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ABSTRACT. In this paper, we present two New models named New-Weibull-

Weibull (NWW ) and New-Weibull-Rayleigh (NWR) from The New-Wei- bull-

G family recently introduced that can have a variety of hazard rate shapes

that allows to describe observations from different fields of study. The un-

known parameters of the NWW and NWR models have been estimated un-

der the maximum likelihood estimation method. Moreover, we construct a

modified chi-squared goodness-of-fit test based on the Nikulin– Rao–Robson

(NRR) statistic to verify the applicability of the proposed NWW and NWR

models. The modified test shows that the models studied can be used as a

good candidate for analyzing a large variety of real phenomena. The NWW

and NWR models are applied upon a five different real complete and right-

censored data sets in order to evaluate its practicability and flexibility.

1. INTRODUCTION AND MOTIVATION

In reliability studies, Industrials have to analyse feedback experience data with
the aim of obtaining reliable results, in survival analysis practitioners are in pres-
ence of different observations to study, so all of them have to choose the appropri-
ate model for their analysis.
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Among new generalized distributions proposed in the statistical literature, a
new generator of statistical distributions introduced by Tahir et al. [12] so-called
New Weibull-G (NW −G) family is an extension of the T −X distributions family
Alzaatreh et al. [1] which received great attention from researchers. The NW −G

family is very interesting in the sense that the obtained rate failures can be con-
stant, increasing, decreasing, bathtub, upside-down bathtub, J, reversed-J, and S

which widen its fields of applications. In the recent literature, owing of the signif-
icance of the Weibull distribution in modelling reliability and survival data, four
generators of the T-X family [1] have been derived: bêta Weibull-G [10], Weibull-
X [1], exponentiated Weibull-X [2] and Weibull-G [11] with different forms of the
distribution generators X.

Depending on the generator distributions,Tahir et al. [12] proposed different
models such as the New Weibull-uniform (NWU), the New Weibull exponential
(NWE), the New Weibull-logistic (Wlo), the New Weibull-log-logistic (NWLL),
the New Weibull-Bur XII (NWBXII) and the New Weibull-normal (NWN) dis-
tributions. So, they obtained a panoply of new models capable of describing
any type of data. Statistical characteristics and properties are derived neverthe-
less the problem of the validation of these models has not been considered till
now, which motivate us to develop some statistic tests to verify how complete
and right-censored real data can be fitted by the New Weibull-G family. In this
work, two new distributions called the New Weibull-Rayleigh (NWR) and the New
Weibull-Weibull(NWW ) are studied, we use firstly the classical model selection cri-
teria such as the Akaike information criterion (AIC), the consistent Akaike infor-
mation criterion (CAIC), the Hannan-Quinn information criterion (HQIC), the
Bayesian information criterion (BIC), and the Kolmogorov Smirnov test (KS).
Also for testing a composite hypothesis H0, different EDF statistics are used like
the Anderson -Darling statistic, Kolmogorov-Smirnov statistic, Cramer-Von-Mises,
and others but the critical values of these statistics are not available for new mod-
els in the statistical literature. So we propose in this work, criteria goodness-of-fit
tests based on modified Pearson statistic Y 2 called the Nikulin-Rao-Robson (NRR)
statistic, [Nikulin [16] [17], Rao and Robson [9]], for the New Weibull-Weibull
(NWW ) and the New Weibull-Rayleigh (NWR) models. The proposed statistic
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which is based on maximum likelihood method for estimating the unknown pa-
rameters gives a very powerful test and covers all the information given by the
collected data. Its construction depends on the hypothesized distribution. Some
Y 2 formulas have been adapted for classical models nevertheless new ones have
not been considered yet.

Using the initial data in estimating the unknown parameters, the maximum like-
lihood estimators and estimated information matrix are also provided in the case
of complete and censored data. Theoretical results are confirmed by simulating
thousands of samples from different sizes. Also ,examples from real data from
different fields are applied to show the practicability of the proposed test statistics
and the importance of these new models (NWW , NWR).

2. CHARACTERISATION

Generally speaking, there has been a fundamental interest in creating new gen-
erators for families of univariate continuous distributions by adding one or more
additional shape parameters to the base distribution. the induction of extra pa-
rameters turned out that this was helpful in enhancing the family’s quality of ad-
justment. In life testing, engineering, survival theory, and reliability theory, the
Weibull distribution is one of the most well-liked and frequently applied models for
failure time. The hazard rate function of the classical Weibull distribution exhibits
monotone behavior. whereas the curves of the empirical hazard rate frequently
exhibit non-monotonic shapes in the majority of real applications, including bell,
bathtub, inverted bathtub forms, and others. On the other hand, Rayleigh distribu-
tion is widely used in sociological approaches, the physical sciences, engineering
(to measure the lifetime of an object) and also in bio-animal analysis. So, the
New Weibull-G Family was introduced by Tahir et al. [12] will enable us to model
a broad variety of real phenomena which have the shapes of hazard rate in J, S,
increasing and bathtub. We mention briefly two generators that have influenced
our New Weibull-G family of distributions. By replacing the base distribution of the
random variable T of the T − X family [1] by the Weibull distribution we obtain
the Weibull-X family [1], influenced by the G-Zografos-Balakrishnan class [10],
Bourguignon et al. [11] defined the Weibull-G family.
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We are interested in the New-Weibull-Weibull (NWW ) and New-Weibull-Rayleigh
(NWR) models of the NW −G family introduced by Tahir et al. in 2016 [13] be-
cause they can provide a large range of hazard rate shapes : constant, increasing,
decreasing, bathtub, J, inverted J, and S.

2.1. Characterizing the New-Weibull-Weibull model.

The New-Weibull-Weibull (NWW ) distribution is a 4-parameter distribution with
the scale parameter represented by α, the shape parameter by β and γ and the lo-
cation parameter λ. The cumulative distribution function (cdf) FNWW , and its
probability density function (pdf) fNWW are given by:

FNWW (x, ϑ) = exp
{
−α [− log (1− exp (−λxγ))]β

}
, x > 0, ϑ = (α, β, λ, γ) ,

fNWW (x, ϑ) = αβ
λγxγ−1 exp(−λxγ)

1− exp (−λxγ)
{− log [1− exp (−λxγ)]}β−1

× exp
(
−α {− log [1− exp (−λxγ)]}β

)
.

The analytic hazard rate function (hrf) of the NWW distribution is:

hNWW (x, ϑ) =
αβ λγxγ−1 exp(−λxγ)

1−exp(−λxγ)
{− log [1− exp (−λxγ)]}β−1

1− exp
(
−α {− log [1− exp (−λxγ)]}β

)
× exp

(
−α {− log [1− exp (−λxγ)]}β

)
,

To show the quality and flexibility of this new distribution (NWW ), we plot the
probability density function and the hazard rate function by comparing them to
the density and hazard rate of the Weibull-Weibull (WW ) distribution [5].

We present in Figure 1 and Figure 2, the pdf and hrf of the NWW distribution
and the WW distribution.

According to Figure 1, the NWW distribution produces a variety of forms of
pdf, including left-skewed, right-skewed, bathtub, and bell shapes. Also shown in
Figure 2, is the family’s ability to generate a variety of hazard rate forms, including
increasing, bathtub, bell, and J. Indeed, the NWW distribution can be highly
helpful for fitting diverse data sets with varying shapes, such as economical and
reliability data.
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different shapes of the pdf of the NWW distribution
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different shapes of the pdf of the WW distribution
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FIGURE 1. pdf of the NWW distribution against the WW distribu-
tion.

different shapes of the hrf of the NWW distribution
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FIGURE 2. hrf of the NWW distribution against the WW distribu-
tion.

2.2. Characterizing the New-Weibull-Rayleigh model.

We establish the New-Weibull-Rayleigh (NWR) probability density function (pdf)
and cumulative distribution function (cdf) as follows

FNWR (x, ς) = exp
{
−α
[
− log

(
1− exp

(
−λx2

))]β}
, x > 0, ς = (α, β, λ) > 0

fNWR (x, ς) = αβ
λγx exp(−λx2)

1− exp (−λx2)

{
− log

[
1− exp

(
−λx2

)]}β−1

× exp
(
−α
{
− log

[
1− exp

(
−λx2

)]}β)
.
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Here ς = (α, β, λ) is the vector of unknown parameters of the NWR distribution,
which β is the shape parameter, α and λ represent the scale and location parame-
ters, respectively. The corresponding hazard rate function (hrf) is

hNWR (x, ς) =
αβ

λγx exp(−λx2)
1−exp(−λx2)

{− log [1− exp (−λx2)]}β−1

1− exp
(
−α {− log [1− exp (−λx2)]}β

)
× exp

(
−α
{
− log

[
1− exp

(
−λx2

)]}β)
,

We display In Figure 3 and Figure 4 the pdf and hrf, respectively, of the NWR

distribution by comparing them to the pdf and hrf of the Weibull-Rayleigh (WR)
[5] distribution in order to demonstrate the flexibility and variability of this novel
distribution (NWR).

Different shapes of the pdf of the NWR distribution
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Different shapes of the pdf of the WR distribution

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

0
1

2
3

4

x

p
.d
.f

x

α = 0.6 −  β = 0.4 −  λ = 1.5
α = 0.6 −  β = 0.88 −  λ = 1.5
α = 1.8 −  β = 2 −  λ = 1.5
α = 2.6 −  β = 3.8 −  λ = 1.5

(B) WR

FIGURE 3. pdf of the NWR distribution against the WR distribu-
tion.

For different combination of parameters α, β and λ of the NWR distribution,
Figure 3 shows that the NWR distribution generates a range of pdf shapes, includ-
ing symmetric, left- and right-skewed, decreasing and bell-shaped. and Figure 4
also demonstrates the family’s capacity to produce several hazard rate shapes,
such as increasing, bathtub, bell, and S form. Indeed, for fitting a variety of data
sets with varied forms in different real application the NWR distribution may be
quite beneficial.
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Different shapes of the hrf of the NWR distribution
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FIGURE 4. hrf of the NWR distribution against the WR distribution.

3. MLES OF STUDIED MODELS

The maximum likelihood estimators (MLEs) of the unknown parameters are
necessary for the construction of the NRR statistic and other selection model cri-
teria, so we provide the score functions for the studied models NWW and NWR,
for more details see [18].

3.1. Completed case.

3.1.1. Simulation of the New-Weibull-Weibull model (NWW). Let us consider a sam-
ple (x1, . . . , xn) from the NWW distribution, the likelihood function is given by

LNWW (xi, ϑ) =
n∏

i=1

f
NWW

(xi, ϑ)

=
n∏

i=1

[
αβ

λγxγ−1
i exp(−λxγ

i )

1− exp (−λxγ
i )

{− log [1− exp (−λxγ
i )]}

β−1

× exp
(
−α {− log [1− exp (−λxγ

i )]}
β
)]

.

So, the log-likelihood function:

l (xi, ϑ) =
n∑

i=1

log fNWW (xi, ϑ)
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= n log (αβλγ) +
n∑

i=1

log
(
xγ−1
i

)
−

n∑
i=1

(λxγ
i )

+ (β − 1)
n∑

i=1

log {− log [1− exp (−λxγ
i )]}

− α
n∑

i=1

{− log [1− exp (−λxγ
i )]}

β −
n∑

i=1

log [1− exp (−λxγ
i )] .

The score functions (Appendix 1) are obtained by deriving the log-likelihood
function with respect to the unknown parameters of the NWW distribution. So,
the maximum likelihood estimators of the vector ϑ are obtained by equalling to
zero the first derivatives above. To solve these equations, iterative methods are
required. The elements of the estimated Information Fisher Matrix (IFM) are also
derived (see Appendix 1).

We propose a simulation study by using R software, the Newton-Raphson me-
thod available in the BB package [25] is used to numerically estimate the unknown
parameters ϑ̂ =

(
α̂, β̂, λ̂, γ̂

)
of the NWW model with their mean square errors

(MSE). We choose different sizes of sample n = 20− 50− 100− 150− 250− 500−
750, and the initial values of the parameters (α = 1, β = 1.5, λ = 2.5, γ = 1.3). The
results of 12, 000 simulations are shown in Table 1.

TABLE 1. The mean square errors of the maximum likelihood esti-
mators ϑ̂ of the New-Weibull-Weibull distribution.

N =
12, 000

n = 20 n = 50 n = 100 n = 150 n = 250 n = 500 n = 750

α̂ 0.9894 1.0229 1.0018 1.0013 1.0012 1.0007 1.0005
MSE 8.4764 ×

10−4
6.9313 ×
10−4

5.8781 ×
10−4

5.0308 ×
10−5

4.5366 ×
10−5

4.1171 ×
10−5

3.6648 ×
10−5

β̂ 1.5084 1.5070 1.5055 1.5034 1.4986 1.4977 1.4953
MSE 3.7397 ×

10−4
2.0336 ×
10−4

1.2016 ×
10−4

8.7691 ×
10−5

6.5800 ×
10−5

5.6558 ×
10−5

4.3126 ×
10−5

λ̂ 2.5093 2.5100 2.5135 2.5041 2.4987 2.4970 2.4956
MSE 7.9374 ×

10−4
4.1065 ×
10−4

2.5210 ×
10−4

7.7870 ×
10−5

1.3390 ×
10−5

9.4950 ×
10−6

7.6621 ×
10−6

γ̂ 1.3266 1.3235 1.3201 1.3183 1.3172 1.3154 1.3088
MSE 7.5275 ×

10−4
5.5352 ×
10−4

4.0184 ×
10−4

3.3086 ×
10−4

2.9222 ×
10−4

2.3623 ×
10−4

9.6658 ×
10−5
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We want to reinforce the results obtained in Table 1, by plotting in Figure 5 the
√
n-convergence curve compared to the values of the MLEs of the NWW distri-

bution for the different sample sizes used in the simulation study (n = 20 − 50 −
100− 150− 250− 500− 750).
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FIGURE 5. The
√
n-convergence of the parameters α̂, β̂, λ̂ and γ̂ of

the New-Weibull-Weibull distribution.

From Figure 5 we can conclude that the MLEs of the parameters α, β, λ, γ of the
NWW distribution converge faster than n−1/2, this demonstrates that the maxi-
mum likelihood estimation method used produces accurate results.

3.1.2. Simulation of the New-Weibull-Rayleigh model (NWR). Now, suppose that a
sample (x1, . . . , xn) of size n belongs to the NWR distribution. So, the likelihood
function is obtained as
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LNWR (xi, ς) =
n∏

i=1

f
NWR

(xi, ς)

=
n∏

i=1

[
2αβλ

xi exp(−λx2
i )

1− exp (−λx2
i )

{
− log

[
1− exp

(
−λx2

i

)]}β−1

× exp
(
−α
{
− log

[
1− exp

(
−λx2

i

)]}β)]
.

and the log-likelihood function is

l (xi, ς) =
n∑

i=1

log fNWR (xi, ς)

= n log (2αβλ) +
n∑

i=1

log (xi)−
n∑

i=1

(
λx2

i

)
+(β − 1)

n∑
i=1

log
{
− log

[
1− exp

(
−λx2

i

)]}
−α

n∑
i=1

{
− log

[
1− exp

(
−λx2

i

)]}β − n∑
i=1

log
[
1− exp

(
−λx2

i

)]
.

The score functions are obtained by deriving the log-likelihood function relative
to the unknown parameters ς of the NWR distribution. So, the maximum likeli-
hood estimators of ς̂ are obtained by equalling to zero the first derivatives above.
To solve these equations, iterative methods are required. The formula of the score
functions and the elements of the estimated Information Fisher Matrix (IFM) are
derived and given in Appendix 2.

The same as the previous model, we use the BB package [26] of the R software
to estimate the vector of parameters ς of the NWR distribution and their MSE

by performing 12, 000 simulations for different sizes of sample: n = 20 − 50 −
100− 150− 250− 500− 750 and the initial values of the parameters (α = 2.90, β =

3.30, λ = 1.80). The results of simulation are illustrated in Table 2:
To affirm the results of the simulation made above in Table 2, we draw in Figure

6, the
√
n-convergence curve compared to the values of the MLEs of the NWR

distribution for the different sample sizes used n = 20 − 50 − 100 − 150 − 250 −
500− 750.
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TABLE 2. The mean square errors of the maximum likelihood esti-
mators ς̂ of the New-Weibull-Rayleigh distribution.

N =
12, 000

n = 20 n = 50 n = 100 n = 150 n = 250 n = 500 n = 750

α̂ 2.9538 2.9402 2.9333 2.9166 2.9102 2.9055 2.9003
MSE 4.6603 ×

10−3
4.0301 ×
10−3

3.5478 ×
10−3

3.0126 ×
10−3

5.3456 ×
10−4

3.0211 ×
10−4

5.2261 ×
10−5

β̂ 3.3638 3.3511 3.3409 3.3326 3.3166 3.3018 3.3004
MSE 4.0954 ×

10−3
3.2245 ×
10−3

3.0645 ×
10−3

2.8712 ×
10−3

6.7803 ×
10−4

4.5870 ×
10−4

7.0819 ×
10−5

λ̂ 1.8538 1.8416 1.8322 1.8266 1.8107 1.8069 1.8001
MSE 7.7508 ×

10−3
6.6421 ×
10−3

5.8941 ×
10−3

4.4587 ×
10−3

2.3133 ×
10−3

7.0213 ×
10−4

1.4503 ×
10−4
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FIGURE 6. The
√
n-convergence of the parameters α̂, β̂, λ̂ of the

New-Weibull-Rayleigh distribution.

As expected, Figure 6 leads us to conclude that the MLEs of the NWR are con-
sistent for all sample sizes which confirms the property of the maximum likelihood
estimation method.

3.2. Censored case.
Let Xi be a random variable distributed with the vector of parameters Θ. The

data encountered in survival analysis and reliability studies are often censored. A
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very simple random censoring mechanism that is often realistic is one in which
each individual i is assumed to have a life time Xi and a censoring time Ci, where
Xi and Ci are independent random variables, for more details see [19]. Suppose
that the data consist of n independent observations xi = min(Xi, Ci), for i =

1, . . . , n. The distribution of Ci does not depend on any of the unknown parameters
of Xi. The likelihood function can be given as follow

L (θ) = Πn
i=1λ

δi (Xi, θ)S (Xi, θ) = 1 {Xi ≤ Ci} , θ ∈ Θ.

Then the log-likelihood function

l (θ) =
n∑

i=1

δi lnλ (Xi, θ) +
n∑

i=1

S (Xi, θ) , θ ∈ Θ.

3.2.1. Simulation of the censored MLEs of the NWW model. We suppose the failure
rate Xi ⇝ NWW (x, ϑ). We calculate the maximum likelihood estimators of the
vector of parameters ϑ = (α, β, λ, γ). The censored log-likelihood function of the
NWW distribution

lNWW (x, ϑ) = r log (αβλγ) + (γ − 1)
∑
i∈F

log (xi)− λ
∑
i∈F

xγ
i

+
∑
i∈C

log
[
1− exp

(
−α {− log [1− exp (−λxγ

i )]}
β
)]

−α
∑
i∈F

{− log [1− exp (−λxγ
i )]}

β −
∑
i∈F

log [1− exp (−λxγ
i )]

+ (β − 1)
∑
i∈F

log {− log [1− exp (−λxγ
i )]} ,

Here r is the number of failures and F and C denote the sets of uncensored and
censored observations, respectively. The score functions of the unknown vector of
parameters ϑ and the IFM of the NWW distribution are calculated and given in
Appendix 1.

The right-censored data provided from the NWW distribution was simulated
N = 12, 000 times, with the following initial values of parameters (α = 9.1, β =

1.5, λ = 3.06, γ = 3.1). Using the BB package [25] of the R software for right-
censored data, we calculate the mean values of the MLEs of the parameters α, β,
λ and γ as well as their mean squared errors (MSE) are calculated in Table 3 for
different sample sizes (n = 20− 50− 100− 150− 250− 500− 750).
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TABLE 3. MSE of the censored MLEs α̂, β̂, λ̂ and γ̂ of the New-
Weibull-Weibull distribution.

N =
12, 000

n = 20 n = 50 n = 100 n = 150 n = 250 n = 500 n = 750

α̂ 9.1838 9.1716 9.1563 9.1012 9.1004 9.1001 8.9875
MSE 3.1764 ×

10−3
8.2267 ×
10−4

5.9015 ×
10−4

3.1776 ×
10−4

1.5389 ×
10−4

7.6845 ×
10−5

5.2144 ×
10−5

β̂ 1.5236 1.5133 1.5103 1.5047 1.5005 1.4999 1.4992
MSE 3.9028 ×

10−3
1.5987 ×
10−3

6.6639 ×
10−4

4.7225 ×
10−4

1.0661 ×
10−4

8.4932 ×
10−5

6.2647 ×
10−5

λ̂ 3.0928 3.0856 3.0831 3.0705 3.0640 3.0611 3.0599
MSE 8.3684 ×

10−3
2.2975 ×
10−3

1.2167 ×
10−3

7.7233 ×
10−4

3.221 ×
10−4

1.0472 ×
10−4

7.5438 ×
10−5

γ̂ 3.2308 3.1639 3.1344 3.1268 3.1036 3.1002 2.9967
MSE 1.5534 ×

10−2
3.1812 ×
10−3

4.6265 ×
10−4

2.1137 ×
10−4

7.2128 ×
10−5

3.9045 ×
10−5

1.0871 ×
10−5

To study the convergence of the censored MLEs of the parameters α, β, λ and
γ of the NWW distribution, we plot, in Figure 7 the calculated mean absolute
values of the MLEs compared to the size n of samples chosen above:
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FIGURE 7. The
√
n-convergence of the parameters α̂,β̂, λ̂ and γ̂ of

the New-Weibull-Weibull distribution in the right-censored case.
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From Figure 7 and the simulation results obtained in Table 3, we notice that all
the estimators converge faster than n−0.5 by asserting that the maximum likelihood
estimators are

√
n-convergent.

3.2.2. Simulation of the censored MLEs of NWR model. Here, we consider the fail-
ure rate Xi ⇝ NWR (x, ς). So, the log-likelihood function of the NWR distribu-
tion is

l(x, ς) =
n∑

i−1

δi[log(2αβλ) + log (xi)− λx2
i + (β − 1) log

{
− log

[
1− exp

(
−λx2

i

)]}
= r log (2αβλ) +

∑
i∈F

log (xi)− λ
∑
i∈F

x2
i

+
∑
i∈C

log
[
1− exp

(
−α
{
− log

[
1− exp

(
−λx2

i

)]}β)]
−α
∑
i∈F

{
− log

[
1− exp

(
−λx2

i

)]}β −∑
i∈F

log
[
1− exp

(
−λx2

i

)]
+(β − 1)

∑
i∈F

log
{
− log

[
1− exp

(
−λx2

i

)]}
.

The score functions of the vector of parameters ς̂ and IFM are calculated and
given in Appendix 2.

Using the same algorithm (BB) used before, we simulate N = 12, 000 times data
from the NWR distribution, with the following initial parameter values (α = 9.5,
β = 2.5, λ = 3) for the different sample sizes used previously, we calculate the
mean values of the MLEs of the estimated parameters α, β and λ and their MSE,
the results of the simulation are illustrated in Table 4:

To study the convergence of the MLEs of the parameters of the NWR distribu-
tion, we plot in Figure 8 the curve of the mean absolute error of the parameters
estimated by the maximum likelihood method compared to the different sample
sizes n used above.

From Figure 8 and the simulation results (Table 4), we notice that all the es-
timators converge faster than n−0.5 affirm that the MLEs of the NWR model are
√
n−convergent.
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TABLE 4. MSE of the censored MLEs α̂, β̂, and λ̂ of the New-Weibull-
Rayleigh.

N =
12, 000

n = 20 n = 50 n = 100 n = 150 n = 250 n = 500 n = 750

α̂ 9.6616 9.5756 9.5569 9.5206 9.5173 9.5007 9.4988
MSE 8.7025 ×

10−3
9.4710 ×
10−4

5.6230 ×
10−4

1.4288 ×
10−4

6.3754 ×
10−5

4.5073 ×
10−5

2.1344 ×
10−5

β̂ 2.6211 2.5988 2.5410 2.5259 2.5102 2.5001 2.4987
MSE 7.4461 ×

10−3
2.7906 ×
10−3

8.1866 ×
10−4

5.8379 ×
10−4

1.2121 ×
10−4

6.0230 ×
10−5

3.0871 ×
10−5

λ̂ 3.1651 3.0822 3.0529 3.0245 3.0017 2.9984 2.9955
MSE 1.0904 ×

10−3
6.0923 ×
10−4

2.2929 ×
10−4

1.0635 ×
10−4

5.4582 ×
10−5

3.7117 ×
10−5

1.1656 ×
10−5
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FIGURE 8. The
√
n-convergence of the parameters α̂, β̂, λ̂ of the

New-Weibull-Rayleigh distribution in the right-censored case.

4. VALIDATION

In this section, numerical illustrations is presented here to exhibit the abilities of
the distribution via simulation study of the well known criterion tests: Akaike In-
formation Criteria (AIC), Consistent Akaike Information Criteria (CAIC), Baye-
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sian Information Criteria (BIC), Hanan and Quinn Information Criteria (HQIC),
and Kolmogorov Smirnov (KS).

In 1973, Nikulin ( [16], [17]) proposed a modification of Pearson’s chi square
test for the family of continuous distributions with shift and scale parameters. For
their part, Rao and Robson [9] obtained the same result for exponential families,
and since 1998 the test is well known as the Nikulin-Rao-Robson test notated NRR

test. So, we use the NRR test to fit models in the case of completed data. In 2011,
Bagdonavicius and Nikulin ( [22], [23]) gave a chi-squared type goodness-of-fit
test capable to fit parametric distributions in the case of right-censored data. These
tests are based on the maximum likelihood estimation for ungrouped data.

4.1. Classical tests.

4.1.1. The NWW model. The NWW distribution has been compared with four
distributions Weibull (W ), Inverse Weibull (IW ) [27], Topp-Leone Weibull Weibull
(TLWW ) [3] and Weibull-Weibull (WW ) [11]. The R software has been used to
compute the analytical measures: AIC, CAIC, BIC, HQIC and KS.

We simulated 12, 000 times data according to W , IW , TLWW , WW and NWW

distribution. For different size of samples n, we have calculated the test criteria
mentioned above, the results are illustrated in Table 5

TABLE 5. Smaller AIC/BIC/CAIC/HQIC/KS scores in 12, 000
simulations from NWW and comparative distributions.

n Model AIC BIC CAIC HQIC KS

10

W 31.25 32.06 31.22 31.64 31.18

IW 30.66 30.98 31.57 31.41 31.83

WW 31.87 31.33 32.14 31.05 30.8

TLWW 31.04 31.07 31.11 31.28 31.22

NWW 30.21 30.45 30.77 30.13 31.04

20

W 27.32 27.64 27.44 27.39 24.91

IW 20.78 21.2 20.99 20.86 24.96

WW 20.48 21.11 20.90 20.6 24.8

TLWW 20.1 20.74 20.53 20.23 24.79

NWW 20.04 20.67 20.46 20.16 23.58
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30

W 25.13 26.88 26.91 27.03 25.89

IW 22.64 25.46 20.08 19.44 24.72

WW 22.18 23.31 20.31 20.25 25.01

TLWW 21.95 23.11 21.22 19.66 24.64

NWW 20.22 20.82 19.85 19.37 24.05

50

W 20.14 20.45 20.16 20.26 25.37

IW 19.72 20.17 19.76 19.89 25.20

WW 20.35 21.12 20.44 20.64 25.21

TLWW 20.54 21.15 20.61 20.77 25.31

NWW 18.53 19.29 18.61 18.82 25.08

100

W 20.2 20.41 20.21 20.28 25.48

IW 21.18 21.49 21.31 20.56 25.44

WW 20.31 20.93 20.33 20.56 25.39

TLWW 21.56 20.93 21.17 21.32 25.44

NWW 18.65 19.28 18.68 18.91 25.38

From Table 5 we can analyze that the NWW distribution has the smallest cri-
terion test values used which leads us to deduce that the NWW model will give
more reliable results in applications to real data.

4.1.2. The NWR model. We use the R software to calculate the classical test cri-
teria mentioned above to validate the model studied by comparing the NWR

distribution with Rayleigh (R), Inverse Rayleigh (IR) [24], Rayleigh-Rayleigh
(Ra−Ra) [19] and Weibull Rayleigh (WR) [11], distributions.

We generate 12, 000 samples with different sizes according to R, IR, Ra − Ra,
WR and NWR distribution to calculate the test criteria AIC, BIC, CAIC, HQIC

and KS, the results are illustrated in Table 6:

TABLE 6. Smaller AIC/BIC/CAIC/HQIC/KS scores in 12, 000
simulations from NWR and comparative distributions.

n Model AIC BIC CAIC HQIC KS

10

R 39.71 39.96 40.13 39.43 0.760

IR 35.85 36.11 36.27 35.57 0.7624
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Ra−Ra 20.70 21.22 22.17 20.13 0.6747

WR 1.13 0.62 3.22 −0.96 0.7591

NWR 0.80 0.56 3.16 -0.03 0.7588

20

R 32.80 32.90 32.82 32.82 0.2521

IR 31.79 31.89 31.819 31.816 02522

Ra−Ra 28.51 28.75 28.59 28.56 0.2510

WR 23.09 23.39 23.24 23.15 0.2521

NWR 22.96 23.26 23.11 23.02 0.2123

30

R 113.21 114.61 113.35 113.66 0.1179

IR 100.66 102.06 100.80 101.11 0.1249

Ra−Ra 43.99 46.79 44.43 44.89 0.1186

WR −36.48 −32.28 −35.56 −35.14 0.1019

NWR -31.75 -27.55 -30.83 -30.41 0.1013

50

R 187.31 189.22 187.39 188.04 0.0993

IR 165.71 167.63 165.80 166.44 0.0944

Ra−Ra 70.57 74.39 70.82 72.02 0.0952

WR −65.36 −59.62 −64.83 −63.17 0.0789

NWR −56.83 −51.09 −56.31 −54.64 0.0782

100

R 375.68 378.29 375.72 376.74 0.0709

IR 331.76 334.37 331.81 332.82 0.0709

Ra−Ra 143.37 148.58 143.50 145.48 0.0739

WR −127.86 −120.05 −127.61 −124.70 0.0579

NWR −113.26 −105.44 −113.01 −110.09 0.0572

Table 6, permits us to determine that the NWR distribution has the smallest
test criterion values, which enables us to conclude that the investigated model
will provide more accurate findings when applied to actual data.

4.2. NRR test for completed case.
For testing the null hypothesis H0 that Xi = (x1, . . . , xn), follow any parametric

model F (x, θ), where θ represents the parameters vector. The authors proposed
a new statistic called the NRR statistic Y 2 based on the maximum likelihood
estimators on non-grouped data, this statistic is a modified chi-square test statistic
which can be written as the sum of the famous Pearson statistic X2

n and a quadratic
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form Q, for more details see [9,16,17]:

Y 2 = X2
n +Q.

The observations are grouped into r intervals Ij, Ij = ]aj−1, aj], with j = 1, . . . , r,
where ν = (ν1, . . . , νr)

T represents the corresponding empirical frequencies

νj = card {i : xi ∈ Ij, } i = 1, 2, . . . , n.

For this criteria the classes are assumed to be equiprobables, so the corresponding
probabilities are given by:

pj

(
θ̂n

)
=

aj∫
aj−1

dF
(
t, θ̂n

)
=

1

r
, j = 1, r − 1.

Therefore the limits aj are obtained from these equations:

aj = F−1

(
j

r

)
, j = 1, r − 1.

The components of this statistic are

X2
n =

r∑
j=1

(υj − npj)
2

npj
, Q =

1

n
LT
(
θ̂
)
G−1L

(
θ̂
)
, θ = (θ1, θ2, . . . , θs)

L
(
θ̂
)

=
[
L1

(
θ̂
)
, . . . , Ls

(
θ̂
)]T

, Lk (θ) =
r∑

j=1

υj
pj

∂pj (θ)

∂θk
,

k = 1, . . . , s, j = 1, . . . , r,

Ĝ = [ĝll′]r×r , gll′ = ill′ −
r∑

j=1

1

pj

(
∂pj (θ)

∂θl

∂pj (θ)

∂θl′

)
, îll′ =

∂2l
(
xi, θ̂

)
∂θ̂l∂θ̂l′

.

Note that this approach was used for fitting the competing risk model [20], the
generalized Rayleigh distribution [6], the extension Weibull distribution [27], the
Burr XII inverse Rayleigh model [8], and others.

4.2.1. NWW model. Suppose that a sample xi, (i = 1, . . . , n) is distributed by a
NWW distribution, the problem is to test the null hypothesis H0 such

H0 : P (xi ≤ X) = FNWW (x, ϑ) , x > 0, ϑ = (α, β, λ, γ)T .
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The observations are grouped into r intervals Ij, (Ij = ]aj−1, aj]. After comput-
ing the MLEs of the unknown parameters vector ϑ, we calculated the estimated
limits âj such that the grouped intervals are equiprobable, we obtain

âj =

−
log

(
1− exp

{
−
[
− log( j

r )
α̂

] 1

β̂

})
λ̂


1
γ̂

.

We propose a simulation study using R software to show the performances of
the constructed test statistic Y 2. For that, we compute N = 12, 000 samples from
the NWW distribution with different sizes n. The mean of the simulated levels
of significance calculated Y 2 are compared to their corresponding theoretical ones
ϵ = 1%− 5%− 10%, the results of the simulation are given in Table ??

TABLE 7. Simulated levels of significance of Y 2 of the New-Weibull-
Weibull distribution.

N = 12, 000

@
@
@@

ϵ

n
20 50 100 150 250 500 750

1% 0.0094 0.0136 0.0098 0.0088 0.0122 0.0108 0.0112

5% 0.0342 0.0414 0.0426 0.0442 0.0497 0.0505 0.0509

10% 0.0578 0.0772 0.0806 0.0878 0.0922 0.1006 0.1056

As can be seen, the empirical values of the level of significance are very close
to the corresponding theoretical ones which shows that the proposed modified
goodness-of-fit statistics (NRR) are able to verify the fit of datasets to these model.

4.2.2. NWR model. Let us consider the null hypothesis H0 that a random sample
X = (x1, . . . , xn) follow the New-Weibull-Rayleigh distribution. If ν = (ν1, . . . , νr)

T

represents the observed numbers of observations to fall into the grouped intervals
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Ij, as it’s shown above, the estimated limit intervals aj are obtained by

âj =

−
log

(
1− exp

{
−
[
− log( j

r )
α̂

] 1

β̂

})
λ̂


1
2

, j = 1, . . . , r.

By simulating 12, 000 samples from the NWR distribution, Table ?? shows a
calculated risk of rejection of the NRR statistic test Y 2 for different sample sizes
compared to different theoretical risks of error ϵ = 1%− 5%− 10%.

TABLE 8. simulated levels of significance of the Y 2 for the New-
Weibull-Rayleigh distribution.

N = 12, 000

@
@
@@

ϵ

n
20 50 100 150 250 500 750

1% 0.0069 0.007 0.009 0.012 0.017 0.011 0.015

5% 0.0340 0.0441 0.0476 0.0491 0.0503 0.0506 0.0510

10% 0.0918 0.0921 0.1019 0.0955 0.1007 0.0901 0.0984

As can be observed, the suggested modified goodness-of-fit statistics (NRR) are
able to confirm the fit of datasets to these models because the empirical values
of the level of significance are extremely similar to the corresponding theoretical
ones.

4.3. NRR test for censored case.
We use the statistic test of Bagdonavicius and Nikulin [22], [23] Y 2

n to fit right-
censored data based on the maximum likelihood estimation for ungrouped data
and random intervals are considered as data function. For that, we suppose the
null hypothesis H0:

H0 : F (x) ∈ F0 = {F0 (x, θ) ;x ∈ Rs; θ ∈ Θ ⊂ Rs} ,

where θ = (θ1, . . . , θs)
T ∈ Θ ⊂ Rs is unknown s-dimensional vector parameter and

F0 is a known cumulative distribution function.
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Let us consider a finite time interval only say [0, τ ] and divide it into k > s

smaller intervals Ij = (aj − 1, aj], where

0 < a1 < a2 < . . . < ak = τ.

So,

âj = Λ−1

Ej −
∑i−1

l=1 Λ
(
X(l), θ̂

)
n− i+ 1

, θ̂

 , âk = max
(
X(n), τ

)
.

Here θ̂ is the maximum likelihood estimator of the parameter θ, Λ−1 is the inverse
of the cumulative hazard function, X(i) represent the ith element in the ordered

statistics
(
X(1), . . . , X(n)

)
and Ej = (n− i+ 1)Λ

(
âj, θ̂

)
+
∑i−1

l=1 Λ
(
X(l), θ̂

)
. aj are

random data functions such as the k intervals chosen have equal expected numbers
of failures ej. The chi-square test [Bagdonavicius and Nikulin (2011)] is based on
the statistic:

Y 2
n = ZT Σ̂−Z,

where Σ̂− = Â−1 + Â−1ĈT Ĝ− ĈÂ−1. The vector Z is given by

Z = (Z1, . . . , Zk)
T ; Zj =

1√
n
(Uj − Ej) ; j = 1, k.

Here, Uj represent the numbers of observed failures in the intervals Ij. Under the
hypothesis H0, the limit distribution of the test statistic

Y 2
n =

n∑
i=1

(Uj − ej)
2

Uj

+Q,

where,
Q = W T Ĝ−1W, W = ĈÂ−1Z = (W1, . . . ,Ws)

T ,

Ĝ = [ĝll′ ]s×s , ĝll′ = îll′ −
k∑

j=1

ĈljĈl′jÂ
−1
j , Wl =

k∑
j=1

ĈljÂ
−1
j Zj,

îll′ =
1

n

n∑
j=1

δi
∂ lnλ

(
Xi, θ̂

)
∂θl

∂ lnλ
(
Xi, θ̂

)
∂θl′

, θ̂ = (θ1, . . . , θs) ,

Ĉlj =
1

n

∑
i:Xi∈Ij

δi
∂

∂θl
lnλ

(
Xi, θ̂

)
, j = 1, . . . k, l, l′ = 1, . . . , s.
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We reject the null hypothesis H0 if Y 2
n > χ2

ϵ (r) with approximate significance
level α. This test statistic was used to fit different distributions, for that see [14].

4.3.1. NWW model. The choice of âj when the baseline distribution is a New-
Weibull-Weibull, is obtained as follow

âj =

− 1

λ̂
log

1− exp

−

− 1

α̂
log

1− exp

∑i−1
l=1 Λ

(
X(l), ϑ̂

)
− Ej

N − i+ 1


1

β̂





1
γ̂

,

âk = T(n),, The elements of the Y 2
n statistic test are calculated and expressed in

Appendix 1. We demonstrate through numerical simulation that the statistic test
Y 2
n of the distribution NWW is a chi-square with k degree of freedom. To do this,

we use the R software to calculate the statistic’s average number of rejections by
comparing it to the corresponding theoretical risk of error ϵ = 1% − 5% − 10%.
The results of simulation are shown in Table 9.

TABLE 9. Rejected cases of the censored Y 2
n of the New-Weibull-

Weibull distribution.

N = 12, 000

@
@
@@

ϵ

n
20 50 100 150 250 500 750

1% 0.0087 0.0090 0.0096 0.0102 0.0108 0.0112 0.0115

5% 0.0326 0.0413 0.0442 0.0446 0.0486 0.0503 0.0509

10% 0.0853 0.0892 0.0964 0.1031 0.1046 0.1083 0.0110

Table 9 reveals that the rejected Y 2
n values are quite near to the corresponding

theoretical values ϵ, allowing us to conclude that the statistic test Y 2
n is a chi-square

with k degrees of freedom.

4.3.2. NWR model. The selection of the limits of intervals âj of the New-Weibull-
Rayleigh distribution is made as follows

âj =

− 1

λ̂
log

1− exp

−

− 1

α̂
log

1− exp

∑i−1
l=1 Λ

(
X(l), θ̂

)
− Ej

N − i+ 1


1

β̂





1
2

,
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âk = x(n). The elements of the statistic test Y 2
n of the NWR distribution are

calculated and obtained in Appendix 2.
Using R software, we estimate the average number of rejections of the estimated

statistic Y 2
n by comparing it to the corresponding theoretical risk of error, ϵ =

1%− 5%− 10%. The results of the simulation are displayed in Table 10:

TABLE 10. Rejected cases of the censored Y 2
n of the NWR distribu-

tion.

N = 12, 000

@
@

@@
ϵ

n
20 50 100 150 250 500 750

α = 1% 0.0076 0.0082 0.0089 0.0091 0.0097 0.0106 0.0124

α = 5% 0.0376 0.0428 0.0487 0.0501 0.0506 0.0512 0.0517

α = 10% 0.0665 0.0722 0.0890 0.0900 0.0935 0.1031 0.1180

We notice from Table 10 that the values of the rejected Y 2
n are very close to the

corresponding theoretical risk of error ϵ, then we can say that the statistic test of
the modified NRR test of the NWR model is a chi-square with degree of freedom
k.

5. APPLICABILITY OF STUDIED MODEL

To demonstrate the applicability and usefulness of these new distributions, we
will apply the studied NWW and NWR models to a several complete and cen-
sored real data in a different of application fields.

5.1. Antibiotic dataset.
We used the ’antibio’ dataset from the isdals packages of the R software [5],

these data represent the amount of organic material in n = 34 heifer dung was
measured after eight weeks of decomposition. We suppose H0 that these obser-
vations are modelled by the New Weibull-Rayleigh distribution. Data are given in
Table 11.
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TABLE 11. The amount organic in 34 heifer dung.

3.03,2.81,3.06,3.11,2.94,3.06,3.00,3.02,2.87,2.96,2.77,2.75,
2.74,2.88, 2.42,2.73,2.83,2.66,2.80,2.85,2.84,2.93,2.74,2.88,
2.85,3.02,2.85,2.66,2.43,2.63,2.56,2.76,2.70,2.54.

- Graphical analysis: We made the QQ-plot and PP-plot graphs, which QQ-
plot allows us to compare the theoretical quantiles calculated from the NWR

distribution and the empirical distribution of the real data used. While at the
PP plot gives us a visual comparison of the theoretical probabilities of the NWR

distribution and the empirical distribution of the actual data used in this example.
We plot in Figure 9 the estimated pdf, QQ-plot, PP-plot and the estimated cdf:
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FIGURE 9. Estimated pdf, Q-Q plot, estimated cdf and P-P plot of the
amount organic in 34 heifer dung.
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As we can see in Figure 9 the values of real data used has the same shape as the
New-Weibull-Rayleigh distribution we have supposed.

- Classical tests: We calculate the statistic of the well-known Information Crite-
ria AIC, BIC, CAIC, HQIC and KS using the data used in this example for the
WR, R, IR, Ra − Ra and NWR distributions, the results are illustrated in Table
12.

TABLE 12. The AIC, BIC, CAIC, HQIC and KS of the NWR
model based on data set.

Model AIC BIC CAIC HQIC KS

NWR -9.04 -4.46 -8.24 -7.48 0.1117
R 93.60 95.13 93.73 94.12 0.5212

IR 93.63 95.15 93.75 94.14 0.5548

Ra−Ra −12.67 9.62 −12.28 −11.63 0.1323

WR −18.09 −13.51 −17.29 −16.52 0.1166

Table 12, shows that NWR model has the lower Information Criteria score, so we
can decide that model NWR is the best model to fit our study.

- Modified NRR test: We use the NRR statistic Y 2 to validate the null hypoth-
esis H0.We obtain the MLEs vector ς̂ of parameters of the NWR model:

ς̂ =
(
α̂, β̂, λ̂

)T
= (3.20, 2.45, 3.60)T .

The data are grouped into r = 5 classes, so we calculate the estimated classes
limits âj and the corresponding vj and pj, the results are shown in Table 13:

TABLE 13. Values of âj, vj and pj.

âj 0.4017 0.4379 0.4747 0.5254 103.1100

vj 2 11 13 5 3

pj 0.2 0.2 0.2 0.2 0.2

Therefore, we obtain the NRR statistic value Y 2 = 9, 60, then we compare it to
the (r − 1) chi-square critical values χ2 for different level of significance ϵ = 1%;



GOODNESS-OF-FIT TESTS FOR THE NEW WEIBULL-G FAMILY OF DISTRIBUTIONS 251

5%:
Y 2 < χ2

1% (5− 1) = 15, 086; Y 2 < χ2
5% (5− 1) = 11, 075.

These obtained results indicate the NWR distribution can be used to accurately fit
the amount of organic matter in heifer dung that was measured after eight weeks
of decomposition.

5.2. Economic dataset.
We suppose these n = 50 economic observations available in https://data.world/

datasets/data, which represent the Annual Inflation in Algeria between 1961 and
2011 are modelled by the New Weibull-Weibull distribution.

TABLE 14. Annual Inflation in Algeria (1961− 2011).

3.471720042, 2.351279502, 0.5493313109, 1.695183177,

1.501331249, 1.817814694, 1.312040991, 3.142056013,

1.921084494, 4.940445977, 17.15196386, 4.606461074,

9.627611595, 48.89659052, 5.914022113, 10.8405927, 11.92709947,

10.08512101, 13.98783797, 25.86203875, 14.35399954, 1.93979417,

6.804795897, 8.433505552, 4.972526406, 2.405343265,

8.842020401, 9.060963496, 16.01137351, 30.25959848,

53.78860423, 21.92611451, 13.62442466, 29.07764734,

28.5770375, 24.02190406, 7.001963063, 3.131088695, 10.85640762,

24.59809885, 0.7112095185, 1.906328849, 8.323802693,

10.62932921, 16.45925846, 11.28281156, 7.331055187,

14.60217944, 11.2666112, 16.24561679, 11.43116826.

- Graphical analysis: We plot in Figure 10 the estimated cdf and the estimated
pdf, also, the QQ-plot and PP-plot to compare visually the theoretical quantiles,
theoretical probabilities of the NWW distribution and the empirical distribution
of the inflation rate in Algeria between 1961 and 2011, respectively.

Figure 10 allows us to see at-a-glance annual inflation in Algeria between 1961

and 2011 can be adjusted by the NWW distribution is plausible.

- Classical tests: In Table 15, we compare the NWW distribution with dis-
tributions generally used to model economic data. So, we calculate the statistic
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FIGURE 10. Estimated pdf, Q-Q plot, estimated cdf and P-P plot of
annual inflation in Algeria 2000− 2011.

of the well-known Information Criteria mentioned above for the data used in this
example for the NWW , WW , R, Gumbel-exponential (GE) and Pareto (Pa) dis-
tributions:

TABLE 15. The AIC, BIC, CAIC, HQIC and KS of the NWW
model based on economic data.

Model AIC BIC CAIC HQIC KS

NWW 361.63 369.36 362.50 364.58 0.0577
WW 363.09 370.81 363.96 366.04 0.0733

Rayleigh 398.17 400.10 398.25 398.91 0.2633

Pareto 363.27 371.44 364.12 365.87 0.1157

GE 365.03 368.89 365.28 366.50 0.4548

Table 15 demonstrates that the NWW model has the lower Information Criteria
value, allowing us to determine that it is the most appropriate model to fit our
economic data.
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- Modified NRR test: We assume H0, such that the inflation data are adjusted by
the NWW model. Using the maximum likelihood method to estimate the vector
of parameters ϑ of the NWW distribution

ϑ̂ =
(
α̂, β̂, λ̂, γ̂

)T
= (0.7633, 2.7023, 0.0954, 0.8217)T .

We decide that the data are classified into five classes (r = 5), thus we estimate
the classes bounds âj and the corresponding vj and pj, the results are shown in
Table 16

TABLE 16. Values of âj, vj and pj.

âj 6.5450 9.7173 13.8092 20.9757 153.7886

vj 18 8 9 7 9

pj 0.2 0.2 0.2 0.2 0.2

Therefore, we obtain the statistic value Y 2 = 7.6422, then we compare it to the
(r − 1) chi-square critical values χ2 for different significance levels ϵ = 1%; 5%;
10%:

Y 2 < χ2
1% (4) = 15.0862; Y 2 < χ2

5% (4) = 11.0705; Y 2 < χ2
10% (4) = 9.2363.44.

From the results obtained, we can conclude that H0 is not rejected, which leads
us to say that the inflation rates in Algeria between 1961 and 2011 can be adjusted
by the NWW model at different risk of error ϵ.

So we can deduce that this new generalization of Weibull can indeed model
economic data.

5.3. Drugs mortality dataset.
The data set taken from Mathers et al. [4] representing the crude mortality

rate (CMR) among people who inject drugs. The data set consist of the following
observations given in Table 17.

- Graphical analysis: To compare the theoretical quantiles, theoretical proba-
bilities of the NWR distribution to the empirical distribution of the crude mortality
rate among drug users who inject drugs, we present in Figure 11 the estimated pdf
and cdf, the QQ-plot and PP-plot:
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TABLE 17. CMR among people who inject drugs

2.01, 6.32, 3.52, 2.15, 5.42, 2.04, 2.77, 2.26, 1.95, 1.00, 2.45, 0.74,
0.98, 1.27, 2.77, 3.68, 1.18, 1.09, 1.60, 0.57, 3.33, 0.91, 7.14,
2.08, 3.85, 1.99, 7.76, 2.52, 1.57, 4.67, 4.22, 1.92, 1.59, 4.08, 2.02,
0.84, 6.85, 2.18, 2.04, 1.05, 2.91, 1.37, 2.43, 2.28, 3.74, 1.30, 1.59,
1.83, 3.85, 6.30, 4.83, 0.50, 3.40, 2.33, 4.25, 3.49, 2.12, 0.83, 0.54,
3.23, 4.50, 0.71, 0.48, 2.30, 7.73
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FIGURE 11. Estimated pdf, Q-Q plot, estimated cdf and P-P plot of
CMR among people who injected drugs.

As shown Figure 11, the distribution of the crude mortality rate among people
who inject drugs has almost the same form as theoretical quantiles and theoretical
probabilities of the New-Weibull-Rayleigh distribution.

- Classical tests: The NWR distribution has been compared with five dis-
tributions Rayleigh-Rayleigh (Ra − Ra) Gamma Rayleigh (GaRa), Marshal Olkin
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Rayleigh (MORa), Truncated-Exponential Skew Symmetric Rayleigh (TESRa),
and Rayleigh (Ra) distributions. The various information criteria used and men-
tioned above are calculated from the the CMR among drug users who inject drugs
to compare NWR, Ra−Ra, GaRa, MORa, TESRa and Ra distributions, in Table
18:

TABLE 18. The AIC, BIC, CAIC, HQIC and KS of the NWR
model based on data set.

Model AIC BIC CAIC HQIC KS

NWR 41.54 48.06 41.93 44.11 0.0896
Ra−Ra 240.98 241.17 245.33 242.70 0.1645

GaRa 244.74 244.93 249.08 246.45 0.2333

MORa 242.09 242.28 246.44 243.81 0.1756

TESRa 243.38 243.58 247.73 245.10 0.1511

Ra 249.30 249.36 251.47 250.16 0.1102

The NWR model has the lower Information Criteria value, as shown in Table
18, which enables us to conclude that it is the model that describes the Crude
Mortality Rate among people who injected drugs.

- Modified NRR test: We suppose the null hypothesis H0 that the data used
in this example are adjusted by the NWR distribution. For that, we calculate the
vector of MLEs ς

(
α̂, β̂, λ̂

)
of the NWR model

ς̂ =
(
α̂, β̂, λ̂

)T
= (0.7594, 3.4829, 0.2950)T .

Under H0, we opt for r = 8 grouping intervals, so we calculate the estimated
classes limits âi and the corresponding vi and pj in Table 19:

TABLE 19. Values of âj, vj and pj.

âj 1.0597 1.4268 1.8042 2.2472 2.8246 3.6854 5.3442 107.760

vj 12 5 4 12 9 7 9 7

pj 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125
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Consequently, we get the statistic value Y 2 = 7.4822. Next, we compare the value
of Y 2 to (r − 1) chi-square critical χ2 for different significance values ϵ = 1%; 5%;
10%:

Y 2 < χ2
1% = 20.0902; Y 2 < χ2

5% = 15.5073; Y 2 < χ2
10% = 13.3615.

From these calculations it can be concluded that the NWR distribution provides
a better fit for the the crude mortality rate among people who inject drugs.

5.4. Failure time of aluminium cells dataset.
We suppose the following censored data can be adjusted by NWR distribution,

these data (Table 20) represent aluminium reduction cells of Whitmore [7], who
considered the times of failures for 20 aluminium reduction cells, and the numbers
of failures in 1, 000 days units

TABLE 20. Data set of failure time of 20 aluminium cells.

0.468, 0.725, 0.838, 0.853, 0.965, 1.139, 1.142, 1.304, 1.317,

1.427, 1.554, 1.658, 1.764, 1.776, 1.990, 2.010, 2.224, 2.279∗, 2.244∗, 2.286∗,

* represent censored data.
- Graphical analysis: Using the times of failures of 20 aluminium reduction

cells to compare the empirical distributiont to the theoretical quantiles and theo-
retical probabilities calculated from the censored NWR distribution, the QQ-plot,
PP-plot, the estimated cdf and estimated pdf are showed in Figure 12

From Figure 12, the first impressions we see that the NWR distribution accu-
rately models the failure time of 20 aluminium cells.

- Classical tests: We compute the statistic for the Information Criteria AIC,
BIC, CAIC, HQIC, and KS to compare the NWR, R, IR, Ra − Ra, and WR

distributions using the faiulre time of 20 aluminium cells. The results are shown
in Table 21
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FIGURE 12. Estimated pdf, Q-Q plot, estimated cdf and P-P plot of
failure time of 20 aluminium cells.

TABLE 21. The AIC, BIC, CAIC, HQIC and KS of the NWR
model based on data set.

Model AIC BIC CAIC HQIC KS

NWR 37.31 38.30 38.81 37.90 0.1095
R 38.84 39.84 39.06 39.04 0.1486

IR 44.56 45.56 44.79 44.76 0.2099

Ra−Ra 38.69 40.68 39.40 39.08 0.1150

WR 39.12 42.11 40.62 39.70 0.1150

Table 21 reveals us that the NWR model has the lower Information Criteria
value. So, we can determine that model NWR is the best model for our study.

- Modified NRR test: We use the modified NRR statistic test obtained previ-
ously for censored data. Using R statistical software, we compute the vector of the
censored maximum likelihood estimators ς̂ of the NWR distribution:

ς̂ =
(
α̂, β̂, λ̂

)T
= (2.1308, 0.3515, 1.4651)T .
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We choose k = 4 grouping intervals (Ij) of 20 failure time of aluminium cells, the
elements of the Y 2

n statistic of the NRR test are presented in Table 22:

TABLE 22. Elements of the modified NRR test in censored case.

âj 0.8577 1.3429 1.7532 2.2860

Ûj 4 5 3 5

êj 4.49108 4.49108 4.49108 4.49108

Ĉ1j −0.0692 0.0595 0.0601 0.1129

Ĉ2j 0.6595 1.01080 0.6058 0.929

Ĉ3j 0.1443 0.2242 0.1405 0.2210

We, then, deduce the value of Y 2
n = 0.8154 and compare it to the chi-square statis-

tic test χ2
ϵ for different significance levels ϵ = 1%; ϵ = 5% and ϵ = 10% we obtain:

Y 2
n < χ2

1% (3) = 13.2767; Y 2
n < χ2

5% (3) = 9.4877; Y 2
n < χ2

10% (3) = 7.7794.

The results obtained affirm that the NWR model can fit the failure time of 20 alu-
minium cells. Therefore, we can conclude that the NWR distribution effectively
models reliability data.

5.5. Valve seat dataset.
We aim to investigate the null hypothesis H0 that the NWW distribution adjusts

the time to replacement of valve seats for 41 diesel engines. This dataset presented
in Table ?? is available in the survival package of the statistical software R, see
[26].

TABLE 23. Data set of 41 diesel engines.

761∗, 759∗, 98, 667∗, 326, 653, 653, 667∗, 665∗, 84, 667∗, 87, 663∗, 646, 653∗, 92, 653∗,
651∗, 258, 328, 377, 621, 650∗, 61, 539, 648∗, 254, 276, 298, 640, 644∗, 76, 538,
642∗, 635, 641∗, 349, 404, 561, 649∗, 631∗, 596∗, 120, 479, 614∗, 323,
449, 582∗, 139, 139, 589∗, 593∗, 573, 589∗, 165, 408, 604, 606∗, 249, 594∗,
344, 497, 613∗, 265, 586, 595∗, 166, 206, 348, 389∗, 601∗, 410, 581, 601∗, 611∗,
608∗, 587∗, 36, 603∗, 202, 563, 570, 585∗, 587∗, 578∗, 578∗, 586∗, 585∗, 582∗.

* represent censored data.
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- Graphical analysis: Using these data, we plot in Figure 13 the estimated
pdf and the estimated cdf corresponding to the NWW distribution, and we plot
the PP-plot and the QQ-plot of the NWW distribution comparing to the empirical
distribution of 41 diesel engines.
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FIGURE 13. Estimated pdf, Q-Q plot, estimated cdf and P-P plot of
41 diesel engines.

From Figure 13 we can infer that the NWW distribution correctly represents the
time to replacement of valve seats for 41 diesel engines.

- Classical tests: The failure time of valve seats for 41 diesel is utilized to
calculate the various information criteria used and indicated above to compare
the NWW , WW , TLWW , and IW distributions in Table 24.
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TABLE 24. The AIC, BIC, CAIC, HQIC and KS of the NWW
model based on data set.

Model AIC BIC CAIC HQIC KS

NWW 1011.80 1021.75 1012.27 1015.81 0.1960
WW 1177.93 1187.88 1178.41 1181.94 0.2140

TLWW 1240.29 1250.25 1240.77 1244.31 0.2832

IW 1306.29 1313.76 1306.58 1309.30 0.2862

Figure Table 24 demonstrates that the NWR model has the smallest information
criterion values. Consequently, it can be said that the NWR model can fit the
failure time of valve seats for 41 diesel.

- Modified NRR test: We use the modified NRR statistic test obtained pre-
viously. Using the statistical R software we compute the censored MLEs ϑ̂ of the
NWW distribution

ϑ̂ =
(
α̂, β̂, λ̂, γ̂

)T
= (19.6, 0.8425, 1.0005, 0.2)T .

We choose r = 6 grouping intervals (Ij) of these observations, the elements of the
Y 2
n statistic of the NRR test are presented in Table 25:

TABLE 25. Elements of the NRR test in the censored case.

âj 76.1399 145.6574 226.6525 323.7033 452.215 761.00

Ûj 2 7 4 7 11 17

êj 5.8739 5.8739 5.8739 5.8739 5.8739 5.8739

Ĉ1j −0.0013 −0.0031 −0.0009 −0.0007 −0.0003 0.0010

Ĉ2j 0.13157 0.4127 0.2031 0.3167 0.4541 0.6118

Ĉ3j 0.1147 0.3550 0.1724 0.2668 0.3811 0.5113

Ĉ4j 0.5964 2.0463 1.1234 1.8911 2.8734 4.2114

Then, the value of test criterion Y 2
n = 6.4797. We calculate the statistic of the

chi-square test for different significance levels ϵ = 1%, ϵ = 5% and ϵ = 10%, we
obtain:

Y 2
n < χ2

1% (5) = 16.8118 ; Y 2
n < χ2

5% (5) = 12.5915 ; Y 2
n < χ2

10% (5) = 10.6446.
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The results obtained affirm the time to replacement of valve seats for 41 diesel
engines can perfectly be modelled by the New-Weibull-Weibull distribution. and as
a result, we can state that the two models investigated are capable of adequately
describing censored data.

6. CONCLUDING REMARKS

Two new distributions based on the Weibull distribution named New-Weibull-
Weibull and New-Weibull-Rayleigh distributions are considered in this article. There
is a veritable interest in applying the proposed distributions due to the different
hazard rate’s shapes which enable us to model a several of real phenomena. The
parameters estimation via the maximum likelihood method is discussed as well as
the validation of the models by the modified chi-square test modified test in the
completed and right-censored case. Numerical illustrations via simulation study
and application with real data sets are conducted using R software, the proficiency
and consistency of the maximum likelihood estimators (MLEs) and the importance
of the modified chi-square test (NRR) of the proposed distributions are illustrated.
In the practical application, we have used five real data set from several domains
(medical, bio-animal, economic, reliability and automotive). The proposed distri-
butions "New-Weibull-Weibull" and "New-Weibull-Rayleigh" reveals better fits more
flexibility and applicability to those real data set than the other compared distribu-
tions. This flexibility enables using the New-Weibull-Weibull and the New-Weibull-
Rayleigh distributions in various application areas.

Appendix 1: The New-Weibull-Weibull model

- Completed case:

The score functions of the NWW distribution

∂lNWW (xi, ϑ )

∂α
=

n

α
−

n∑
i=1

[− log (1− exp (−λxγ
i ))]

β ,

∂lNWW (xi, ϑ )

∂β
=

n

β
+

n∑
i=1

log [− log (1− exp (−λxγ
i ))]
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− α
n∑

i=1

log [KNWW (xi, ϑ )]×Kβ
NWW (xi, ϑ ) ,

∂lNWW (xi, ϑ )

∂λ
=

n

λ
−

n∑
i=1

xγ
i + (β − 1)

n∑
i=1

xγ
i exp (−λxγ

i )

ZNWW (xi, ϑ )

+ αβ
n∑

i=1

xγ
i exp (−λxγ

i )K
β−1
NWW (xi, ϑ )

(1− exp (−λxγ
i ))

−
n∑

i=1

xγ
i exp (−λxγ

i )

(1− exp (−λxγ
i ))

,

∂lNWW (xi, ϑ )

∂γ
=

n

γ
+

n∑
i=1

log (xi)− λ

n∑
i=1

xγ
i log (xi) + λ (β − 1)

n∑
i=1

MNWW (xi, ϑ )

ZNWW (xi, ϑ )

− λ
n∑

i=1

MNWW (xi, ϑ )

(1− exp (−λxγ
i ))

[
1− αβKβ−1

NWW (xi, ϑ )
]
,

where,

KNWW (x, ϑ ) = [− log (1− exp (−λxγ))] , ϑ = (α, β, λ, γ) ,

MNWW (x, ϑ ) = xγ log (x) exp (−λxγ) ,

ZNWW (x, ϑ ) = (1− exp (−λxγ))× [log (1− exp (−λxγ))] .

The components of the Fisher Information Matrix INWW =
(̂
ill′

)
4×4

are:

î12 = −
n∑

i=1

log
[
KNWW

(
xi, ϑ̂

)]
×
[
KNWW

(
xi, ϑ̂

)]β̂
,

î13 = β̂

n∑
i=1

xγ̂
i exp

(
−λ̂xγ̂

i

) [
KNWW

(
xi, ϑ̂

)]β̂−1(
1− exp

(
−λ̂xγ̂

i

)) ,

î14 = β̂λ̂
n∑

i=1

MNWW

(
xi, ϑ̂

)
×
[
KNWW

(
xi, ϑ̂

)]β̂−1(
1− exp

(
−λ̂xγ̂

i

)) ,

î23 = α̂β̂
n∑

i=1

xγ̂
i exp

(
−λ̂xγ̂

i

)
log
[
KNWW

(
xi, ϑ̂

)]
×
[
KNWW

(
xi, ϑ̂

)]β̂−1

1− exp
(
−λ̂xγ̂

i

)
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+
n∑

i=1

xγ̂
i exp

(
−λ̂xγ̂

i

)
1− α̂

[
KNWW

(
xi, ϑ̂

)]β̂
ZNWW

(
xi, ϑ̂

)
 ,

î24 = λ̂

n∑
i=1

MNWW

(
xi, ϑ̂

)
ZNWW

(
xi, ϑ̂

) [1− α̂
[
KNWW

(
xi, ϑ̂

)]β̂]

+α̂β̂λ̂

n∑
i=1

MNWW

(
xi, ϑ̂

)
log
[
KNWW

(
xi, ϑ̂

)] [
KNWW

(
xi, ϑ̂

)]β̂−1

1− exp
(
−λ̂xγ̂

i

) ,

î34 = λ̂
n∑

i=1

x2γ̂
i log (xi) exp

(
−2λ̂xγ̂

i

)
[
1− exp

(
−λ̂xγ̂

i

)]2 {
1− α̂β̂

[
K β̂−1

NWW

(
xi, ϑ̂

)

+
(
β̂ − 1

)
K β̂−2

NWW

(
xi, ϑ̂

)]}
−

n∑
i=1

xγ̂
i log (xi)

+
n∑

i=1

[
1− λ̂xγ̂

i

] MNWW

(
xi, ϑ̂

)
1− exp

(
−λ̂xγ̂

i

) [α̂β̂K β̂−1
NWW

(
xi, ϑ̂

)
− 1
]

+
(
β̂ − 1

) n∑
i=1

MNWW

(
xi, ϑ̂

)
ZNWW

(
xi, ϑ̂

)
1− λ̂xγ̂

i −
λ̂xγ̂

i exp
(
−λ̂xγ̂

i

)
1− exp

(
−λ̂xγ̂

i

) −
λ̂xγ̂

i exp
(
−λ̂xγ̂

i

)
ZNWW

(
xi, ϑ̂

)
 ,

î11 = − n

α̂2
,

î22 = − n

β̂2
− α̂

n∑
i=1

log2
[
KNWW

(
xi, ϑ̂

)]
×
[
KNWW

(
xi, ϑ̂

)]β̂
,

î33 = − n

λ̂2
+

n∑
i=1

x2γ̂
i exp

(
−λ̂x

γ̂

i

)
1− exp(−λ̂x

γ̂

i )

[
1− α̂β̂

[
KNWW

(
xi, ϑ̂

)]β̂−1
]
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+
n∑

i=1

x2γ̂
i exp

(
−2λ̂x

γ̂

i

)
[
1− exp(−λ̂x

γ̂

i )
]2
1− α̂β̂K β̂−1

(
xi, ϑ̂

)1 +
(
β̂ − 1

)
KNWW

(
xi, ϑ̂

)


−
(
β̂ − 1

) n∑
i=1

x2γ̂
i exp

(
−λ̂x

γ̂

i

)
ZNWW

(
xi, ϑ̂

)
1 + exp

(
−λ̂x

γ̂

i

)
1− exp(−λ̂x

γ̂

i )
+

exp
(
−λ̂x

γ̂

i

)
ZNWW

(
xi, ϑ̂

)
 ,

and

î44 = − n

γ̂2
− λ̂

n∑
i=1

xγ̂
i log

2 (xi)− λ̂
(
β̂ − 1

) n∑
i=1

MNWW

(
xi, ϑ̂

)
log (xi)

ZNWW

(
xi, ϑ̂

) [
λ̂xγ̂

i − 1
]

+λ̂
n∑

i=1

1− α̂β̂KNWW

β̂−1
(
xi, ϑ̂

)
1− exp

(
−λ̂xγ̂

i

) [
λ̂x2γ̂

i log2 (xi) exp
(
−λ̂x

γ̂

i

)
−MNWW

(
xi, ϑ̂

)
log (xi)

]
−λ̂2

(
β̂ − 1

) n∑
i=1

MNWW
2
(
xi, ϑ̂

)
ZNWW

(
xi, ϑ̂

)
 1

1− exp
(
−λ̂xγ̂

i

) +
1

ZNWW

(
xi, ϑ̂

)


+λ̂2

n∑
i=1

MNWW
2
(
xi, ϑ̂

)
[
1− exp

(
−λ̂xγ̂

i

)]2 [1− α̂β̂KNWW

β̂−1
(
xi, ϑ̂

)
−α̂
(
β̂ − 1

)
β̂KNWW

β̂−2
(
xi, ϑ̂

)]
.

Elements of the NRR statistic test of the NWW distribution

∂pj

(
ϑ̂
)

∂α̂
= [KNWW (âj)]

β̂ FNWW (âj)− [KNWW (âj−1)]
β̂ FNWW (âj−1) ,

∂pj

(
ϑ̂
)

∂β̂
= α̂ log [KNWW (âj)]× [KNWW (âj)]

β̂ FNWW (âj)

−α̂ log [KNWW (âj−1)]× [KNWW (âj−1)]
β̂ FNWW (âj−1) ,
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∂pj

(
ϑ̂
)

∂λ̂
= α̂β̂

 âj−1 [KNWW (âj−1)]
β−1 ×DNWW (âj−1)

1− exp
(
−λ̂xâγ̂j−1

)
− âj [KNWW (âj)]

β−1 ×DNWW (âj)

1− exp
(
−λ̂xâγ̂j

)
 ,

∂pj

(
ϑ̂
)

∂γ̂
= α̂β̂λ̂

 âγ̂j−1 log (âj−1) [KNWW (âj−1)]
β̂−1 ×DNWW (âj−1)

1− exp
(
−λxâγ̂j−1

)
−
âγ̂j−1 log (âj) [KNWW (aj)]

β̂−1 ×DNWW (âj)

1− exp
(
−λ̂xâγ̂j

)
 ,

and

LNWW

(
ϑ̂
)

=
[
L1

(
ϑ̂
)
, L2

(
ϑ̂
)
, L3

(
ϑ̂
)
, L4

(
ϑ̂
)]

=

 r∑
j=1

υj
pj

∂pj

(
ϑ̂
)

∂α̂
,

r∑
j=1

υj
pj

∂pj

(
ϑ̂
)

∂β̂
,

r∑
j=1

υj
pj

∂pj

(
ϑ̂
)

∂λ̂
,

r∑
j=1

υj
pj

∂pj

(
ϑ̂
)

∂γ̂

x

.

- Censored case:

The score functions of the censored NWW distribution:

∂lNWW (xi, ϑ)

∂α
=

r

α
−
∑
i∈F

Kβ
NWW (xi, ϑ) +

∑
i∈C

Kβ
NWW (xi, ϑ) exp

[
−αKβ

NWW (xi, ϑ)
]

1− exp
[
−αKβ

NWW (xi, ϑ)
] ,

∂lNWW (xi, ϑ)

∂β
=

r

β
+
∑
i∈F

log [KNWW (xi, ϑ)]− α
∑
i∈F

log [KNWW (xi, ϑ)]K
β
NWW (xi, ϑ)

+ α
∑
i∈C

log [KNWW (xi, ϑ)]K
β
NWW (xi, ϑ) exp

[
−αKβ

NWW (xi, ϑ)
]

1− exp
[
−αKβ

NWW (xi, ϑ)
] ,
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∂lNWW (xi, ϑ)

∂λ
=

r

λ
−
∑
i∈F

xγ
i −

∑
i∈F

xγ
i exp (−λxγ

i )

1− exp (−λxγ
i )

+ (β − 1)
∑
i∈F

xγ
i exp (−λxγ

i )

ZNWW (xi, ϑ)

+ αβ
xγ
iK

β−1
NWW (xi, ϑ)

1− exp (−λxγ
i )

∑
i∈F

exp (−λxγ
i )−

∑
i∈C

hNWW (xi, ϑ)

1− exp
[
−αKβ

NWW (xi, ϑ)
]
 ,

∂lNWW (xi, ϑ)

∂γ
=

r

γ
+
∑
i∈F

log (xi) [1− λxγ
i ] + λ (β − 1)

∑
i∈F

MNWW (xi, ϑ)

ZNWW (xi, ϑ)

+ λ
∑
i∈F

MNWW (xi, ϑ)

1− exp (−λxγ
i )

[
αβKβ−1

NWW (xi, ϑ)− 1
]

− αβλ
∑
i∈C

xγ
i log (xi)K

β−1
NWW (xi, ϑ)hNWW (xi, ϑ)

1− exp (−λxγ
i ) 1− exp

[
−αKβ

NWW (xi, ϑ)
] .

Here

hNWW (xi, ϑ) = exp
(
−α {− log [1− exp (−λxγ

i )]}
β − λxγ

i

)
,

KNWW (xi, ϑ) = − log [1− exp (−λxγ
i )] ,

MNWW (xi, ϑ) = xγ
i log (xi) exp (−λxγ

i ) , ZNWW (xi, ϑ)

= [1− exp (−λxγ
i )] log [1− exp (−λxγ

i )] .

Elements of the matrix Ĉ =
(
Ĉ
)
4×k

Ĉ1j =
1

n

∑
i:Xi∈Ij

δi

 1

α̂
− K β̂

NWW (xi, ϑ)

1− exp
[
−α̂K β̂

NWW (xi, ϑ)
]
 ,

Ĉ2j =
1

n

n∑
i:Xi∈Ij

δi

 1

β̂
+ log [KNWW (xi, ϑ)]− α̂

log [KNWW (xi, ϑ)]K
β̂
NWW (xi, ϑ)

1− exp
[
−α̂K β̂

NWW (xi, ϑ)
]

 ,

Ĉ3j =
1

n

∑
i:Xi∈Ij

δi

[
1

λ̂
− xγ̂

i + α̂β̂
xγ̂
iK

β̂−1
NWW (xi, ϑ)hNWW (xi, ϑ)

VNWW (xi, ϑ)

]

+
1

n

∑
i:Xi∈Ij

δi

+ xγ̂
i exp

(
−λ̂xγ̂

i

)
1− exp

(
−λ̂xγ̂

i

) [α̂β̂K β̂−1
NWW (xi, ϑ)− 1

]
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+
(
β̂ − 1

) xγ̂
i exp

(
−λ̂xγ̂

i

)
ZNWW (xi, ϑ)


and

Ĉ4j =
1

n

∑
i:Xi∈Ij

δi

[
1

γ̂
+ λ̂

(
β̂ − 1

)MNWW (xi, ϑ)

ZNWW (xi, ϑ)

+λ̂
MNWW (xi, ϑ)

1− exp
(
−λ̂xγ̂

i

) [α̂β̂K β̂−1
NWW (xi, ϑ)− 1

]
+

n∑
i:Xi∈Ij

δi

[
log (xi)

[
1− λ̂xγ̂

i

]

+α̂β̂λ̂
xγ̂
i log (xi)K

β̂−1
NWW (xi, ϑ)hNWW (xi, ϑ)[

1− exp
(
−λ̂xγ̂

i

)]{
1− exp

[
−α̂K β̂

NWW (xi, ϑ)
]}
 .

The components of the Information Fisher Matrix Î = (ill′)4×4 are giver by

î11 =
1

n

n∑
i=1

δi

−1

α̂2
+

K2β̂
NWW

(
xi, ϑ̂

)
exp

[
−α̂K β̂

NWW

(
xi, ϑ̂

)]
{
1− exp

[
−α̂K β̂

NWW

(
xi, ϑ̂

)]}2

 ,

î22 =
1

n

n∑
i=1

δi

−1

β̂2
− α̂

log2
[
KNWW

(
xi, ϑ̂

)]
K β̂

NWW

(
xi, ϑ̂

)
1− exp

[
−α̂K β̂

NWW

(
xi, ϑ̂

)]


+
1

n

n∑
i=1

δi

α̂2
log2

[
KNWW

(
xi, ϑ̂

)]
K2β̂

NWW

(
xi, ϑ̂

)
exp

[
−α̂K β̂

NWW

(
xi, ϑ̂

)]
{
1− exp

[
−α̂K β̂

NWW

(
xi, ϑ̂

)]}2

 ,

î33 =
1

n

n∑
i=1

δi

−1

λ̂2
+

x2γ̂
i exp

(
−λ̂xγ̂

i

)
1− exp

(
−λ̂xγ̂

i

)
1−

(
β̂ − 1

)
log
[
1− exp

(
−λ̂xγ̂

i

)]
−α̂β̂

K β̂−1
NWW

(
xi, ϑ̂

)
1− exp

(
−λ̂xγ̂

i

)

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−

(
β̂ − 1

)
n

n∑
i=1

δi
x2γ̂
i exp

(
−2λ̂xγ̂

i

)
ZNWW

(
xi, ϑ̂

)
 1

ZNWW

(
xi, ϑ̂

) +
1

1− exp
(
−λ̂xγ̂

i

)


+
α̂2β̂2

n

n∑
i=1

δi
K2β̂−2

NWW

(
xi, ϑ̂

)
hNWW

(
xi, ϑ̂

)
VNWW

(
xi, ϑ̂

)
 1

1− exp
(
−λ̂xγ̂

i

) +
hNWW

(
xi, ϑ̂

)
VNWW

(
xi, ϑ̂

)


− α̂β̂

n

n∑
i=1

δi
x2γ̂
i K β̂−1

NWW

(
xi, ϑ̂

)
hNWW

(
xi, ϑ̂

)
VNWW

(
xi, ϑ̂

) [
1− exp

(
−λ̂xγ̂

i

)]
1 +

(
β̂ − 1

)
exp

(
−λ̂xγ̂

i

)
KNWW

(
xi, ϑ̂

)


+
1

n

n∑
i=1

δi

 x2γ̂
i exp

(
−2λ̂xγ̂

i

)
[
1− exp

(
−λ̂xγ̂

i

)]2 [1− α̂β̂
(
β̂ − 1

)
K β̂−2

NWW

(
xi, ϑ̂

)]

î44 =
1

n

n∑
i=1

δi

{
−1

γ̂2
− λ̂

∑
i∈F

xγ̂
i log

2 (xi) + λ̂
(
1− λ̂xγ̂

i

)

×

α̂β̂K β̂−1
NWW

(
xi, ϑ̂

)
− 1

1− exp
(
−λ̂xγ̂

i

) +

(
β̂ − 1

)
ZNWW

(
xi, ϑ̂

)
[MNWW

(
xi, ϑ̂

)
log (xi)

]
+

λ̂2

n

n∑
i=1

δi
M2

NWW

(
xi, ϑ̂

)
[
1− exp

(
−λ̂xγ̂

i

)]2
1− α̂β̂K β̂−1

NWW

(
xi, ϑ̂

)1 +
(
β̂ − 1

)
KNWW

(
xi, ϑ̂

)


−
λ̂2
(
β̂ − 1

)
n

n∑
i=1

δi
M2

NWW

(
xi, ϑ̂

)
ZNWW

(
xi, ϑ̂

)
 1

1− exp
(
−λ̂xγ̂

i

) +
1

ZNWW

(
xi, ϑ̂

)


+
α̂β̂λ̂2

n

n∑
i=1

δi
x2γ̂
i log2 (xi)K

β̂−2
NWW

(
xi, ϑ̂

)
hNWW

(
xi, ϑ̂

)
exp

(
−λ̂xγ̂

i

)
VNWW

(
xi, ϑ̂

) [
1− exp

(
−λ̂xγ̂

i

)]
×
[
α̂β̂K β̂

NWW

(
xi, ϑ̂

)
−
(
β̂ − 1

)]
+

α̂β̂λ̂

n

n∑
i=1

δi
xγ̂
i log

2 (xi)K
β̂−1
NWW

(
xi, ϑ̂

)
hNWW

(
xi, ϑ̂

)
VNWW

(
xi, ϑ̂

)
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×

1− λ̂xγ̂
i

 1

1− exp
(
−λ̂xγ̂

i

) − α̂β̂
K β̂−1

NWW

(
xi, ϑ̂

)
hNWW

(
xi, ϑ̂

)
VNWW

(
xi, ϑ̂

)


î12 =
1

n

n∑
i=1

δi
log
[
KNWW

(
xi, ϑ̂

)]
K β̂

NWW

(
xi, ϑ̂

)
1− exp

[
−α̂K β̂

NWW

(
xi, ϑ̂

)]
×

α̂K β̂
NWW

(
xi, ϑ̂

)
exp

[
−α̂K β̂

NWW

(
xi, ϑ̂

)]
1− exp

[
−α̂K β̂

NWW

(
xi, ϑ̂

)] − 1



î13 =
β̂

n

n∑
i=1

δi
xγ̂
iK

β̂−1
NWW

(
xi, ϑ̂

)
1− exp

(
−λ̂xγ̂

i

)
exp(−λ̂xγ̂

i

)
+

hNWW

(
xi, ϑ̂

)
1− exp

[
−α̂K β̂

NWW

(
xi, ϑ̂

)]


− α̂β̂

n

n∑
i=1

δi
xγ̂
iK

2β̂−1
NWW

(
xi, ϑ̂

)
hNWW

(
xi, ϑ̂

)
VNWW

(
xi, ϑ̂

)
 1

1− exp
[
−α̂K β̂

NWW

(
xi, ϑ̂

)]


î14 =
β̂λ̂

n

n∑
i=1

δi
xγ̂
i log (xi)K

β̂−1
NWW

(
xi, ϑ̂

)
1− exp

(
−λ̂xγ̂

i

)
×

exp(−λ̂xγ̂
i

)
+

hNWW

(
xi, ϑ̂

)
1− exp

[
−α̂K β̂

NWW

(
xi, ϑ̂

)]


− α̂β̂λ̂

n

n∑
i=1

δi
xγ̂
i log (xi)K

2β̂−1
NWW

(
xi, ϑ̂

)
hNWW

(
xi, ϑ̂

)
VNWW

(
xi, ϑ̂

)
×

 1

1− exp
[
−α̂K β̂

NWW

(
xi, ϑ̂

)]
 ,
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î23 =
1

n

n∑
i=1

δi
xγ̂
i exp

(
−λ̂xγ̂

i

)
ZNWW

(
xi, ϑ̂

)
− α̂2β̂

n

n∑
i=1

δi
xγ̂
i log

[
KNWW

(
xi, ϑ̂

)]
K2β̂−1

NWW

(
xi, ϑ̂

)
hNWW

(
xi, ϑ̂

)
VNWW

(
xi, ϑ̂

) [
1− exp

[
−α̂K β̂

NWW

(
xi, ϑ̂

)]]
+

α̂

n

n∑
i=1

δi

xγ̂
iK

β̂−1
NWW

(
xi, ϑ̂

) exp
(
−λ̂xγ̂

i

)
1− exp

(
−λ̂xγ̂

i

) +
hNWW

(
xi, ϑ̂

)
VNWW

(
xi, ϑ̂

)


×
{
1 + β̂ log

[
KNWW

(
xi, ϑ̂

)]}}

î24 =
1

n

n∑
i=1

δi

λ̂MNWW

(
xi, ϑ̂

)
ZNWW

(
xi, ϑ̂

)


− α̂2β̂λ̂

n

n∑
i=1

δi
xγ̂
i log (xi) log

[
KNWW

(
xi, ϑ̂

)]
K2β̂−1

NWW

(
xi, ϑ̂

)
hNWW

(
xi, ϑ̂

)
VNWW

(
xi, ϑ̂

){
1− exp

[
−α̂K β̂

NWW

(
xi, ϑ̂

)]}
+

α̂λ̂

n

∑
i∈F

δi

K β̂−1
NWW

(
xi, ϑ̂

) MNWW

(
xi, ϑ̂

)
1− exp

(
−λ̂xγ̂

i

) +
xγ̂
i log (xi)hNWW

(
xi, ϑ̂

)
VNWW

(
xi, ϑ̂

)


×
{
1 + β̂ log

[
KNWW

(
xi, ϑ̂

)]}}

î34 =
1

n

n∑
i=1

δi

MNWW

(
xi, ϑ̂

) α̂β̂K β̂−1
NWW

(
xi, ϑ̂

)
− 1

1− exp
(
−λ̂xγ̂

i

) +

(
β̂ − 1

)
ZNWW

(
xi, ϑ̂

)


×
(
1− λ̂xγ̂

i

)
−
[
xγ̂
i log (xi)

]}
+

λ̂

n

n∑
i=1

δi


x2γ̂
i log (xi) exp

(
−2λ̂xγ̂

i

)
[
1− exp

(
−λ̂xγ̂

i

)]2 [
1− α̂β̂K β̂−1

NWW

(
xi, ϑ̂

)
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−α̂
(
β̂ − 1

)
β̂K β̂−2

NWW

(
xi, ϑ̂

)]}
−

λ̂
(
β̂ − 1

)
n

n∑
i=1

δi
x2γ̂
i log (xi) exp

(
−2λ̂xγ̂

i

)
ZNWW

(
xi, ϑ̂

)
×

 1

ZNWW

(
xi, ϑ̂

) +
1

1− exp
(
−λ̂xγ̂

i

)


+
α̂2β̂2λ̂

n

n∑
i=1

δi
x2γ̂
i log (xi)K

2β̂−2
NWW

(
xi, ϑ̂

)
hNWW

(
xi, ϑ̂

)
VNWW

(
xi, ϑ̂

)
×

 exp
(
−λ̂xγ̂

i

)
1− exp

(
−λ̂xγ̂

i

) +
hNWW

(
xi, ϑ̂

)
VNWW

(
xi, ϑ̂

)


+
α̂β̂

n

n∑
i=1

δi
xγ̂
i log (xi)K

β̂−1
NWW

(
xi, ϑ̂

)
hNWW

(
xi, ϑ̂

)
VNWW

(
xi, ϑ̂

)
×

1− λxγ̂
i

1 +
(
β̂ − 1

)
exp

(
−λ̂xγ̂

i

)
K−1

NWW

(
xi, ϑ̂

)
1− exp

(
−λ̂xγ̂

i

)
 .

Here

VNWW (xi, ϑ) = [1− exp (−λxγ
i )]×

[
1− exp

(
−α {− log [1− exp (−λxγ

i )]}
β
)]

.

Appendix 2: the New-Weibull-Rayleigh model

- Completed case:

The scores function of the NWR distribution

∂lNWR (xi, ς)

∂α
=

n

α
−

n∑
i=1

[
− log

(
1− exp

(
−λx2

i

))]β
,
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∂lNWR (xi, ς)

∂β
=

n

β
+

n∑
i=1

log
[
− log

(
1− exp

(
−λx2

i

))]
− α

n∑
i=1

log [K (xi, ς)]×Kβ
NWR (xi, ς) ,

∂lNWR (xi, ς)

∂λ
=

n

λ
−

n∑
i=1

x2
i + (β − 1)

n∑
i=1

x2
i exp (−λx2

i )

Z (xi, ς)

+ αβ
n∑

i=1

x2
i exp (−λx2

i )K
β−1 (xi, ς)

1− exp (−λx2
i )

−
n∑

i=1

xγ
i exp (−λx2

i )

1− exp (−λx2
i )
.

Here

K (x, ς) =
[
− log

(
1− exp

(
−λx2

))]
, ς = (α, β, λ) ,

Z (x, ς) =
(
1− exp

(
−λx2

))
×
[
log
(
1− exp

(
−λx2

))]
.

Elements of the NRR statistic test for the NWR distribution
∂pj (ς̂)

∂α̂
= [K (âj)]

β̂ FNWR (âj)− [K (âj−1)]
β̂ FNWR (âj−1) ,

∂pj (ς̂)

∂β̂
= α̂ log [K (âj)]

× [K (âj)]
β̂ FNWR (âj)− α̂ log [K (âj−1)]× [K (âj−1)]

β̂ FNWR (âj−1) ,

∂pj (ς̂)

∂λ̂
= α̂β̂

 âj−1 [K (âj−1)]
β−1 × h (âj−1)

1− exp
(
−λ̂xâ2j−1

) − âj [K (âj)]
β−1 × h (âj)

1− exp
(
−λ̂xâ2j

)
 ,

where

h (x, ς) = exp
(
−α
{
− log

[
1− exp

(
−λx2

)]}β − λx2
)
, ς = (α, β, λ) .

The vector LNWR = (L1, . . . , Ls)
x is given by

LNWR (ς̂) =

[
L1 (ς̂) =

r∑
j=1

υj
pj

∂pj (ς̂)

∂α̂
, L2 (ς̂) =

r∑
j=1

υj
pj

∂pj (ς̂)

∂β̂
,

L3 (ς̂) =
r∑

j=1

υj
pj

∂pj (ς̂)

∂λ̂

]
.



GOODNESS-OF-FIT TESTS FOR THE NEW WEIBULL-G FAMILY OF DISTRIBUTIONS 273

The components of the Information Fisher Matrix INWR =
(̂
ill′

)
3×3

are

î12 = −
n∑

i=1

log [K (xi, ς̂)]× [K (xi, ς̂)]
β̂ ,

î13 = β̂
n∑

i=1

x2
i exp

(
−λ̂x2

i

)
[K (xi, ς̂)]

β̂−1(
1− exp

(
−λ̂x2

i

))
î23 = α̂β̂

n∑
i=1

x2
i e

−λ̂x
2
i log [K (xi, ς̂)]× [K (xi, ς̂)]

β̂−1

1− exp
(
−λ̂x2

i

)
+

n∑
i=1

xγ̂
i e

−λ̂x
2
i

{
1− α̂ [K (xi, ς̂)]

β̂

Z (xi, ς̂)

}
,

î11 = − n

α̂2
,

î22 = − n

β̂2
− α̂

n∑
i=1

log2 [K (xi, ς̂)]× [K (xi, ς̂)]
β̂ ,

î33 = − n

λ̂2
+

n∑
i=1

x4
i e

−λ̂x
2
i

1−e−λ̂x
2
i

[
1− α̂β̂ [K (xi, ς̂)]

β̂−1
]

+
n∑

i=1

x4
i e

−λ̂x
2
i[

1−e−λ̂x
2
i

]2
1− α̂β̂K β̂−1 (xi, ς̂)

1 +
(
β̂ − 1

)
K (xi, ς̂)


−
(
β̂ − 1

) n∑
i=1

x4
i e

−λ̂x
2
i

Z (xi, ς̂)

[
1 +

e−λ̂x
2
i

1− exp(−λ̂x
γ̂

i )
+

e−λ̂x
2
i

(xi, ς̂)

]
.

- Censored case:

The score functions of the censored NWR model

∂l(xi, ς)

∂α
=

r

α
−
∑
i∈F

Kβ (xi, ς) +
∑
i∈C

Kβ (xi, ς) exp
[
−αKβ (xi, ς)

]
1− exp [−αKβ (xi, ς)]

,

∂l(xi, ς)

∂β
=

r

β
+
∑
i∈F

log [K (xi, ς)]− α
∑
i∈F

log [K (xi, ς)]K
β (xi, ς)
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+ α
∑
i∈C

log [K (xi, ς)]K
β (xi, ς) exp

[
−αKβ (xi, ς)

]
1− exp [−αKβ (xi, ς)]

,

∂l(xi, ς)

∂λ
=

r

λ
−
∑
i∈F

x2
i −

∑
i∈F

x2
i exp (−λx2

i )

1− exp (−λx2
i )

+ (β − 1)
∑
i∈F

x2
i exp (−λx2

i )

Z (xi, ς)

+ αβ
x2
iK

β−1 (xi, ς)

1− exp (−λx2
i )

[∑
i∈F

exp
(
−λx2

i

)
−
∑
i∈C

h (xi, ς)

1− exp [−αKβ (xi, ς)]

]
.

Elements of the matrix Ĉ =
(
Ĉ
)
s×k

of the censored NWR distribution

Ĉ1j =
1

n

∑
i:Xi∈Ij

δi

 1

α̂
− K β̂

NWR (xi, ς)

1− exp
[
−α̂K β̂

NWR (xi, ς)
]
 ,

Ĉ2j =
1

n

n∑
i:Xi∈Ij

δi

 1

β̂
+ log [KNWR (xi, ς)]− α̂

log [KNWR (xi, ς)]K
β̂
NWR (xi, ς)

1− exp
[
−α̂K β̂

NWR (xi, ς)
]
 ,

Ĉ3j =
1

n

∑
i:Xi∈Ij

δi

[
1

λ̂
− x2

i + α̂β̂
x2
iK

β̂−1
NWR (xi, ς)hNWR (xi, ς)

VNWR (xi, ς)

]

+
1

n

∑
i:Xi∈Ij

δi

+ x2
i exp

(
−λ̂x2

i

)
1− exp

(
−λ̂x2

i

) [α̂β̂K β̂−1
NWR (xi, ς)− 1

]
+
(
β̂ − 1

) x2
i exp

(
−λ̂x2

i

)
ZNWR (xi, ς)



The Information Fisher Matrix ÎNWR = (ill′)3×3

î11 =
1

n

n∑
i=1

δi

−1

α̂2
+

K2β̂
NWR (xi, ς̂) exp

[
−α̂K β̂

NWR (xi, ς̂)
]

{
1− exp

[
−α̂K β̂

NWR (xi, ς̂)
]}2


î22 =

1

n

n∑
i=1

δi

−1

β̂2
− α̂

log2 [KNWR (xi, ς̂)]K
β̂
NWR (xi, ς̂)

1− exp
[
−α̂K β̂

NWR (xi, ς̂)
]



+
1

n

n∑
i=1

δi

α̂2
log2 [KNWR (xi, ς̂)]K

2β̂
NWR (xi, ς̂) exp

[
−α̂K β̂

NWR (xi, ς̂)
]

{
1− exp

[
−α̂K β̂

NWR (xi, ς̂)
]}2


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î33 =
1

n

n∑
i=1

δi

−1

λ̂2
+

x4
i exp

(
−λ̂x2

i

)
1− exp

(
−λ̂x2

i

)
1−

(
β̂ − 1

)
log
[
1− exp

(
−λ̂x2

i

)]
−α̂β̂

K β̂−1
NWR (xi, ς̂)

1− exp
(
−λ̂x2

i

)


−

(
β̂ − 1

)
n

n∑
i=1

δi
x4
i exp

(
−2λ̂x2

i

)
ZNWR (xi, ς̂)

 1

ZNWR (xi, ς̂)
+

1

1− exp
(
−λ̂x2

i

)


+
α̂2β̂2

n

n∑
i=1

δi
K2β̂−2

NWR (xi, ς̂)hNWR (xi, ς̂)

VNWR (xi, ς̂)

 1

1− exp
(
−λ̂x2

i

) +
hNWR (xi, ς̂)

VNWR (xi, ς̂)


− α̂β̂

n

n∑
i=1

δi
x4
iK

β̂−1
NWR (xi, ς̂)hNWR (xi, ς̂)

VNWR (xi, ς̂)
[
1− exp

(
−λ̂x2

i

)]
1 +

(
β̂ − 1

)
exp

(
−λ̂x2

i

)
KNWR (xi, ς̂)



+
1

n

n∑
i=1

δi

 x4
i exp

(
−2λ̂x2

i

)
[
1− exp

(
−λ̂x2

i

)]2 [1− α̂β̂
(
β̂ − 1

)
K β̂−2

NWR (xi, ς̂)
]

î12 =
1

n

n∑
i=1

δi
log [KNWR (xi, ς̂)]K

β̂
NWR (xi, ς̂)

1− exp
[
−α̂K β̂

NWR (xi, ς̂)
]

×

α̂K β̂
NWR (xi, ς̂) exp

[
−α̂K β̂

NWR (xi, ς̂)
]

1− exp
[
−α̂K β̂

NWR (xi, ς̂)
] − 1


î13 =

β̂

n

n∑
i=1

δi
x2
iK

β̂−1
NWR (xi, ς̂)

1− exp
(
−λ̂x2

i

)
exp(−λ̂x2

i

)
+

hNWR (xi, ς̂)

1− exp
[
−α̂K β̂

NWR (xi, ς̂)
]


− α̂β̂

n

n∑
i=1

δi
x2
iK

2β̂−1
NWR (xi, ς̂)hNWR (xi, ς̂)

VNWR (xi, ς̂)

 1

1− exp
[
−α̂K β̂

NWR (xi, ς̂)
]

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î23 =
1

n

n∑
i=1

δi
x2
i exp

(
−λ̂x2

i

)
ZNWR (xi, ς̂)

− α̂2β̂

n

n∑
i=1

δi
x2
i log [KNWR (xi, ς̂)]K

2β̂−1
NWR (xi, ς̂)hNWR (xi, ς̂)

VNWR (xi, ς̂)
[
1− exp

[
−α̂K β̂

NWR (xi, ς̂)
]]

+
α̂

n

n∑
i=1

δi

x2
iK

β̂−1
NWR (xi, ς̂)

 exp
(
−λ̂x2

i

)
1− exp

(
−λ̂x2

i

) +
hNWR (xi, ς̂)

VNWR (xi, ς̂)


×
{
1 + β̂ log [KNWR (xi, ς̂)]

}}
. Here

V (xi, ς) =
[
1− exp

(
−λx2

i

)]
×
[
1− exp

(
−α
{
− log

[
1− exp

(
−λx2

)]})]
.
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