = 4200 (strike); S0 = 4255.28
Model T=1 (day) T=2 T=3 T=4
Heston 87.942 99.08988 109.9039 120.845

(ii) 65.87738 60.68611 59.43442 58.82652
(iii) 66.7912 63.07684 61.43229 60.06095

3.4. Application on the Multidimensional models.
We will study the financial market using the WASC model and the two following

models of the form:

(3.8)


d logSt =

(
r − 1

2
vec[tr(eiiΓt)]

)
dt+

√
ΓtdZt

Γt = g(xt) is a positive definite matrix
cov(d logSt, dΓt) = k(t, ρ)dt

where

- r is a vector in Rn;
- xt is the process in Rn in the Examples 1 (v);
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- If a1, . . . , an ∈ R, then vec(ai) = (a1, . . . , an)
′ which is a vector in Rn;

- eii is n× n dimensional matrix defined by eii = (δijk)j,k=1...n where

δijk =

{
1 if (j, k) = (i, i)

0 otherwise
;

- Zt is a n–dimensional vector whose components are the sBm (standard
Brownian motion);

- k is a function of R+ × [−1, 1]n into R;
- tr(H) is the trace of the matrix H.

Let g(xt) =
ν∑

i=1

xi,t(xi,t)
′ where ν ≥ n is integer and the xi,t are the processes in the

Examples 1 (v).
There is not the stability in the WASC model, while for the model (3.8), the

volatility is stable and we want also the stability in the yield, hence the model of
the form:

(3.9)


d logSt =

1
(1+t)2

(
r − 1

2
vec[tr(eiiΓt)]

)
dt+ 1

1+t

√
ΓtdZt

Γt = g(xt) is a positive definite matrix
cov(d logSt, dΓt) = k(t, ρ)dt

3.4.1. Dynamic of volatility.

Proposition 3.5. The volatility Γt is a positive definite matrix and we obtain

(3.10) dΓt = (νQQ′ + ΦΓt + ΓtΦ
′)

dt

(1 + t)2
+

1

1 + t
(
√
Γt(dB̃t)

′Q′ +Qd, B̃t

√
Γt)

where B̃t is a n × n dimensional stochastic matrix whose components are indepen-
dent sBm defined by dB̃t = dB̌tXt(

√
Γt)

−1, Xt is n × ν dimensional process solution
of d(Xt)

′ = 1
(1+t)2

Φ(Xt)
′dt + 1

1+t
QdW̌t, and B̌t = (B1t, B2,t, . . . , Bν,t) is the n× ν di-

mensional matrix where the Bi,t are the Brownian motion vectors of xi,t, i = 1, . . . , ν.

Proof. The reasoning is meaning that we find in the work of [1]. □

3.4.2. Study of leverage effect.
We define the function of covariance between yield and its volatility such that:

k(t, ρ) = 2f(t)dtΓii,t

n∑
l=1

Qliρl(3.11)
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where the ρi are the components of ρ and f(t) =

{
1

1+t
for the model (3.8)

1
(1+t)2

for the model (3.9)
.

In this case, the mBs Zt can define by:

(3.12) dZt =
√

1− ρ′ρdWt + dB̃tρ,

where Wt is a n–dimensional stochastic vector whose components are the sBm and
it is independent to B̃t.

By using the reasoning in the work of [1], the covariance between yield and its
correlation is:

cov(d logSp,t, dζpq,t) = f(t)

√
Γpp,t

Γqq,t

n∑
l=1

Qlqρl(1− ζ2pq,t),(3.13)

where i = 1, . . . , n; p, q = 1, . . . , n and p ̸= q, the ρi are the components of ρ and
ζpq,t is the correlation between Γpp,t and Γqq,t defined by:

(3.14) ζpq,t =
Γpq,t√
Γpp,tΓqq,t

.

3.4.3. Laplace transform of assets returns.
Let γ be a vector in Rn. The conditional Laplace transform of logSt is defined by

(3.15) ΨlogST ,Ft(γ, T ) = E{eγ′ logST |Ft} where T ≥ t ≥ 0.

As the yield logSt is affine, we have

(3.16) ΨlogST ,Ft(γ, T ) = etr(A(h)Γt)+B(h) logSt+C(h)

with h = T − t and A(h), B(h), C(h) are the functions defined by:

Proposition 3.6.

• For the model (3.8):

A(h) = A22(h)
−1A21(h),

B(h) = γ′,

C(h) = tr
[
rhγ′ − ν

2
(logA22(h) + Υ2(h))

]
,
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where 1̃ is a n×n dimensional matrix whose components are equal to 1 and

Υ1(h) = −h

2

n∑
i=1

γieii +
h

2
γγ′

Υ2(h) =
h

2(t+ 1)(t+ h+ 1)
(Φ + Φ′) +

log(1 + t+ h)− log(1 + t)

2
(γρ′Q′ +Qργ′)

Υ3(h) =
2h

(t+ 1)(t+ h+ 1)
QQ′

[
A11(h) A12(h)

A21(h) A22(h)

]
= exp

([
Υ2(h) −Υ3(h)

Υ1(h) −Υ2(h)

])
.

• For the model (3.9):

A(h) = A22(h)
−1A21(h),

B(h) = γ′,

C(h) = tr

[
rγ′ h

(1 + t)(1 + t+ h)
− ν

2
(logA22(h) + Υ2(h))

]
where 1̃ is a n×n dimensional matrix whose components are equal to 1 and

Υ1(h) = − h

2(1 + t)(t+ h+ 1)

n∑
i=1

γieii +
h

2(1 + t)(1 + t+ h)
γγ′

Υ2(h) =
h

2(t+ 1)(t+ h+ 1)
(Φ + Φ′) +

h

2(t+ 1)(t+ h+ 1)
(γρ′Q′ +Qργ′)

Υ3(h) =
2h

(t+ 1)(t+ h+ 1)
QQ′

[
A11(h) A12(h)

A21(h) A22(h)

]
= exp

([
Υ2(h) −Υ3(h)

Υ1(h) −Υ2(h)

])
.

Proof.

• For the model (3.8): using the Feynmann–Kac argument to the model, we
have

(3.17)
∂ΨlogST ,Ft(γ, T )

∂h
= LlogS,ΓΨlogST ,Ft(γ, T )
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where T = t + h and LlogS,Γ is the infinitesimal generator of the joint
(logSt,Γt) defined by:

LlogS,Γ(3.18)

= tr

[
1

(1 + T − h)2
(νQQ′ + ΦΓt + ΓtΦ)D +

2

(1 + T − h)2
ΓtDQQ′D

]
+

∇Y

(
r − 1

2
vec[tr(eiiΓt)]

)
+

1

2
∇Y Γt∇′

Y +
1

1 + T − h

tr (DQρ∇Y Γt + Γt∇′
Y ρ

′Q′D)(3.19)

with
• D = (Dij)1≤i,j≤n where Dij = ∂

∂Γij,t
and Γij,t, 1 ≤ i, j ≤ n are the

components of the volatility matrix Γt;

• ∇Y =
(

∂
∂Y1

, · · · , ∂
∂Yn

)′
where Yi = logSi,t is the yield of the i-th under-

lying in the basket, i = 1, . . . , n.
We have

∂ΨlogST ,Ft(γ, T )

∂h

=

[
tr

(
∂A(h)

∂h
Γt−

)
+

∂B(h)

∂h
logSt− +

∂C(h)

∂h

]
ΨlogST ,Ft(γ, T ).

Then, from the expression (3.17), we deduce

tr

[
∂A(h)

∂h
Γt

]
+

∂B(h)

∂h
logSt +

∂C(h)

∂h

= B(h)(r − 1

2
vec[tr(eiiΓt)]) +

1

2
B(h)ΓtB(h)′ +

1

(1 + T − h)2

tr [(νQQ′ + ΦΓt + ΓtΦ)A(h) + 2ΓtA(h)QQ′A(h)] +
1

1 + T − h
tr [A(h)QρB(h)Γt− + Γt−B(h)′ρ′Q′A(h)](3.20)

with the initial conditions A(0) = 0, B(0) = γ′ and C(0) = 0.
By identifying the coefficient of logSt, we have ∂B(h)

∂h
= 0 which follows

that B(h) = B(0) = γ′ for all h ≥ 0.
Identifying the coefficient of Γt, we have

∂A(h)

∂h
= −1

2

n∑
i=1

γieii +
1

2
γγ′ +

1

(1 + T − h)2
(ΦA(h) + A(h)Φ′)



168 A.T.R. Hasina, R. Sedra, and R. Raft

+
2

(1 + T − h)2
A(h)QQ′A(h) +

1

1 + T − h
(A(h)Qργ′ + γρ′Q′A(h)).(3.21)

Suppose

Ξ1(h) = −1

2

n∑
i=1

γieii +
1

2
γγ′

Ξ2(h) =
1

2(1 + T − h)2
(Φ + Φ′) +

1

2(1 + T − h)
(γρ′Q′ +Qργ′)

Ξ3(h) =
2

(1 + T − h)2
QQ′,

and

(3.22) A(h) = F (h)−1G(h) with F (h) ∈ GLn(R) and G(h) ∈ Mn(R).

We have 0 = A(0) = F (0)−1G(0). In this case, we take G(0) = 0 and
F (0) = In. Since ∂[F (h)A(h)]

∂h
= ∂F (h)

∂h
A(h) + F (h)∂A(h)

∂h
, then we have

∂G(h)

∂h
− ∂F (h)

∂h
A(h) = F (h)

∂A(h)

∂h

= F (h)Ξ1(h) +G(h)Ξ2(h) + F (h)Ξ2(h)A(h)

+ G(h)Ξ3(h)A(h).

So, 
∂G(h)
∂h

= G(h)Ξ2(h) + F (h)Ξ1(h),

∂F (h)
∂h

= −G(h)Ξ3(h)− F (h)Ξ2(h).

Thus,

∂

∂h

[
G(h)

F (h)

]
=

[
Ξ2(h) −Ξ3(h)

Ξ1(h) −Ξ2(h)

][
G(h)

F (h)

]
.

Finally, by identification

∂C(h)

∂h
= tr

[
rγ′ +

ν

(T − h+ 1)2
QQ′A(h)

]
,

where C(0) = 0.
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Since

tr

[
ν

(T − h+ 1)2
QQ′A(h)

]
= tr

(ν
2
F (h)−1G(h)Ξ3(h)

)
= tr

(
−ν

2
F (u)−1∂F (u)

∂u
− ν

2
Ξ2(h)

)
,

then, we have

C(h) = tr
[
rhγ′ − ν

2
(logA22(h) + Υ2(h))

]
.

• Similary reasoning for the model (3.9).

□

3.4.4. Some natures of assets returns.
For the model (3.9), its Laplace transform

(3.23) ΨlogSt+h,Ft(γ, t+ h) −→ etr(A(∞)Γt)+γ′logSt+C(∞), as h ↗ ∞,

where

A(∞) = A22(∞)−1A21(∞),

C(∞) = tr

[
rγ′ 1

1 + t
− ν

2
(logA22(∞) + Υ2(∞))

]
,[

A11(∞) A12(∞)

A21(∞) A22(∞)

]
= exp

([
Υ2(∞) −Υ3(∞)

Υ1(∞) −Υ2(∞)

])
,

Υ1(∞) = − 1

2(1 + t)

n∑
i=1

γieii +
1

2(1 + t)
γγ′,

Υ2(∞) =
1

2(t+ 1)
(Φ + Φ′) +

1

2(t+ 1)
(γρ′Q′ +Qργ′),

Υ3(∞) =
2

t+ 1
QQ′.

Thus, logSt is a stationary process. Moreover, ΨlogSt+h,Ft(γ, t + h) −→ eγ
′logS∞,

as t ↗ ∞. So, logSt+h|Ft 7−→ logS∞ in law for all h ≥ 0, as t ↗ ∞. Then,
logSt is asymptotically strongly Ft–stable. Hence, the model (3.9) is asymptotically
strongly Ft–stable.

We have three multidimensional models with theirs specificities that we study
below in this paper.
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TABLE 4. Features of some multidimensional models

Model Return
to aver-
age

clusters
of
volatil-
ity

leverage
effects
on cor-
relation

leverage
effects
on cor-
relation

stationa-
rity

stability
of infor-
mation
volatil-
ity

stability
of infor-
mation
on the
asset

WASC ✓ ✓ ✓ ✓ ✓

Model (3.8) ✓ ✓ ✓ ✓ ✓ ✓
strong

Model (3.9) ✓ ✓ ✓ ✓ ✓ ✓ ✓
strong strong

3.4.5. The market without arbitrage.
Let n = 2. Let ι be the interest rate. For the WASC, the models (3.8) and (3.9),

if r = ι1̌, then the market is without arbitrage. Indeed, in the market without
arbitrage, the hoped value of j = 1; 2 asset under the risk–neutral probability P is:

Sj,0e
ιt = E[Sj,t]

= E[exp(logSj,t)]

= ΨlogS0(γj, t)

= etr[A(t)Γ0]+logSj,0+C(t)

= Sj,0e
tr[A(t)Γ0]+C(t)(3.24)

where γj =

{
(1, 0)′ if j = 1

(0, 1)′ if j = 2
and ΨlogS0(γj, t) is the Laplace transform above by

taking h = t; t = 0 and γ = γj.
We have

(3.25) A(t) = A22(t)
−1A21(t),

where

[
A11(t) A12(t)

A21(t) A22(t)

]
is of the form exp

([
M11 M12

0 −M11

])
and Mij, 2×2–dimen-

sional matrix. This latter is equal to

[
eM11 −1

2
M−1

11 (e
M11 − e−M11)M12

0 e−M11

]
. Indeed,

let be T =

[
M11 M12

0 −M11

]
, T s = (T

(s)
ij )ij, s ∈ N. In the trace operator, we have
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T
(0)
ij = In if i = j and 0 otherwise; T (1)

11 = M11; T
(1)
12 = M12; T

(1)
21 = 0; T (1)

22 = −M11;
T

(2)
11 = (M11)

2; T
(2)
12 = M11M12 − M21M11 = 0 ; T

(2)
21 = 0; T

(2)
22 = (M11)

2. Now,
let us consider p ≥ 1, in the trace operator, reasoning by recurrence, we have
T

2(p+1)
11 = T

(2)
11 T

(2p)
11 + T

(2)
12 T

(2p)
21 = (M11)

2(p+1); T
2(p+1)
12 = T

(2)
11 T

(2p)
12 + T

(2)
12 T

(2p)
22 = 0;

T
2(p+1)
21 = T

(2)
21 T

(2p)
11 + T

(2)
22 T

(2p)
21 = 0; T

2(p+1)
22 = T

(2)
21 T

(2p)
12 + T

(2)
22 T

(2p)
22 = (M11)

2(p+1).
Then using the values T

(1)
ij and T

(2p)
ij above, we have, for all p ≥ 1 T 2p+1

11 =

T
(1)
11 T

(2p)
11 + T

(1)
12 T

(2p)
21 = (M11)

2p+1; T 2p+1
12 = T

(1)
11 T

(2p)
12 + T

(1)
12 T

(2p)
22 = (M11)

2pM12;
T 2p+1
21 = T

(1)
21 T

(2p)
11 + T

(1)
22 T

(2p)
21 = 0 ; T 2p+1

22 = T
(1)
21 T

(2p)
12 + T

(1)
22 T

(2p)
22 = −(M11)

2p+1.
Well, we have[

A11(t) A12(t)

A21(t) A22(t)

]
= eT =

+∞∑
s=0

T s

s!
=

[
eM11 −1

2
M−1

11 (e
M11 − e−M11)M12

0 e−M11

]
.

Thus, A(t) = 0 and C(t) = rjt through the expression (3.25) and the Aij(t) above
where rj is the j-th component of vector r.

Hence (3.24) = Sj,0e
rjt and the result follows by using identification method.

3.4.6. Method of Monte Carlo.
We estimate the models by the C.GMM method in the work of [1].
After compilation, the graphs of CGMM estimation criterion of WASC, the mod-

els (3.8) and (3.9) are identical represented by figure 2.
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FIGURE 2. C-GMM estimation criterion

These figures show us the values taken by real and imaginary part of the em-
pirical moment of continuum of C-GMM method. Thus, we can minimize this
function.
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TABLE 5. C-GMM estimator θ̂1

parameter WASC Model (3.8) Model (3.9)
ρ1 0.01678155 0.7 0.7
ρ2 −0.07435433 −0.7 −0.696520888
Q11 0.1 0.1 0.1
Q12 0.00993433 0.0009982766 0.001459835
Q21 0 0 0
Q22 0.1 0.1 0.1
Φ11 −5.32958516 −6.508131 −6.072791349
Φ12 −0.09259241 −0.1 −0.1
Φ21 −0.07924856 −0.1 −0.1
Φ22 −23.54376148 −23.99445 −23.730125497
ν 2 2 2

objective 3.765762× 10−6 2.847425× 10−6 2.990823× 10−6

The Table 7 presents the estimated parameters of model with its standard devi-
ations errors.

Table 6: C-GMM estimator θ̂

parameter estimator standard deviation estimator standard deviation
of WASC error of Model (3.8) error

ρ1 0.3802324 9.164767× 10−13 0.68406 1.603321× 10−7

ρ2 0.1899477 9.72752× 10−13 0.6916546 1.324813× 10−7

Q11 0, 1 3.211584× 10−13 0.1 3.394635× 10−8

Q12 0.001274546 2.654682× 10−13 0 2.386973× 10−8

Q21 9.328739× 10−6 4.962719× 10−13 6.229411× 10−3 2.678919× 10−8

Q22 0, 1 7.093314× 10−13 0.1 2.175998× 10−8

Φ11 −20.40753 2.189006× 10−13 −27.37276 2.495404× 10−8

Φ12 −0, 1 1.321677× 10−13 −9.999269× 10−2 1.290915× 10−8

Φ21 −0, 1 1.683202× 10−13 −9.999135× 10−2 1.403338× 10−8

Φ22 −24.25246 2.108821× 10−13 −25.97838 1.824978× 10−8

ν 2 10.03475 2 0.7836279

objective 5.183242× 10−6 8.543687× 10−6
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estimator standard deviation
of Model (3.9) error

0.7 7.227369× 10−12

0.496825366 7.000169× 10−12

0.1 8.68137× 10−13

0.004483379 8.350945× 10−13

0 1.191963× 10−12

0.1 7.956168× 10−13

−17.602156567 7.723051× 10−13

−0.1 3.585049× 10−13

−0.1 8.757168× 10−13

−23.479428046 8.776381× 10−13

2 1.050625

5.411212× 10−6

From the expression of correlations, the asset and its volatility (resp correlation)
are positively correlated.

3.4.7. European call option of the basket Nasdaq and S&P500.
Let be a European call of the basket of indexes (Nasdaq, S&P500) and note by K

the strike of index quoted by points. We use the spread option in the work of [4].

TABLE 8. Spread option of Nasdaq and S&P500 indexes.

ϵ1 = −3; ϵ2 = 1 and ū = 39, 28664. S1
0 = 14120.81 and S2

0 = 4255.28 and
K = 9853.265.

Model T=1 (day) T=2 T=3 T=4
WASC 29.23415 29.25375 29.26164 29.26439

Model (3.8) 35.80677 39.89873 42.83697 45.10411
Model (3.9) 33.47105 34.99683 35.7779 36.25174

4. DISCUSSION AND CONCLUSION

In this article, we have proposed a property of a process: asymptotic stability.
We have shown the logic, the existence, the importance and the contribution

of this property. For the first, we explained mathematically as being a stationary
process which verifies or not a condition. If it does verify, it is said to be stable
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and otherwise it is not stable. The stability is marked by its strong or weak type.
We use them in the field of finance where we have shown its importance and its
impact namely: the realism and the change in the value of an option price.

This suggested process may be useful for a wider class of models beyond finan-
cial engineering including e.g. the management of the smart grid and oil produc-
tion.
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