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A POISSON ALGEBRA STRUCTURE OVER THE EXTERIOR ALGEBRA OF A
QUADRATIC SPACE

Servais Cyr Gatsé1 and Côme Chancel Likouka

ABSTRACT. We construct a Poisson algebra structure of degree −2 over the exte-
rior algebra of a quadratic space. Here we do not use Clifford algebra as in [4].

1. INTRODUCTION

A graded Lie algebra of degree −τ , where τ ≥ 0 is an integer, over a commuta-
tive field K, is a graded vector space G =

⊕
n∈N

Gn together with a bilinear map

[, ] : G × G −→ G, (x, y) 7−→ [x, y] ,

called bracket and which satisfies the following conditions:

(1) [Gp,Gq] ⊂ Gp+q−τ ;
(2) [x, y] = −(−1)(p−τ)·(q−τ) [y, x] , x ∈ Gp, y ∈ Gq;
(3) (−1)(p−τ)(r−τ) [x, [y, z]] + (−1)(q−τ)(p−τ) [y, [z, x]]

+ (−1)(r−τ)(q−τ) [z, [x, y]] = 0, x ∈ Gp, y ∈ Gq, z ∈ Gr.

The identity (3) is equivalent to the following:

[x, [y, z]] = [[x, y] , z] + (−1)(p−τ)(q−τ) [y, [x, z]] .
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A commutative algebra structure over G of degree −τ is the data of a multiplica-
tion, denoted by ·, over G satisfying

x · y = (−1)(p−τ)·(q−τ)y · x,

with x ∈ Gp, y ∈ Gq.
A Poisson algebra structure of degree −τ over G is simultaneously the data of a

graded Lie algebra structure of degree −τ and a graded commutative algebra of
degree −τ over G satisfying

[x, y · z] = [x, y] · z + (−1)(p−τ)·qy · [x, z] ,

with x ∈ Gp, y ∈ Gq.

The goal of the present paper is to show that the exterior algebra of a quadratic
space admits a Poisson structure of degree −2.

We organize this paper as follows. In Section 2, we present the notion of exten-
sion of the Lie bracket. In Section 3, we recall the definition of a quadratic space.
Finally Section 4 deals with Poisson bracket on

∧
(E).

2. EXTENSION OF THE LIE BRACKET

Let V be a finite-dimensional (complex or real) vector space, and let V ∗ be its
dual vector space.

We consider the exterior algebra of the direct sum of V and V ∗

∧(
V
⊕

V ∗
)
=

∞⊕
n=−2

(
⊕

p+q=n

(
∧q+1

V ∗
⊕∧p+1

V )).(2.1)

We say that an element of
∧

(V
⊕

V ∗) is of bidegree (p, q) and of degree n = p+ q

if it belongs to
∧q+1 V ∗⊕∧p+1 V . Thus elements of the base field are of bidegree

(−1,−1), elements of V (resp. V ∗) are of bidegree (0,−1) (resp. (−1, 0)), and a
linear map µ :

∧2 V −→ V (resp. γ : V −→
∧2 V ) can be considered to be an

element of
∧2 V ∗⊕V (resp. V ∗⊕∧2 V ) which is of bidegree (0, 1) (resp. (1, 0)).

Proposition 2.1. [3] On the graded vector space
∧
(V ⊕ V ∗) there exists a unique

graded Lie bracket, called the big bracket, such that

(i) if x, y ∈ V , [x, y] = 0,
(ii) if ζ, η ∈ V ∗, [ζ, η] = 0,
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(iii) if x ∈ V, η ∈ V ∗, [x, η] =< η, x >,
(iv) if u, v, w ∈

∧
(V ⊕ V ∗) are of degree |u|, |v|, |w| respectively, then

[u, v ∧ w] = [u, v] ∧ w + (−1)|u||v|v ∧ [u,w] .(2.2)

This last formula is called the graded Leibniz rule. The following proposition
lists important properties of the big bracket.

Proposition 2.2. [3] Let [·, ·] denote the big bracket. Then

(i) µ :
∧2 V −→ V is a Lie bracket if and only if [µ, µ] = 0.

(ii) tγ :
∧2 V ∗ −→ V ∗ is a Lie bracket if and only if [γ, γ] = 0.

(iii) Let G = (V, µ) be a Lie algebra. Then γ is a 1-cocycle of G with values in∧2 G, where G acts on
∧2 G by the adjoint action, if and only if [µ, γ] = 0.

By the graded commutativity of the big bracket,

[µ, γ] = [γ, µ] .(2.3)

By the bilinearity and graded skew-symmetry of the big bracket, one has

[µ+ γ, µ+ γ] = [µ, µ] + 2 [µ, γ] + [γ, γ] .(2.4)

Using the bigrading of
∧

(V ⊕ V ∗), we see that the conditions

[µ+ γ, µ+ γ] = 0(2.5)

and

[µ, µ] = 0, [µ, γ] = 0, [γ, γ] = 0(2.6)

are equivalent.

Lemma 2.1. Let G = (V, µ) be a Lie algebra. Then:

(i) The map dµ : a 7−→ [µ, a] is a derivation of degree 1 and of square 0 of the
graded Lie algebra

∧
(V ⊕ V ∗).

(ii) If a ∈
∧
V , then dµa = −δa, where δ is the Lie algebra cohomology operator.

(iii) For a, b ∈
∧
V , let us set

[[a, b]] = [[a, µ] , b] .(2.7)

Then [[·, ·]] is a graded Lie bracket of degree 1 on V extending the Lie bracket
of G.
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3. QUADRATIC SPACE

In the following E denotes a vector space over a commutative field K with a
characteristic different from 2 and

∧
(E) =

⊕
n∈N

∧n(E) denotes the exterior algebra

of E.
Recall that a derivation of

∧
(E) of degree r, with r ∈ Z, is a linear map

d :
∧

(E) −→
∧

(E)

of degree r satisfying

d(α ∧ β) = d(α) ∧ β + (−1)p·rα ∧ d(β)

for all α ∈
∧p(E) and for all β ∈

∧
(E).

It is the same to say that a linear map

d :
∧

(E) −→
∧

(E)

is a derivation of degree r if and only if d is of degree r and that

(3.1) d(y1 ∧ . . . ∧ yq) =
q∑

j=1

(−1)(j−1)·r y1 ∧ . . . ∧ yj−1 ∧ d(yj) ∧ yj+1 ∧ . . . ∧ yq

for all q ∈ N.
Recall that a quadratic form on E is a map q : E −→ K such that:

1) q(λ · x) = λ2 · q(x), λ ∈ K, x ∈ E;
2) the map

E × E −→ K, (x, y) 7−→ 1

2
[q(x+ y)− q(x)− q(y)] ,

is a symmetric bilinear form.

A quadratic space structure on E is given by a symmetric bilinear form f on E.
In this case we say that the pair (E, f) is a quadratic space.

Proposition 3.1. If (E, f) is a quadratic space, then the map

qf : E −→ K, x 7−→ f (x, x) ,

is a quadratic form.

Proof. Simple check. □
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4. POISSON BRACKET ON
∧
(E)

In the following (E, f) is a quadratic space. For x ∈ E and for q ≥ 1 an integer,
we have:

Proposition 4.1. The map

Eq −→
q−1∧

(E),

(y1, . . . , yq) 7−→
q∑

j=1

(−1)j−1 f (x, yj) y1 ∧ . . . ∧ ŷj ∧ . . . ∧ yq
(4.1)

is alternating multilinear. So there is a unique linear map

f q
x :

q∧
(E) −→

q−1∧
(E)(4.2)

such that

f q
x (y1 ∧ . . . ∧ yq) =

q∑
j=1

(−1)j−1 f (x, yj) y1 ∧ . . . ∧ ŷj ∧ . . . ∧ yq.(4.3)

Proof. The proof is straightforward. □

For x = 0, one has f q
x = 0.

We set

fx = f 1
x + f 2

x + · · ·+ f q
x + · · · .

Thus fx :
∧
(E) −→

∧
(E) is a linear map of degree −1 with fx

∣∣∧q(E) = f q
x .

Proposition 4.2. The linear map

(4.4) fx :
∧

(E) −→
∧

(E)

is a derivation of degree −1.
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Proof. We have

fx(y1 ∧ . . . ∧ yq) = f q
x(y1 ∧ . . . ∧ yq)

=

q∑
j=1

(−1)j−1 f (x, yj) y1 ∧ . . . ∧ ŷj ∧ . . . ∧ yq

=

q∑
j=1

(−1)j−1 y1 ∧ . . . ∧ yj−1 ∧ f(x, yj) ∧ yj+1 ∧ . . . ∧ yq

=

q∑
j=1

(−1)j−1 y1 ∧ . . . ∧ yj−1 ∧ fx(yj) ∧ yj+1 ∧ . . . ∧ yq.

Considering (3.1), we deduce that fx is a derivation of degree −1. □

For a decomposable element x1 ∧ . . . ∧ xp ∈
∧p(E), p ≥ 1, we have:

Proposition 4.3. The map

Eq −→
q−2∧

(E), (y1, . . . , yq)

7−→ − (−1)p
q∑

j=1

(−1)j−1 fp
yj
(x1 ∧ . . . ∧ xp) y1 ∧ . . . ∧ ŷj ∧ . . . ∧ yq

(4.5)

being alternating multilinear, then there exists a unique linear map

f q
x1∧...∧xp

:

q∧
(E) −→

q−2∧
(E)(4.6)

such that

f q
x1∧...∧xp

(y1 ∧ . . . ∧ yq)

= − (−1)p
q∑

j=1

(−1)j−1 fp
yj
(x1 ∧ . . . ∧ xp) y1 ∧ . . . ∧ ŷj ∧ . . . ∧ yq.

(4.7)

Moreover, for p ≥ 1 and q ≥ 1, we have

(4.8) f q
x1∧...∧xp

(y1 ∧ . . . ∧ yq) = −(−1)pq · fp
y1∧...∧yq (x1 ∧ . . . ∧ xp) .

Proof. The proof of the existence and uniqueness of the linear map f q
x1∧...∧xp

is
obvious.
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On the other hand, for the proof of the last assertion, one has

f q
x1∧...∧xp

(y1 ∧ . . . ∧ yq)

= (−1)p
p∑

i=1

q∑
j=1

(−1)i+j−1 f(xi, yj) · x1 ∧ . . . ∧ x̂i ∧ . . . ∧ xp ∧ y1 ∧ . . . ∧ ŷj ∧ . . . ∧ yq

= (−1)p
p∑

i=1

q∑
j=1

(−1)i+j−1 · (−1)(p−1)(q−1) f(yj, xi) · y1 ∧ . . . ∧ ŷj ∧ . . . ∧ yq

∧ x1 ∧ . . . ∧ x̂i ∧ . . . ∧ xp

= − (−1)pq · (−1)q
p∑

i=1

q∑
j=1

(−1)i+j−1 f(yj, xi) · y1 ∧ . . . ∧ ŷj ∧ . . . ∧ yq

∧ x1 ∧ . . . ∧ x̂i ∧ . . . ∧ xp
= − (−1)pq · fp

y1∧...∧yq (x1 ∧ . . . ∧ xp) ,

as desired. □

We set fx1∧...∧xp = f 1
x1∧...∧xp

+ f 2
x1∧...∧xp

+ · · · + f q
x1∧...∧xp

+ · · · . From (4.8), we
deduce by linearity the following result:

Corollary 4.1. For α ∈
∧p(E) and β ∈

∧q(E), with p ≥ 1 and q ≥ 1, we have:

(4.9) fα(β) = − (−1)p·q fβ(α).

Thus fx1∧...∧xp :
∧
(E) −→

∧
(E) is a linear map of degree p− 2 with

fx1∧...∧xp

∣∣∧q(E) = f q
x1∧...∧xp

.

Proposition 4.4. The linear map

fx1∧...∧xp :
∧

(E) −→
∧

(E)

is a derivation of degree p− 2.
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Proof. One has

fx1∧...∧xp (y1 ∧ . . . ∧ yq)

= f q
x1∧...∧xp

(y1 ∧ . . . ∧ yq)

= − (−1)p
q∑

j=1

(−1)j−1 fp
yj
(x1 ∧ . . . ∧ xp) ∧ y1 ∧ . . . ∧ ŷj ∧ . . . ∧ yq

= − (−1)p
q∑

j=1

(−1)(j−1)·p y1 ∧ . . . ∧ yj−1 ∧ fp
yj
(x1 ∧ . . . ∧ xp) ∧ yj+1 ∧ . . . ∧ yq

= − (−1)p
q∑

j=1

(−1)(j−1)·p y1 ∧ . . . ∧ yj−1 ∧ [− (−1)p f 1
x1∧...∧xp

(yj)] ∧ yj+1

∧ . . . ∧ yq

=

q∑
j=1

(−1)(j−1)·p y1 ∧ . . . ∧ yj−1 ∧ fx1∧...∧xp(yj) ∧ yj+1 ∧ . . . ∧ yq

=

q∑
j=1

(−1)(j−1)(p−2) y1 ∧ . . . ∧ yj−1 ∧ fx1∧...∧xp(yj) ∧ yj+1 ∧ . . . ∧ yq,

as required. □

We denote, DerK [
∧
(E)], the space of derivations (of all degrees) of

∧
(E).

Proposition 4.5. The map

Ep −→ DerK

[∧
(E)

]
, (x1, . . . , xp) 7−→ fx1∧...∧xp ,

is alternating multilinear. Thus there exists a unique linear map

f̃p :

p∧
(E) −→ DerK

[∧
(E)

]
(4.10)

such that

f̃p (x1 ∧ . . . ∧ xp) = fx1∧...∧xp .(4.11)

Proof. The proof is obvious. □

We set f̃ = f̃ 1+ f̃ 2+ · · ·+ f̃p+ · · · . So when α ∈
∧p(E), then f̃(α) is a derivation

of
∧
(E) of degree p− 2.
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For α ∈
∧
(E) and β ∈

∧
(E), we set

[α, β]f = [f̃(α)](β).(4.12)

We will, subsequently, show that this bracket defines a Poisson structure of degree
−2 on

∧
(E).

Note that when α ∈
∧p(E), then

(4.13) f̃(α) = fα.

By construction, we have:

(4.14)
[
K,

∧
(E)

]
f
= 0.

Theorem 4.1. The map∧
(E)×

∧
(E) −→

∧
(E), (α, β) 7−→ [α, β]f ,(4.15)

is bilinear and of degree −2.

Proof. The proof is immediate. □

Theorem 4.2. For α ∈
∧p(E) and β ∈

∧q(E), then

[α, β]f = − (−1)p·q [β, α]f .(4.16)

Proof. This follows from (4.13) and Corollary 4.1. □

Theorem 4.3. For α ∈
∧p(E), β ∈

∧q(E) and γ ∈
∧
(E), then

(4.17) [α, β ∧ γ]f = [α, β]f ∧ γ + (−1)p·q β ∧ [α, γ]f .

Proof. Since f̃(α) is a derivation of degree p− 2, then we have

[α, β ∧ γ]f = [f̃(α)](β ∧ γ)

= [f̃(α)](β) ∧ γ + (−1)(p−2)·q β ∧ [f̃(α)](γ)

= [α, β]f ∧ γ + (−1)p·q β ∧ [α, γ]f .

Hence the result. □

Theorem 4.4. For α ∈
∧p(E), β ∈

∧q(E), then

(4.18)
[
f̃(α), f̃(β)

]
= f̃([α, β]f )
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where [
f̃(α), f̃(β)

]
= f̃(α) ◦ f̃(β)− (−1)p·qf̃(β) ◦ f̃(α).

Proof. Taking into account (3.1), for all z ∈ E, we check that[
f̃(α), f̃(β)

]
(z) = f̃([α, β]f )(z).

The result follows. □

Theorem 4.5. The pair (
∧
(E), [, ]f ) is a Poisson algebra of degree −2.

Proof. Theorems 4.1, 4.2 and 4.4 mean that the pair (
∧
(E), [, ]f ) is a graded Lie al-

gebra of degree −2. Theorem 4.3 means that the triple (
∧
(E), [, ]f ,∧) is a Poisson

algebra of degree −2. □

As (
∧
(E), [, ]f ) is a graded Lie algebra, we denote f̃ by adf . Thus we have

[adf (α)] (β) = [α, β]f and for α ∈
∧p(E), the linear map

(4.19) adf (α) :
∧

(E) −→
∧

(E)

is simultaneously a derivation (of degree p− 2) of graded Lie algebra and graded
commutative Lie algebra.

An element M ∈
∧3(E) is said to be a proto-Lie bialgebra of the quadratic space

(E, f) when [M,M ]f = 0. In this case, we say that the quadruple (
∧
(E), [, ]f ,∧,M)

is a proto-Lie bialgebra (for further details, we refer to [3] and references therein).

Proposition 4.6. When the quadruple (
∧
(E), [, ]f ,∧,M) is a proto-Lie bialgebra,

then the map

(4.20) adf (M) :
∧

(E) −→
∧

(E), P 7−→ [M,P ]f ,

is a coboundary operator.

Proof. The map adf (M) is obviously of degree +1. Since adf (M) is a derivation of
graded Lie algebra, then for P ∈

∧
(E), we have

[adf (M)]2 (P ) =
[
M, [M,P ]f

]
f

=
[
[M,M ]f , P

]
f
+ (−1)3×3

[
M, [M,P ]f

]
f

= −
[
M, [M,P ]f

]
f

= − [adf (M)]2 (P ).
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We deduce that [adf (M)]2 (P ) = 0. Since P is arbitrary, it follows that [adf (M)]2 =

0. This means that adf (M) is a coboundary operator. □

For p ∈ N, we denote

(4.21) Hp
f (M) = Ker([adf (M)]|∧p(E)

)/Im([adf (M)]|∧p−1(E)
)

the cohomology space of degree p.

Proposition 4.7. We have:

(1) H0
f (M) = K;

(2) H1
f (M) = Ker([adf (M)]|∧1(E)

).

Proof. Simple check. □

When V is a vector space over K and when V ∗ is the dual of V , then for E =

V + V ∗, the map

(4.22) E × E −→ K, (v + ϕ,w + ψ) 7−→ ϕ(w) + ψ(v),

is a symmetric bilinear form.
The Poisson bracket over

∧
(E) defined by (4.22) is called "Big bracket" [3].
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