

Advances in Mathematics: Scientific Journal **12** (2023), no.1, 175–186 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.12.1.11

A POISSON ALGEBRA STRUCTURE OVER THE EXTERIOR ALGEBRA OF A QUADRATIC SPACE

Servais Cyr Gatsé¹ and Côme Chancel Likouka

ABSTRACT. We construct a Poisson algebra structure of degree -2 over the exterior algebra of a quadratic space. Here we do not use Clifford algebra as in [4].

1. INTRODUCTION

A graded Lie algebra of degree $-\tau$, where $\tau \ge 0$ is an integer, over a commutative field \mathbb{K} , is a graded vector space $\mathcal{G} = \bigoplus_{n \in \mathbb{N}} \mathcal{G}^n$ together with a bilinear map

$$[,]: \mathcal{G} \times \mathcal{G} \longrightarrow \mathcal{G}, (x, y) \longmapsto [x, y],$$

called bracket and which satisfies the following conditions:

(1) $[\mathcal{G}^{p}, \mathcal{G}^{q}] \subset \mathcal{G}^{p+q-\tau};$ (2) $[x, y] = -(-1)^{(p-\tau)\cdot(q-\tau)} [y, x], x \in \mathcal{G}^{p}, y \in \mathcal{G}^{q};$ (3) $(-1)^{(p-\tau)(r-\tau)} [x, [y, z]] + (-1)^{(q-\tau)(p-\tau)} [y, [z, x]]$ $+ (-1)^{(r-\tau)(q-\tau)} [z, [x, y]] = 0, x \in \mathcal{G}^{p}, y \in \mathcal{G}^{q}, z \in \mathcal{G}^{r}.$

The identity (3) is equivalent to the following:

$$[x, [y, z]] = [[x, y], z] + (-1)^{(p-\tau)(q-\tau)} [y, [x, z]].$$

¹corresponding author

2020 Mathematics Subject Classification. 15A63, 15A66, 15A75, 17B63, 11E88. *Key words and phrases.* Poisson algebra, exterior algebra, quadratic space.

A commutative algebra structure over G of degree $-\tau$ is the data of a multiplication, denoted by \cdot , over G satisfying

$$x \cdot y = (-1)^{(p-\tau) \cdot (q-\tau)} y \cdot x_{\tau}$$

with $x \in \mathcal{G}^p, y \in \mathcal{G}^q$.

A Poisson algebra structure of degree $-\tau$ over \mathcal{G} is simultaneously the data of a graded Lie algebra structure of degree $-\tau$ and a graded commutative algebra of degree $-\tau$ over \mathcal{G} satisfying

$$[x, y \cdot z] = [x, y] \cdot z + (-1)^{(p-\tau) \cdot q} y \cdot [x, z],$$

with $x \in \mathcal{G}^p, y \in \mathcal{G}^q$.

The goal of the present paper is to show that the exterior algebra of a quadratic space admits a Poisson structure of degree -2.

We organize this paper as follows. In Section 2, we present the notion of extension of the Lie bracket. In Section 3, we recall the definition of a quadratic space. Finally Section 4 deals with Poisson bracket on $\Lambda(E)$.

2. EXTENSION OF THE LIE BRACKET

Let V be a finite-dimensional (complex or real) vector space, and let V^* be its dual vector space.

We consider the exterior algebra of the direct sum of V and V^*

(2.1)
$$\bigwedge \left(V \bigoplus V^* \right) = \bigoplus_{n=-2}^{\infty} \left(\bigoplus_{p+q=n} \left(\bigwedge^{q+1} V^* \bigoplus \bigwedge^{p+1} V \right) \right).$$

We say that an element of $\bigwedge (V \bigoplus V^*)$ is of bidegree (p,q) and of degree n = p+qif it belongs to $\bigwedge^{q+1} V^* \bigoplus \bigwedge^{p+1} V$. Thus elements of the base field are of bidegree (-1, -1), elements of V (resp. V^*) are of bidegree (0, -1) (resp. (-1, 0)), and a linear map $\mu : \bigwedge^2 V \longrightarrow V$ (resp. $\gamma : V \longrightarrow \bigwedge^2 V$) can be considered to be an element of $\bigwedge^2 V^* \bigoplus V$ (resp. $V^* \bigoplus \bigwedge^2 V$) which is of bidegree (0, 1) (resp. (1, 0)).

Proposition 2.1. [3] On the graded vector space $\bigwedge (V \oplus V^*)$ there exists a unique graded Lie bracket, called the big bracket, such that

- (i) if $x, y \in V$, [x, y] = 0,
- (ii) if $\zeta, \eta \in V^*$, $[\zeta, \eta] = 0$,

A POISSON ALGEBRA STRUCTURE OVER THE EXTERIOR ALGEBRA OF A QUADRATIC SPACE 177

- (iii) if $x \in V, \eta \in V^*, [x, \eta] = <\eta, x >$,
- (iv) if $u, v, w \in \bigwedge (V \oplus V^*)$ are of degree |u|, |v|, |w| respectively, then

(2.2)
$$[u, v \land w] = [u, v] \land w + (-1)^{|u||v|} v \land [u, w]$$

This last formula is called the graded Leibniz rule. The following proposition lists important properties of the big bracket.

Proposition 2.2. [3] Let $[\cdot, \cdot]$ denote the big bracket. Then

- (i) $\mu : \bigwedge^2 V \longrightarrow V$ is a Lie bracket if and only if $[\mu, \mu] = 0$.
- (ii) ${}^{t}\gamma : \bigwedge^{2} V^{*} \longrightarrow V^{*}$ is a Lie bracket if and only if $[\gamma, \gamma] = 0$.
- (iii) Let $\mathcal{G} = (V, \mu)$ be a Lie algebra. Then γ is a 1-cocycle of \mathcal{G} with values in $\bigwedge^2 \mathcal{G}$, where \mathcal{G} acts on $\bigwedge^2 \mathcal{G}$ by the adjoint action, if and only if $[\mu, \gamma] = 0$.

By the graded commutativity of the big bracket,

$$[\mu, \gamma] = [\gamma, \mu].$$

By the bilinearity and graded skew-symmetry of the big bracket, one has

(2.4)
$$[\mu + \gamma, \mu + \gamma] = [\mu, \mu] + 2 [\mu, \gamma] + [\gamma, \gamma] + [\gamma,$$

Using the bigrading of $\bigwedge (V \oplus V^*)$, we see that the conditions

$$(2.5) \qquad \qquad [\mu + \gamma, \mu + \gamma] = 0$$

and

(2.6)
$$[\mu, \mu] = 0, \ [\mu, \gamma] = 0, \ [\gamma, \gamma] = 0$$

are equivalent.

Lemma 2.1. Let $\mathcal{G} = (V, \mu)$ be a Lie algebra. Then:

- (i) The map d_µ : a → [µ, a] is a derivation of degree 1 and of square 0 of the graded Lie algebra ∧ (V ⊕ V*).
- (ii) If $a \in \bigwedge V$, then $d_{\mu}a = -\delta a$, where δ is the Lie algebra cohomology operator.
- (iii) For $a, b \in \bigwedge V$, let us set

(2.7)
$$[[a,b]] = [[a,\mu],b].$$

Then $[[\cdot, \cdot]]$ is a graded Lie bracket of degree 1 on V extending the Lie bracket of \mathcal{G} .

In the following E denotes a vector space over a commutative field \mathbb{K} with a characteristic different from 2 and $\bigwedge(E) = \bigoplus_{n \in \mathbb{N}} \bigwedge^n(E)$ denotes the exterior algebra of E.

Recall that a derivation of $\bigwedge(E)$ of degree r, with $r \in \mathbb{Z}$, is a linear map

$$d: \bigwedge(E) \longrightarrow \bigwedge(E)$$

of degree r satisfying

$$d(\alpha \wedge \beta) = d(\alpha) \wedge \beta + (-1)^{p \cdot r} \alpha \wedge d(\beta)$$

for all $\alpha \in \bigwedge^p(E)$ and for all $\beta \in \bigwedge(E)$.

It is the same to say that a linear map

$$d: \bigwedge(E) \longrightarrow \bigwedge(E)$$

is a derivation of degree r if and only if d is of degree r and that

(3.1)
$$d(y_1 \wedge \ldots \wedge y_q) = \sum_{j=1}^q (-1)^{(j-1) \cdot r} y_1 \wedge \ldots \wedge y_{j-1} \wedge d(y_j) \wedge y_{j+1} \wedge \ldots \wedge y_q$$

for all $q \in \mathbb{N}$.

Recall that a quadratic form on *E* is a map $q: E \longrightarrow \mathbb{K}$ such that:

1) $q(\lambda \cdot x) = \lambda^2 \cdot q(x), \lambda \in \mathbb{K}, x \in E;$

2) the map

$$E \times E \longrightarrow \mathbb{K}, (x, y) \longmapsto \frac{1}{2} \left[q(x+y) - q(x) - q(y) \right],$$

is a symmetric bilinear form.

A quadratic space structure on E is given by a symmetric bilinear form f on E.

In this case we say that the pair (E, f) is a quadratic space.

Proposition 3.1. If (E, f) is a quadratic space, then the map

$$q_f: E \longrightarrow \mathbb{K}, x \longmapsto f(x, x),$$

is a quadratic form.

Proof. Simple check.

4. Poisson bracket on $\bigwedge(E)$

In the following (E, f) is a quadratic space. For $x \in E$ and for $q \ge 1$ an integer, we have:

Proposition 4.1. The map

(4.1)
$$E^{q} \longrightarrow \bigwedge^{q-1}(E),$$
$$(y_{1}, \dots, y_{q}) \longmapsto \sum_{j=1}^{q} (-1)^{j-1} f(x, y_{j}) y_{1} \wedge \dots \wedge \widehat{y_{j}} \wedge \dots \wedge y_{q}$$

is alternating multilinear. So there is a unique linear map

(4.2)
$$f_x^q : \bigwedge^q(E) \longrightarrow \bigwedge^{q-1}(E)$$

such that

(4.3)
$$f_x^q (y_1 \wedge \ldots \wedge y_q) = \sum_{j=1}^q (-1)^{j-1} f(x, y_j) y_1 \wedge \ldots \wedge \widehat{y_j} \wedge \ldots \wedge y_q.$$

Proof. The proof is straightforward.

For x = 0, one has $f_x^q = 0$. We set

$$f_x = f_x^1 + f_x^2 + \dots + f_x^q + \dots$$

Thus $f_x : \bigwedge(E) \longrightarrow \bigwedge(E)$ is a linear map of degree -1 with $f_x |_{\bigwedge^q(E)} = f_x^q$.

Proposition 4.2. The linear map

(4.4)
$$f_x : \bigwedge(E) \longrightarrow \bigwedge(E)$$

is a derivation of degree -1.

Proof. We have

$$f_x(y_1 \wedge \ldots \wedge y_q) = f_x^q(y_1 \wedge \ldots \wedge y_q)$$

= $\sum_{j=1}^q (-1)^{j-1} f(x, y_j) y_1 \wedge \ldots \wedge \hat{y_j} \wedge \ldots \wedge y_q$
= $\sum_{j=1}^q (-1)^{j-1} y_1 \wedge \ldots \wedge y_{j-1} \wedge f(x, y_j) \wedge y_{j+1} \wedge \ldots \wedge y_q$
= $\sum_{j=1}^q (-1)^{j-1} y_1 \wedge \ldots \wedge y_{j-1} \wedge f_x(y_j) \wedge y_{j+1} \wedge \ldots \wedge y_q.$

Considering (3.1), we deduce that f_x is a derivation of degree -1.

For a decomposable element $x_1 \wedge \ldots \wedge x_p \in \bigwedge^p(E), p \ge 1$, we have:

Proposition 4.3. The map

(4.5)
$$E^{q} \longrightarrow \bigwedge^{q-2}(E), (y_{1}, \dots, y_{q})$$
$$\longmapsto - (-1)^{p} \sum_{j=1}^{q} (-1)^{j-1} f_{y_{j}}^{p} (x_{1} \wedge \dots \wedge x_{p}) y_{1} \wedge \dots \wedge \widehat{y_{j}} \wedge \dots \wedge y_{q}$$

being alternating multilinear, then there exists a unique linear map

(4.6)
$$f^{q}_{x_{1}\wedge\ldots\wedge x_{p}}:\bigwedge^{q}(E)\longrightarrow\bigwedge^{q-2}(E)$$

such that

(4.7)
$$\begin{aligned} & f_{x_1 \wedge \ldots \wedge x_p}^q \left(y_1 \wedge \ldots \wedge y_q \right) \\ &= - \left(-1 \right)^p \sum_{j=1}^q \left(-1 \right)^{j-1} f_{y_j}^p \left(x_1 \wedge \ldots \wedge x_p \right) y_1 \wedge \ldots \wedge \widehat{y_j} \wedge \ldots \wedge y_q. \end{aligned}$$

Moreover, for $p \ge 1$ and $q \ge 1$, we have

(4.8)
$$f_{x_1 \wedge \ldots \wedge x_p}^q \left(y_1 \wedge \ldots \wedge y_q \right) = -(-1)^{pq} \cdot f_{y_1 \wedge \ldots \wedge y_q}^p \left(x_1 \wedge \ldots \wedge x_p \right).$$

Proof. The proof of the existence and uniqueness of the linear map $f_{x_1 \wedge ... \wedge x_p}^q$ is obvious.

On the other hand, for the proof of the last assertion, one has

$$\begin{aligned} &f_{x_1 \wedge \ldots \wedge x_p}^q \left(y_1 \wedge \ldots \wedge y_q \right) \\ &= (-1)^p \sum_{i=1}^p \sum_{j=1}^q (-1)^{i+j-1} f(x_i, y_j) \cdot x_1 \wedge \ldots \wedge \hat{x_i} \wedge \ldots \wedge x_p \wedge y_1 \wedge \ldots \wedge \hat{y_j} \wedge \ldots \wedge y_q \\ &= (-1)^p \sum_{i=1}^p \sum_{j=1}^q (-1)^{i+j-1} \cdot (-1)^{(p-1)(q-1)} f(y_j, x_i) \cdot y_1 \wedge \ldots \wedge \hat{y_j} \wedge \ldots \wedge y_q \\ &\wedge x_1 \wedge \ldots \wedge \hat{x_i} \wedge \ldots \wedge x_p \\ &= - (-1)^{pq} \cdot (-1)^q \sum_{i=1}^p \sum_{j=1}^q (-1)^{i+j-1} f(y_j, x_i) \cdot y_1 \wedge \ldots \wedge \hat{y_j} \wedge \ldots \wedge y_q \\ &\wedge x_1 \wedge \ldots \wedge \hat{x_i} \wedge \ldots \wedge x_p \\ &= - (-1)^{pq} \cdot f_{y_1 \wedge \ldots \wedge y_q}^p \left(x_1 \wedge \ldots \wedge x_p \right), \end{aligned}$$
as desired.

We set $f_{x_1 \wedge ... \wedge x_p} = f_{x_1 \wedge ... \wedge x_p}^1 + f_{x_1 \wedge ... \wedge x_p}^2 + \cdots + f_{x_1 \wedge ... \wedge x_p}^q + \cdots$. From (4.8), we deduce by linearity the following result:

Corollary 4.1. For $\alpha \in \bigwedge^{p}(E)$ and $\beta \in \bigwedge^{q}(E)$, with $p \ge 1$ and $q \ge 1$, we have: (4.9) $f_{\alpha}(\beta) = -(-1)^{p \cdot q} f_{\beta}(\alpha).$

Thus $f_{x_1 \wedge \ldots \wedge x_p} : \bigwedge(E) \longrightarrow \bigwedge(E)$ is a linear map of degree p - 2 with $f_{x_1 \wedge \ldots \wedge x_p} |_{\bigwedge^q(E)} = f^q_{x_1 \wedge \ldots \wedge x_p}.$

Proposition 4.4. The linear map

$$f_{x_1 \wedge \dots \wedge x_p} : \bigwedge (E) \longrightarrow \bigwedge (E)$$

is a derivation of degree p - 2.

S.C. Gatsé and C.C. Likouka

Proof. One has

$$\begin{aligned} &f_{x_{1}\wedge...\wedge x_{p}}\left(y_{1}\wedge...\wedge y_{q}\right) \\ &= f_{x_{1}\wedge...\wedge x_{p}}^{q}\left(y_{1}\wedge...\wedge y_{q}\right) \\ &= -(-1)^{p}\sum_{j=1}^{q}\left(-1\right)^{j-1}f_{y_{j}}^{p}\left(x_{1}\wedge...\wedge x_{p}\right)\wedge y_{1}\wedge...\wedge \hat{y_{j}}\wedge...\wedge y_{q} \\ &= -(-1)^{p}\sum_{j=1}^{q}\left(-1\right)^{(j-1)\cdot p}y_{1}\wedge...\wedge y_{j-1}\wedge f_{y_{j}}^{p}\left(x_{1}\wedge...\wedge x_{p}\right)\wedge y_{j+1}\wedge...\wedge y_{q} \\ &= -(-1)^{p}\sum_{j=1}^{q}\left(-1\right)^{(j-1)\cdot p}y_{1}\wedge...\wedge y_{j-1}\wedge\left[-\left(-1\right)^{p}f_{x_{1}\wedge...\wedge x_{p}}^{1}\left(y_{j}\right)\right]\wedge y_{j+1} \\ &\wedge\ldots\wedge y_{q} \\ &= \sum_{j=1}^{q}\left(-1\right)^{(j-1)\cdot p}y_{1}\wedge...\wedge y_{j-1}\wedge f_{x_{1}\wedge...\wedge x_{p}}(y_{j})\wedge y_{j+1}\wedge...\wedge y_{q} \\ &= \sum_{j=1}^{q}\left(-1\right)^{(j-1)(p-2)}y_{1}\wedge...\wedge y_{j-1}\wedge f_{x_{1}\wedge...\wedge x_{p}}(y_{j})\wedge y_{j+1}\wedge...\wedge y_{q}, \end{aligned}$$

as required.

We denote, $Der_{\mathbb{K}}[\Lambda(E)]$, the space of derivations (of all degrees) of $\Lambda(E)$.

Proposition 4.5. The map

$$E^p \longrightarrow Der_{\mathbb{K}}\left[\bigwedge(E)\right], (x_1, \dots, x_p) \longmapsto f_{x_1 \wedge \dots \wedge x_p},$$

is alternating multilinear. Thus there exists a unique linear map

(4.10)
$$\widetilde{f}^p: \bigwedge^p(E) \longrightarrow Der_{\mathbb{K}}\left[\bigwedge(E)\right]$$

such that

(4.11)
$$\widetilde{f}^p(x_1 \wedge \ldots \wedge x_p) = f_{x_1 \wedge \ldots \wedge x_p}.$$

Proof. The proof is obvious.

We set $\tilde{f} = \tilde{f}^1 + \tilde{f}^2 + \cdots + \tilde{f}^p + \cdots$. So when $\alpha \in \bigwedge^p(E)$, then $\tilde{f}(\alpha)$ is a derivation of $\bigwedge(E)$ of degree p - 2.

182

A POISSON ALGEBRA STRUCTURE OVER THE EXTERIOR ALGEBRA OF A QUADRATIC SPACE 183

For $\alpha \in \bigwedge(E)$ and $\beta \in \bigwedge(E)$, we set

(4.12)
$$[\alpha,\beta]_f = [f(\alpha)](\beta).$$

We will, subsequently, show that this bracket defines a Poisson structure of degree -2 on $\bigwedge(E)$.

Note that when $\alpha \in \bigwedge^p(E)$, then

By construction, we have:

(4.14)
$$\left[\mathbb{K}, \bigwedge(E)\right]_f = 0.$$

Theorem 4.1. The map

(4.15)
$$\bigwedge (E) \times \bigwedge (E) \longrightarrow \bigwedge (E), (\alpha, \beta) \longmapsto [\alpha, \beta]_f,$$

is bilinear and of degree -2.

Proof. The proof is immediate.

Theorem 4.2. For $\alpha \in \bigwedge^p(E)$ and $\beta \in \bigwedge^q(E)$, then

(4.16)
$$[\alpha,\beta]_f = -(-1)^{p \cdot q} [\beta,\alpha]_f$$

Proof. This follows from (4.13) and Corollary 4.1.

Theorem 4.3. For $\alpha \in \bigwedge^p(E), \beta \in \bigwedge^q(E)$ and $\gamma \in \bigwedge(E)$, then

(4.17)
$$[\alpha, \beta \wedge \gamma]_f = [\alpha, \beta]_f \wedge \gamma + (-1)^{p \cdot q} \beta \wedge [\alpha, \gamma]_f$$

Proof. Since $\tilde{f}(\alpha)$ is a derivation of degree p-2, then we have

$$\begin{aligned} [\alpha, \beta \wedge \gamma]_f &= [\widetilde{f}(\alpha)](\beta \wedge \gamma) \\ &= [\widetilde{f}(\alpha)](\beta) \wedge \gamma + (-1)^{(p-2) \cdot q} \beta \wedge [\widetilde{f}(\alpha)](\gamma) \\ &= [\alpha, \beta]_f \wedge \gamma + (-1)^{p \cdot q} \beta \wedge [\alpha, \gamma]_f \,. \end{aligned}$$

Hence the result.

Theorem 4.4. For $\alpha \in \bigwedge^{p}(E), \beta \in \bigwedge^{q}(E)$, then (4.18) $\left[\widetilde{f}(\alpha), \widetilde{f}(\beta)\right] = \widetilde{f}([\alpha, \beta]_{f})$ S.C. Gatsé and C.C. Likouka

where

$$\left[\widetilde{f}(\alpha), \widetilde{f}(\beta)\right] = \widetilde{f}(\alpha) \circ \widetilde{f}(\beta) - (-1)^{p \cdot q} \widetilde{f}(\beta) \circ \widetilde{f}(\alpha)$$

Proof. Taking into account (3.1), for all $z \in E$, we check that

$$\left[\widetilde{f}(\alpha), \widetilde{f}(\beta)\right](z) = \widetilde{f}([\alpha, \beta]_f)(z).$$

The result follows.

Theorem 4.5. The pair $(\bigwedge(E), [,]_f)$ is a Poisson algebra of degree -2.

Proof. Theorems 4.1, 4.2 and 4.4 mean that the pair $(\bigwedge(E), [,]_f)$ is a graded Lie algebra of degree -2. Theorem 4.3 means that the triple $(\bigwedge(E), [,]_f, \wedge)$ is a Poisson algebra of degree -2.

As $(\bigwedge(E), [,]_f)$ is a graded Lie algebra, we denote \widetilde{f} by ad_f . Thus we have $[ad_f(\alpha)](\beta) = [\alpha, \beta]_f$ and for $\alpha \in \bigwedge^p(E)$, the linear map

(4.19)
$$ad_f(\alpha) : \bigwedge(E) \longrightarrow \bigwedge(E)$$

is simultaneously a derivation (of degree p - 2) of graded Lie algebra and graded commutative Lie algebra.

An element $M \in \bigwedge^{3}(E)$ is said to be a proto-Lie bialgebra of the quadratic space (E, f) when $[M, M]_{f} = 0$. In this case, we say that the quadruple $(\bigwedge(E), [,]_{f}, \land, M)$ is a proto-Lie bialgebra (for further details, we refer to [3] and references therein).

Proposition 4.6. When the quadruple $(\bigwedge(E), [,]_f, \land, M)$ is a proto-Lie bialgebra, then the map

(4.20)
$$ad_f(M) : \bigwedge (E) \longrightarrow \bigwedge (E), P \longmapsto [M, P]_f,$$

is a coboundary operator.

Proof. The map $ad_f(M)$ is obviously of degree +1. Since $ad_f(M)$ is a derivation of graded Lie algebra, then for $P \in \bigwedge(E)$, we have

$$[ad_{f}(M)]^{2}(P) = \left[M, [M, P]_{f}\right]_{f}$$

= $\left[[M, M]_{f}, P\right]_{f} + (-1)^{3 \times 3} \left[M, [M, P]_{f}\right]_{f}$
= $-\left[M, [M, P]_{f}\right]_{f}$
= $-\left[ad_{f}(M)\right]^{2}(P).$

184

For $p \in \mathbb{N}$, we denote

(4.21)
$$H_f^p(M) = Ker([ad_f(M)]_{|_{\Lambda^{p(E)}}}) / Im([ad_f(M)]_{|_{\Lambda^{p-1}(E)}})$$

the cohomology space of degree p.

Proposition 4.7. We have:

(1) $H_f^0(M) = \mathbb{K};$ (2) $H_f^1(M) = Ker([ad_f(M)]_{|_{\Lambda^1(E)}}).$

Proof. Simple check.

When V is a vector space over \mathbb{K} and when V^* is the dual of V, then for $E = V + V^*$, the map

(4.22)
$$E \times E \longrightarrow \mathbb{K}, (v + \phi, w + \psi) \longmapsto \phi(w) + \psi(v),$$

is a symmetric bilinear form.

The Poisson bracket over $\bigwedge(E)$ defined by (4.22) is called "Big bracket" [3].

REFERENCES

- [1] N. BOURBAKI: Eléments de Mathématique : Algèbre, chapitres 1 à 3, Springer-Verlag, 2007.
- M. HENNAUX: Hamiltonian form of the path integral for theories with a gauge freedom, Phys. Rep., 126(1) (1985), 1–66.
- [3] Y. KOSMANN-SCHWARZBACH: Jacobian quasi-bialgebras and quasi Poisson Lie groups, Contemp. Math., Amer. Math. Soc., 132 (1992), 459–489.
- [4] B. KOSTANT, S. STERNBERG: Symplectic reduction, BRS cohomology, and infinite dimensional Clifford algebras, Ann. Physics., 176(01) (1987), 49–113.
- [5] E. OKASSA: Generalized Lie-Rinehart algebras and applications in differential geometry, English Edition, 2022.

S.C. Gatsé and C.C. Likouka

FACULTÉ DES SCIENCES ET TECHNIQUES UNIVERSITÉ MARIEN NGOUABI BP:69, BRAZZAVILLE, REPUBLIC OF CONGO. *Email address*: servais.gatse@umng.cg

ECOLE NORMALE SUPÉRIEURE UNIVERSITÉ MARIEN NGOUABI BP:69, BRAZZAVILLE, REPUBLIC OF CONGO. *Email address*: come.likouka@umng.cg