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AN EXAMPLE OF LOCALLY CONFORMALLY SYMPLECTIC MANIFOLDS

Servais Cyr Gatsé

ABSTRACT. Our aim in this paper is to give an example of locally conformally
symplectic manifolds.

1. INTRODUCTION

The notion of locally conformally symplectic manifold was introduced in [6]
and has been studied extensively by Vaisman and many others (see e.g. [1, 2, 5,
10, 13]). Locally conformally symplectic manifolds are generalized phase spaces
of hamiltonian dynamical systems since the form of the hamiltonian equations is
then preserved by homothetic canonical transformations [13]. We recall that a
smooth manifold M is a locally conformally symplectic manifold if there exist a
d-closed 1-form

α : X(M) −→ C∞(M),

and a nondegenerate 2-form

Ω : X(M)× X(M) −→ C∞(M),

such that
dΩ = −α ∧ Ω,
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where d is the exterior differentiation operator. The 1-form α is called the Lee
form [6, 13]. The triple (M, α,Ω) is called a locally conformally symplectic man-
ifold. In particular, if α is an exact 1-form on M, i.e., α = df for some smooth
function f on M then Ω is called globally conformally symplectic form on M and it
is straightforward to verify that e−f ·Ω is a symplectic form on M. The 1-form α is
unique. This implies that α is uniquely determined by Ω on a smooth manifold M

of dimension at least 4. The dimension of a locally conformally symplectic mani-
fold has to be even. Since Ωn is nowhere vanishing, a locally conformally symplec-
tic manifold possesses a canonic orientation [9]. For first properties and examples
of locally conformally symplectic manifolds, we refer the reader to [3, 7, 8, 12].
We organize this paper as follows. In Section 2, we study some properties of the
Lichnerowicz-de Rham differential. Section 3 deals with the study of example for
locally conformally symplectic manifolds.

2. PROPERTIES OF THE COHOMOLOGY OPERATOR dα

A differential form η of degree p defines a multilinear skew-symmetric function

η : X(M)× · · · × X(M)︸ ︷︷ ︸
p times

−→ C∞(M).

Its exterior derivative dη is defined as follows:

dη : X(M)× · · · × X(M)︸ ︷︷ ︸
(p+1) times

−→ C∞(M)

is the function defined by the formula

(dη)(X1, . . . , Xp+1) =

p+1∑
i=1

(−1)i−1Xi

[
η(X1, . . . , X̂i, . . . , Xp+1)

]
+

∑
i<j

(−1)i+jη([Xi, Xj] , X1, . . . , X̂i, . . . , X̂j, . . . , Xp+1)

for any X1, . . . , Xp+1 ∈ X(M), where the sign ̂ indicates the absence of the respec-
tive arguments [11].

Proposition 2.1. When Λ(M) is the C∞(M)-module of differential forms on M and
when d is the exterior differentiation operator then for any η ∈ Λ(M), we have
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dαη = dη + α ∧ η.

Corollary 2.1. The 1-form α is dα-closed if, and only if, α is d-closed.

Corollary 2.2. The 1-form α is d-closed if, and only if, dα ◦ dα = 0.

Proposition 2.2. We have the following properties:

(1) dα1 = α;
(2) dα(ξ ∧ γ) = (dαξ) ∧ γ + (−1)|ξ|ξ ∧ (dαγ)− (−1)|ξ∧γ|ξ ∧ γ ∧ dα1;

for any ξ and γ homogeneous.

Proof. One uses the Proposition 2.1, we have first

dα1 = d1 + 1 · α = α.

And for any ξ and γ homogeneous

dα(ξ ∧ γ) = (dξ) ∧ γ + (−1)|ξ|ξ ∧ (dγ) + α ∧ ξ ∧ γ.

That ends the proof. □

The essential difference between d and dα is that dα does not satisfy a Stokes’
theorem. Let us introduce the linear map

τ : C∞(M) −→ Ham(M), f 7−→ Xf ,

where Ham(M) is the Lie algebra of hamiltonian vector fields on M, for more
details see [4].

Theorem 2.1. Define Iα := {f ∈ C∞(M), dαf = 0}.

(1) The set Iα is an ideal of the Lie algebra (C∞(M), {, }) and this ideal is the
kernel of the homomorphism τ .

(2) The quotient C∞(M)/Iα is a Lie algebra.

3. STUDY OF THE EXAMPLE OF LOCALLY CONFORMALLY SYMPLECTIC MANIFOLDS

We denote (e1, e2, ..., e2n) the canonical basis of R2n and (e∗1, e
∗
2, ..., e

∗
2n) the dual

basis. For i = 1, 2, ..., 2n, e∗i is the canonical projection

pri : R2n −→ R, (t1, t2, ..., t2n) 7−→ ti.
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Let α0 = de∗2n and Ω0 =
n∑

i=1

dα0e
∗
i ∧ de∗n+i.

Proposition 3.1. For any vector field X on R2n, we have

iXΩ0 = −
n∑

i=1

X
(
e∗n+i

)
· de∗i

+
n∑

i=1

(
X (e∗i ) + e∗i ·X (e∗2n)− δni ·

[
n∑

j=1

e∗j ·X
(
e∗n+j

)])
· de∗n+i.

Proof. Since

iXΩ0 =
n∑

i=1

Ω0

(
X,

∂

∂e∗i

)
· de∗i +

n∑
i=1

Ω0

(
X,

∂

∂e∗n+i

)
· de∗n+i,

we have

Ω0

(
X,

∂

∂e∗i

)
=

(
n∑

j=1

dα0e
∗
j ∧ de∗n+j

)(
X,

∂

∂e∗i

)
= −X

(
e∗n+i

)
and

Ω0

(
X,

∂

∂e∗n+i

)
=

(
n∑

j=1

dα0e
∗
j ∧ de∗n+j

)(
X,

∂

∂e∗n+i

)

=
n∑

j=1

(
de∗j + e∗j · de∗2n

)
(X) · δij

−
n∑

j=1

(
de∗j + e∗j · de∗2n

)( ∂

∂e∗n+i

)
·X
(
e∗n+j

)
= X (e∗i ) + e∗i ·X (e∗2n)− δni ·

n∑
j=1

e∗j ·X
(
e∗n+j

)
.

The result follows. □

Proposition 3.2. The 2-form Ω0 is nondegenerate.

Proof. The map
X
(
R2n
)
−→ Λ1

(
R2n
)
, X 7−→ iXΩ0
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is injective. Indeed iXΩ0 = 0 implies X
(
e∗n+i

)
= 0 for any i = 1, 2, ..., n and

X (e∗i ) + e∗i ·X (e∗2n)− δni ·

[
n∑

j=1

e∗j ·X
(
e∗n+j

)]
= 0 for any i = 1, 2, ..., n.

Since X
(
e∗n+i

)
= 0, i = 1, 2, ..., n then X (e∗2n) = 0 and X

(
e∗n+j

)
= 0 for all

j = 1, 2, ..., n. We deduce that X (e∗i ) = 0 for i = 1, 2, ..., n, so X = 0.
The map

X
(
R2n
)
−→ Λ1

(
R2n
)
, X 7−→ iXΩ0

is surjective.
For ϑ ∈ Λ1 (R2n), we verify that if

Y =
n∑

i=1

[
ϑ
(
e∗n+i

)
+ e∗i · ϑ (e∗n)− δni ·

(
n∑

j=1

e∗j · ϑ
(
e∗j
))]

· ∂

∂e∗i
−

n∑
i=1

ϑ (e∗i ) ·
∂

∂e∗n+i

we obtain
iYΩ0 = ϑ.

The proof is complete. □

Proposition 3.3. We get
dα0 (Ω0) = 0.

Proof. Since

dα0 (Ω0) = dα0

(
n∑

i=1

dα0e
∗
i ∧ de∗n+i

)

= −
n∑

i=1

[
dα0e

∗
i ∧ dα0

(
de∗n+i

)
+ α0 ∧ dα0e

∗
i ∧ de∗n+i

]
= 0,

as desired. □

Theorem 3.1. The triple (R2n, α0,Ω0) is a locally conformally symplectic manifold.

Proof. Indeed

dα0 = d (de∗2n) = d2 (e∗2n) = 0.

This completes the proof. □
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