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A POISSON ALGEBRA STRUCTURE OVER THE EXTERIOR ALGEBRA OF A
QUADRATIC SPACE

Servais Cyr Gatsé! and Come Chancel Likouka

ABSTRACT. We construct a Poisson algebra structure of degree —2 over the exte-
rior algebra of a quadratic space. Here we do not use Clifford algebra as in [4]].

1. INTRODUCTION

A graded Lie algebra of degree —7, where 7 > 0 is an integer, over a commuta-

tive field K, is a graded vector space G = @ G" together with a bilinear map
neN

[]:GxG— G, (x,y) — [z,9],

called bracket and which satisfies the following conditions:
(1) [GP,G9] C GrHa T,
2) [z,y] = ()P [y 2],z € GP,y € GY;
3) (=)D [z [y, 2] + (1) [y, [z, 2]
4+ (=)= [z [2,y]] = 0,2 €GP,y € GI, 2 € G.
The identity (3) is equivalent to the following:

[, [y, 2]] = [[z, 9], 2] + (=1)" 7 [y, [z, 2]
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A commutative algebra structure over G of degree — is the data of a multiplica-
tion, denoted by -, over G satisfying

Ty = (_1)(1077)-@*7)3/ -,

with z € GP,y € G

A Poisson algebra structure of degree —7 over G is simultaneously the data of a
graded Lie algebra structure of degree —7 and a graded commutative algebra of
degree —7 over G satisfying

[2,y-2]=[z.y] 2+ (D)"Y [z,2],

with x € GP,y € G4.

The goal of the present paper is to show that the exterior algebra of a quadratic
space admits a Poisson structure of degree —2.

We organize this paper as follows. In Section 2, we present the notion of exten-
sion of the Lie bracket. In Section 3, we recall the definition of a quadratic space.
Finally Section 4 deals with Poisson bracket on A(E).

2. EXTENSION OF THE LIE BRACKET

Let V be a finite-dimensional (complex or real) vector space, and let V'* be its
dual vector space.
We consider the exterior algebra of the direct sum of V and V*

@.1) AV = é( DN VAN V).

n=-2 p+q=n
We say that an element of A (V @ V*) is of bidegree (p, ¢) and of degree n = p+¢
if it belongs to A“"" V* @ A”*' V. Thus elements of the base field are of bidegree
(—1,—1), elements of V' (resp. V*) are of bidegree (0, —1) (resp. (—1,0)), and a
linear map ;1 : AV — V (resp. v : V — A’V) can be considered to be an
element of A>V*@V (resp. V* @ A’ V) which is of bidegree (0,1) (resp. (1,0)).

Proposition 2.1. [3] On the graded vector space \ (V & V*) there exists a unique
graded Lie bracket, called the big bracket, such that

@ fa,yeV, 2,y =0,

(11) lfCJ ne V*, [Cu 7)] - 0:
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(iiD) if e € Vi € V¥, [z,n] =< n,z >,
(iv) if u,v,w € N\ (V @ V*) are of degree |ul, |v|, |w| respectively, then

(2.2) [u, v Aw] = [u,v] Aw 4 (=1)My A Ju, w]

This last formula is called the graded Leibniz rule. The following proposition
lists important properties of the big bracket.

Proposition 2.2. [3|] Let [, -] denote the big bracket. Then

@) p: N*V — V is a Lie bracket if and only if [i1, ] = O.
(i) *y: \>V* — V* is a Lie bracket if and only if [y,~] = 0.
(iii) Let G = (V, ) be a Lie algebra. Then ~ is a 1-cocycle of G with values in
N’ G, where G acts on \*G by the adjoint action, if and only if [11,~] = 0.

By the graded commutativity of the big bracket,

(2.3) [1,79] = [v, 1] -

By the bilinearity and graded skew-symmetry of the big bracket, one has

(2.4) [+, 4] = [ ] +2 [, ]+ [7,7] -

Using the bigrading of A (V & V*), we see that the conditions

(2.5) +v,p+9=0
and
(2.6) [, 1] =0, [,7] =0, [y,7] =0

are equivalent.

Lemma 2.1. Let G = (V, ) be a Lie algebra. Then:

(i) The map d,, : a — [u,a] is a derivation of degree 1 and of square 0 of the
graded Lie algebra \ (V & V*).
(ii) If a € AV, then d,a = —da, where ¢ is the Lie algebra cohomology operator.
(iii) For a,b € \'V, let us set

2.7) [[a, b]] = [la, p] 0]

Then [[-,-]] is a graded Lie bracket of degree 1 on V extending the Lie bracket
of G.
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3. QUADRATIC SPACE
In the following F denotes a vector space over a commutative field K with a
characteristic different from 2 and A\(E) = @ A" (E) denotes the exterior algebra

neN
of F.
Recall that a derivation of A (F) of degree r, with r € Z, is a linear map

d: \(E) — \(B)
of degree r satisfying
dla A B) = d(a) A B+ (=1)""a Ad(pB)

for all « € A"(F) and for all g € A\(E).
It is the same to say that a linear map

d: \(E) — \(B)

is a derivation of degree r if and only if d is of degree r and that

q

B dp A Ay = Z (DY Ty A Ay A (yy) Ay A Ay,
j=1

forall ¢ € N.
Recall that a quadratic form on F is a map ¢ : £ — K such that:
1D g\-2)=X-q(x), e K,z € E;
2) the map

ExE—>K,($,y)f—>%[q(ﬂery)—Q(il?)—Q(y)]a

is a symmetric bilinear form.

A quadratic space structure on F is given by a symmetric bilinear form f on FE.
In this case we say that the pair (£, f) is a quadratic space.

Proposition 3.1. If (E, f) is a quadratic space, then the map
¢ FE— K ozr— f(z,2),
is a quadratic form.

Proof. Simple check. O
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4. POISSON BRACKET ON A(FE)

In the following (E, f) is a quadratic space. For x € E and for ¢ > 1 an integer,

we have:

Proposition 4.1. The map

q—1
B — /\(E)u
4.1)

is alternating multilinear. So there is a unique linear map

4.2 e AE) — A\(B)

such that
q

@3) LA Ay =D ()T @y p A AT A

J=1

Proof. The proof is straightforward.

For x = 0, one has f? = 0.
We set

fo=fotfot-Hfit-.

q
Wrs o tg) — Y (D T @) i A AT A
j=1

N Yg

A Yq-

Thus f, : A(E) — A(E) is a linear map of degree —1 with f, |p«m) = f4.

Proposition 4.2. The linear map

(4.4) fo: \B) — \(E)

is a derivation of degree —1.
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Proof. We have

follr ANy = fH o Ao A Yy)
q
- Z(—l)ﬁlf(x,yj)yl/\.../\ij/\.../\yq
j=1

q
= Z(—l)]_lyl/\---/\yj—1/\f($7yj)/\yj+1/\---/\yq
j=1
q
i1
= Z(—l)] YA ANY A fe(Y) A Y A Ay

j=1
Considering (3.1)), we deduce that f, is a derivation of degree —1. O

For a decomposable element z; A ... Az, € A’(E),p > 1, we have:

Proposition 4.3. The map

q—2
EC— N(E), (1, 9q)
(4.5) ¢ |
— = (CDPY (DT (A AT A AT AL Ay,
j=1

being alternating multilinear, then there exists a unique linear map

q q—2
(4.6) Foinonsy + NE) — N\ (E)
such that
S nonay LA A Yy)
(4.7) I - _
=— (=P (=T (@ A AT A AT A A

=1

Moreover, for p > 1 and q > 1, we have

(4.8) K (i Ao Ayy) = —(=1)P2- fP (x1 AL A xp).

TIN...NTp Y1N... NYq

Proof. The proof of the existence and uniqueness of the linear map f; . ., is
obvious.
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On the other hand, for the proof of the last assertion, one has

f:ZlA AZp (yl ANA yq)
q

”ZZ D™ fany) - A ATIA AT, A A AT A Ay,
=1 j=1
p q

i1, ~1)(g-1 ~
pzz +i- 1)(p ) )f(yj,xl-)-yl/\.../\yj/\.../\yq

=1 j=1
NI AN CANT AN T

p q

T DY Y DT ) g A AT A Ay
i=1 j=1
NI AN CANT NN T
=—(=1)"- 51A_“qu (Ty A ANzy),
as desired. -

We set fon.na, = fgl/\.../\xp + f:?l/\.../\xp + o+ fihiane, + oo From " we
deduce by linearity the following result:

Corollary 4.1. For « € \"(E) and 5 € N(E), with p > 1 and q > 1, we have:
(4.9) fa(B) = = (=1)" fs(a).

Thus f,,n.az, : AN(£) — A(E) is a linear map of degree p — 2 with

— f£q
fﬂcl/\‘../\mp ’/\q(E) - f:pl/\.“/\zp'

Proposition 4.4. The linear map

fm/\.../\xp : /\(E) — /\(E

is a derivation of degree p — 2.
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Proof. One has
fa:l/\.../\zp (yl AN yq)

= gl/\.../\zp (B A A Yy)

q
= — (=P (V)T @ A AT AR AL AT AL A Y,
q
o
= — (D" (=D A Ay A S (@ A AT Ay A Ay,

q
= — (1) (DY Py A Ay A= (1P o, )] A i

= Z (—1>(j_1)'p YA ANYi1 A faoinena, U) AYjrr A Ay
7j=1
q

i—1)(p—2
= Z (—1)(] Jw2) YA AYi A foinena, Ui) AYjsr A A g
=1

as required. O
We denote, Derk [/\(E)], the space of derivations (of all degrees) of A\(E).

Proposition 4.5. The map

EP — Derg [/\(E)} (21, Tp) Jrin. Ay

is alternating multilinear. Thus there exists a unique linear map

p
(4.10) f7: \(E) — Derg [ /\(E)]
such that
(4.11) FP(@ A AT = Fannay-
Proof. The proof is obvious. O

Weset f = fl4 f2+4---+ fr+-... Sowhen o € A\P(E), then f(«) is a derivation
of A\(E) of degree p — 2.
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For a € A\(E) and 8 € A\(E), we set

(4.12) [, B8] = [F(2)](B).
We will, subsequently, show that this bracket defines a Poisson structure of degree
—2on A\(E).
Note that when o € A”(E), then
(4.13) f(@) = fa.
By construction, we have:
(4.14) [K, /\(E)] , =0
Theorem 4.1. The map
(4.15) AE) x N(E) — N(E), (a, B) — [o, Bly,

is bilinear and of degree —2.
Proof. The proof is immediate. O

Theorem 4.2. For a € \"(F) and 5 € A\*(E), then

(4.16) [e® B]f =— (=)™ [B, Oz]f .
Proof. This follows from (4.13) and Corollary [4.1] O

Theorem 4.3. For o € \"(E), 3 € N'(E) and v € \(E), then

Proof. Since f(«) is a derivation of degree p — 2, then we have

la, BAAN; = [f(@)](BA7)
= [f@)B) Ay + ()T BA[f(e))(7)
= o, Bl Ay + (=)™ B A, 9]
Hence the result. O
Theorem 4.4. For o € \"(E), 3 € \(E), then

(4.18) (@) F(8)] = T 8))
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where
F(@), F(8)] = F(a) o F(8) = (=1)"(8) o fla).
Proof. Taking into account (3.1)), for all = € E, we check that
[F(@), F(8)] (2) = (I, 81)(2).
The result follows. O

Theorem 4.5. The pair (\(E), [,];) is a Poisson algebra of degree —2.

Proof. Theorems|4.1}4.2/and [4.4/mean that the pair (/\(E),[,],) is a graded Lie al-
gebra of degree —2. Theorem means that the triple (A\(E), [,];, ) is a Poisson
algebra of degree —2. O

As (A(E),[,];) is a graded Lie algebra, we denote f by ads. Thus we have
lads ()] (B) = [a, B]; and for & € \"(E), the linear map

(4.19) adg(a) : \(E) — \(E)

is simultaneously a derivation (of degree p — 2) of graded Lie algebra and graded
commutative Lie algebra.

An element M € A\*(F) is said to be a proto-Lie bialgebra of the quadratic space
(£, f) when [M, M], = 0. In this case, we say that the quadruple (A(E), [.],, A, M)
is a proto-Lie bialgebra (for further details, we refer to [3]] and references therein).

Proposition 4.6. When the quadruple (\(E),[,];,/, M) is a proto-Lie bialgebra,
then the map

(4.20) adg(M) : \(E) — N\(E), P+ [M,P],
is a coboundary operator.

Proof. The map ads(M) is obviously of degree +1. Since ad;(M) is a derivation of
graded Lie algebra, then for P € \(F), we have

lad;(M)]* (P) = [M7 [M>P]f]f

_ [[M, M, P]f + (=) [M, M, P]f]f

—- [M, M, P]f]f

= —lads(M)]* (P).
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We deduce that [ad;(M)]? (P) = 0. Since P is arbitrary, it follows that [ad(M)]* =
0. This means that ad;()/) is a coboundary operator. O

For p € N, we denote

(4.21) HE(M) = Ker([ad;(M)]

7 )/Im([ad;(M)]

)

|/\P(E) |/\P—1<E)

the cohomology space of degree p.

Proposition 4.7. We have:

(1) HY(M) =K;

(2) Hj(M) = Ker([ads(M)], | ).

|/\1(E)

Proof. Simple check. O

When V is a vector space over K and when V* is the dual of V, then for F =
V 4+ V*, the map

(4.22) ExE—K, (v+ ¢, w+ ) — op(w) + ¢¥(v),

is a symmetric bilinear form.
The Poisson bracket over A (FE) defined by (4.22)) is called "Big bracket" [3]].
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