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HOLOMORPHIC EXTENSION

Mohamed Nadir Boukhetouta1, Mostafa Krachni2, Fares Yazid3, and Fatima Siham Djeradi4

ABSTRACT. In this paper, we prove that if there exists a holomorphic, proper,
surjective map defined on a complex manifold X into a smooth algebraic curve
with parallelizable fibers, then any holomorphic mappings defined on the Hartogs
domain T of Cn can be extended holomorphically (resp. meromorphically) from
∆n \Z into X, where Z is an analytic subset of ∆n such that codimension of Z at
least 2.

1. INTRODUCTION

More than a century ago, Hartogs discovered a phenomenon of forced extension
of holomorphic maps. Hartogs proved that any holomorphic map defined on the
domain T of Cn extended holomorphically to the envelope of holomorphy of T

denoted T̃ which is equal to the polydisc ∆n of Cn. T is called the Hartogs domain
of Cn.

Note that Bochner gave another proof of Hartogs theorem. Levi proved the case
where the map is meromorphic [20].

A complex manifold X is said holomorphically extensifer (resp. meromorphi-
cally extensifer), if any holomorphic (resp. meromorphic) mapping defined on
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the Hartogs domain T into X an be extended holomorphically (resp. meromor-
phically) extended ∆n. For example, any compact parallelizable manifold is holo-
morphically extensifer [24]. Ivashkovich proved that a Kähler manifold is holo-
morphically extensifer if and only if it does not contain rational curves [12]. We
also have that any projective manifold is meromorphically extensifer.

A complex manifold X is said holomorphically (resp. meromorphically) exten-
sifer outside of codimension at least 2, if any holomorphic (resp. meromorphic)
mapping defined on the Hartogs domain T into X can be extended holomorphi-
cally (resp. meromorphically) from ∆n \ Z where Z is an analytic subset of ∆n of
codimension a least 2. For example, Krachni proved that any homogeneous com-
pact manifold is holomorphically extensifer to the complement in of an analytic
subset of ∆n of codimension at least 2 [19].

We use properties of projective algebraic curves (compact) and non-compact
algebraic curves (Stein manifolds), lemma of Dloussky [7], and theorems of mani-
folds holomorphically (resp. meromorphically) extensifer, all can be found in [19],
to deal with the following problem : if there exists a holomorphic, proper and sur-
jective map φ defined on a complex manifold X with values in a non-singular
algebraic curve ∆, with parallelizable fibers, then every holomorphic (resp. mero-
morphic) mapping from T to X extends holomorphically (resp. meromorphically)
to ∆n \ Z, where Z is an analytic subset of codimension at least 2.

2. PRELIMINARIES

We call the Hartogs domain the open subset T of Cn defined by:

T = Tρ,σ = {z ∈ Cn : |zi| < ρ, i = 1, · · · , n− 1; |zn| < 1}

∪ {z ∈ Cn : |zi| < ρ, i = 1, · · · , n− 1; τ < |zn| < 1} .

Here 0 < ρ < 1 and 0 < τ < 1.
The envelope of holomorphy of T denoted T̃ is equal to the polydisc ∆n of Cn.

An analytic set of pure codimension equal to 1 (which can admit singularities) is
called a hypersurface.

Definition 2.1. A complex manifold X is said holomorphically (resp. meromorphi-
cally) extensifer, if any holomorphic (resp. meromorphic) mapping defined on T into
X is holomorphically (resp. meromorphically) extended on ∆n.
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Definition 2.2. A complex manifold X is said holomorphically (resp. meromorphi-
cally) extensifer outside of codimension at least 2, if any holomorphic (resp. mero-
morphic) mapping on T into X can be extended holomorphically (resp. meromor-
phically) from ∆n \ Z, where Z is an analytic subset of ∆n of codimension a least
2.

Proposition 2.1. Let X be a complex manifold, if any holomorphic map of T into X

is holomorphically extensifer from ∆n, then every meromorphic map f : T → X is in
fact holomorphic, and extends holomorphically from ∆n.

Theorem 2.1. [19] Let X and Y be two complex manifolds, and let φ : X → Y be
a holomorphic map. If:

- Y is holomorphically extensifer.
- There exists a cover U = (Ui)i∈I of Y such that φ−1(Ui) is holomorphically

extensifer (resp. meromorphically extensifer).

Then, X is holomorphically extensifer (resp. meromorphically extensifer).

Theorem 2.2. [19] Let X and Y be two complex manifolds, and let φ : X → Y a
holomorphic map. If:

- Y is projective.
- There exists a cover U = (Ui)i∈I of Y such that φ−1(Ui) is holomorphically

extensifer (resp. meromorphically extensifer).

Then, any holomorphic mapping from T into X is holomorphically extensifer (resp.
meromorphically extensifer) from ∆n/Z, where Z is an analytic subset of ∆n, such
that Codim Z ≥ 2.

Proposition 2.2. Let X and Y be two complex manifolds, and let φ : X → Y be an
unramified covering, then, X is holomorphically (resp. meromorphically) extensifer,
if and only if Y is holomorphically (resp. meromorphically) extensifer.

Theorem 2.3. [6] Let H be a hupersurface of T. If there exists a holomorphic map φ

of T \H, such that H is singularity, then there exists a hypersurface H̃ of T̃ for which
H = H̃ ∩ T , and the holomorphic envelope of T \H is isomorphic to T̃ \ H̃.

Note that Grauert and Remmert proved that if (π,G) is a étale domain over
Cn and H̃ a hypersurface of G then the holomorphic envelope of G \ λ−1(H̃) is
isomorphic to G̃ \ H̃.
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Theorem 2.4. [16] Let X and Y two complex manifolds, and let f : X → Y be a
holomorphic and proper map. Let ρ be a coherent analytic sheaf of f on X and let Xy

be the fiber of X on the point y ∈ Y with respect to f and ρy the analytical restriction
of ρ on Xy. So,

- The functions:

dq(y) = dimC H
q(Xy, ρy), q = 0, 1, · · ·

are semi-continuous. Moreover, if Y is reduced, then there exists a low-
dimensional analytical set N in Y such that all dq in Y \ N are locally
constant.

- If the function dq for q is constant and Y reduced, then the q− th direct image
beam fq of ρ is locally free.

- The Euler-Poincaré’s characteristic:

X(Y ) =
∞∑
q=0

(−1)q dimC H
q(Xy, ρy),

is locally constant on Y .

3. DISCUSSION AND RESULTS

Let X be a complex manifold and φ : X → ∆ a holomorphic and surjective map
such that ∆ is a smooth be algebraic curve.

For any point a ∈ ∆, let τabe be a local map from ∆ with center a, and τa(u),

the value of τa at a point u of a neighborhood of a.
Let z = (z1, z2, · · · , zn) be the local coordinates of a point z on X, if:

n∑
i=1

∣∣∣∣∂τa∂zi
(φ(z))

∣∣∣∣ > 0,

at each point z of φ−1(u), we say that Cu := φ−1(u) is a regular fiber of X.

In the case where Cu := φ−1(u) is a regular fiber of X, we say that φ is a
submersion in z.

Lemma 3.1. Let X be a complex manifold, and ∆ a smooth algebraic curve. Let
π : X → ∆ be a submersion, such that for all z ∈ ∆, π−1(z) is a parallelizable curve,
then:
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a) X is holomorphically extensifer, if ∆ non-compact (i.e∆ ̸= P 1(C)).
b) Any holomorphic map from T into X extends holomorphically to ∆n \ Z,

where Z is an analytic subset of codimension at least 2, if ∆ is (i.e∆ = P 1(C)).

Proof. Let Θ be the locally sheaf of rank 1 on X of the vector fields tangent to the
fibers of π. For z ∈ ∆, let Θz denote the restriction of Θ to π−1(z). Then, π is a
submersion, so for any z ∈ ∆, π−1(z) is a parallelizable curve, which gives us that:

dimC H
◦(π−1(z),Θz) = 1.

By Theorem 2.4, the direct image beam π∗Θ is a locally free beam of rank 1 on
∆. Let z0 ∈ ∆, there exists an open disk D0 centered at z0 on which π∗Θ|D0 is
isomorphic to Θ|D0 , so there exists a vector field θ ∈ π∗Θ(D0) which does not
vanish at any point of π−1(D0). As π is a submersion, by restricting D0 if necessary,
we can assume that π admits a section σ above D0.

Consider the holomorphic map:

ϕ : D0]× C −→ π−1(D0)

(z, w) −→ e(wθ)(σ(z)).

For fixed z ∈ D0,C is the universal covering of π−1(z) and (D0 × C, ϕ, π−1(D0)) is
a covering of π−1(D0).

As D0×C is holomorphically extensifer, and by proposition 2.2, then π−1(D0) is
holomorphically extensifer.

In conclusion:

i) If ∆ ̸= P 1(C) then, X is holomorphically extensifer, by proposition 2.2 and
Theorem 2.1.

ii) If ∆ = P 1(C), then any holomorphic map from T into X extends holomor-
phically to the complement in ∆n of an analytic subset Z of ∆n, such that
Codim Z ≥ 2, by Theorem 2.2 and Proposition 2.2.

□

Theorem 3.1. Let X be a complex manifold, and ∆ be a smooth algebraic curve. Let
φ : X → ∆ be a holomorphic, proper and surjective map, such that, for all z ∈ ∆

(except a finite number), φ−1(z) is a parallelizable curve. Then, X is holomorphically
extensifer to ∆n \ Z, where Z is an analytic subset of codimension at least 2.
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Before obtaining the final result, we have the following lemma which proves
that a hypersurface of ∆n meets the open set T.

Lemma 3.2. Let H be an analytic subset of ∆n, if H is a hypersurface of ∆n (i.e. an
analytic subset of pure codimension equal to 1), and let the Hartogs be an open set T
of Cn.

Proof. Let H be an analytic subset of pure codimension equal to 1 of ∆n, hence by
definition:

H = {z/fi(z) = 0, }

such that, f is holomorphic map from T
(
f|H = 0

)
. We assume H ∩ T = ∅. As f is

holomorphic on ∆n, then 1/f is holomorphic on T. 1/f is a holomorphic map on
T, so it extends holomorphically to ∆n, which is impossible, so we conclude that
H ∩ T ̸= ∅. □

Proof. (Proof of Theorem 3.1) There exists a finite set {a1, a2, · · · , am} of points
ai, i = 1, 2, · · · ,m on ∆, such that Cu := φ−1(u) is a regular fiber for any point
u ∈ ∆ \ ∪i=1,··· ,m {ai}.

Let Hi = φ−1(ai), such that ai ∈ {a1, a2, · · · , am} , for all z ∈ ∆ \ ∪Hi, φ
−1(z)

is a parallelizable fiber, therefore φ(z) is a submersion, and then X \ φ−1(∪Hi) is
holomorphically extensifer, by Lemma3.1, (because ∆ \ ∪Hi ̸= P 1(C) ).

We assume that X \ ∪Hi, i = 1, · · · ,m is holomorphically extensifer, that is for
any holomorphic map f : T → X, the restriction f : T \ f−1(Hi) → X \Hi extends
holomorphically from T \ f̃−1(Hl) the envelope of holomorphy of T \ f−1(Hi).

Let Ei and Fi be an analytic subsets of ∆n, such that f−1(Hi) = Ei ∪ Fi with
Codim Ei = 1 and Codim Fi ≥ 2. We have :

T \ f̃−1(Hl) = T \ Ẽl ∪ Fl = T̃ \ El ∪ T̃ \ Fl
∼= T̃ \ El.

T̃ \ Fl = ∅ because CodimFi ≥ 2. As Codim Ei = 1, so Ei is a hypersurface of ∆n,

and we conclude that T̃ \ El is isomorphic to ∆n \ Ẽl such that Ei is a hypersurface
of ∆n with Ei = Ẽl ∩ T.

We assume Z = ∩Ẽl. It suffices to show that Z has codimension at least 2, so
that f is holomorphically extensifer from ∆n \ Z. We have:

Z ∩ T = ∩Ẽl ∩ T = ∩Ei ⊂ f−1(Hi) = f−1(∩Hi) = ∅.
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So, Z ∩ T = ∅, then Z is an analytic subset of ∆n with Codim Z ≥ 2. □
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