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THE HIGHER FINITE DIFFERENCE METHOD FOR SOILVING THE
DYNAMICAL MODEL OF COVID-19

Amar Megrous

ABSTRACT. In the present paper, the SIR model tracks the numbers of susceptible,
infected and recovered individuals during an epidemic with the help of ordinary
differential equations (ODE). First, we give the model formulation of our phenom-
ena. Secondly, a fully discrete difference scheme is derived for the SIR model.At
the end of this aper, we give the simulation results of the model. A comparison of
the obtained numerical results of both the models is performed in the absence of
an exact solution.

1. INTRODUCTION

The novel human coronavirus disease 2019 (COVID-19) was first reported in
Wuhan, China, in 2019, and subsequently spread globally to become the fifth doc-
umented pandemic since the 1918 flu pandemic. By September 2021, almost two
years after COVID-19 [1] and [2]] was first identified, there had been more than
200 million confirmed cases and over 4.6 million lives lost to the disease. Here,
we take an in-depth look at the history of COVID-19 from the first recorded case
to the current efforts to curb the spread of the disease with worldwide vaccination
programes.
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The first official cases of COVID-19 were recorded on the 31st of December,
2019, when the World Health Organization (WHO) was informed of cases of pneu-
monia in Wuhan, China, with no known cause. On the 7th of January, the Chi-
nese authorities identified a novel coronavirus, temporally named 2019-nCoV, as
the cause of these cases. Weeks later, the WHO declared the rapidly spreading
COVID-19 outbreak as a Public Health Emergency of International Concern on the
30th of January 2020. It wasn’t until the following month, however, on the 11th
of February that the novel coronavirus got its official name - COVID-19. Nine days
later, the US Centers for Disease Control and Prevention (CDC) confirmed the first
person to die of COVID-19 in the country. The individual was a man in his fifties
who lived in Washington state.

A finite difference method [6]]- [[12] proceeds by replacing the derivatives in
the differential equations by finite difference approximations. This gives a large
algebraic system of equations to be solved in place of the differential equation
[14]]- [[18], something that is easily solved on a computer.

Mathematical modeling can be thought of as an iterative process made up of
the following components. (Note that the word tep is intentionally avoided to
highlight the lack of a prescribed ordering of these components, as some may
occur simultaneously and some may be repeated.)

The remainder of this paper is structured as follows. Section |2| discusses the
formulation of the model. In the section [3| we present the forward second order
accurate approximation to the first derivative. In section [4| we propose a new nu-
merical scheme for a spatially discrete model of total variation of indice :. Finally,
in the last section, We give some numerical results including both simulation and
an empirical example to study the proposed testing procedure in different times.

2. MODEL FORMULATION

The COVID-19 pandemic, among other pandemics from the past, has attracted
great attention not only from mathematicians but researchers from numerous
fields. It is assumed that the sum of the four categories S,I,R is equal to the total
population (M) at time t=0 (system parameters relate to the time t in days). Be-
sides, nowadays the researchers are devoting their research work to the fractional-
order COVID-19 mathematical models. A huge number of good research papers
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related to fractional-order COVID-19 mathematical models can be found in the
literature, some of them are the following [1]- [[2].

For nonlinear systems, we consider the effects of three unknown functions on
each other. A three by three system of nonlinear ordinary differential equations
has the form:
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FIGURE 1. The Model of SIR

This is because of two exposures over a small time period: a single contact pro-
duces infection at the rate C'IS, while the new infective individuals arise from
double exposures with C'12S. It produces further chance that the recovered indi-
vidual againmay catch infection.

Here we remark that the function ®(S,7) = CI(t)S(t)(1 + vI(t)), where both
C, v are positive constants. This is an interesting example for nonlinear incidence
rate already used by some authors [17, 31, 32].

The dynamics of the population are described by the following differential equa-

tions:
%ﬁf) =a—CI(t)(1+~I(t)) — pS(t) + aR(t),
2.1) %g) =CI)St)(L+7I(t) — (B+p+ 06 —Db)I(1),
MO _ 51(6) ~ (a + wRO).

The parameters involved in model (1) are described as in Table 1.

3. FORWARD SECOND ORDER ACCURATE APPROXIMATION TO THE FIRST DERIVATIVE

Develop a forward difference formula for fi(l) which is £ = O(h)? accurate. First
derivative with O(h) accuracy then the minimum number of nodes is 2. Then, the
first derivative with O(h) accuracy then need 3 nodes
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FIGURE 2. 3 NODES

The first forward derivative can therefore be approximated to O(h) as:

af

a1+ aa fi + asfizo

— F =
dx r=x; h
The T.S. eXpanSionS about Z; are:
fi - fi;

h2 h3
firr = i+ nf0 + 7fz‘(2) * Ef(g) +O0(h)*,
4
fove = fit 2h 0+ 202 (2 4 201+ O,

We substituting into our assumed form of and re-arranging

ar + aofin + asfi mtata a
1 2fJ;Ll sfive = ( h2 3 fi + (a2 +2a3)f¢(1) + (72 +2@3>hfi(2)

1 4 2 (3) 3
+ (6a2+ 3a3>h 9 4 0(h)?,

Desire fi(l) and 2" order accuracy then coefficient of fi(l) must equal unity and

coefficients of f; and f*’ must vanish

o1+ Qg + Qg

=0
h )
(O&Q + 2063) = 1,
(% " 2a3> h=0.
We solve these simultaneous equations
3
061:—5, Oé2:27 043:—5.

Thus the equation now becomes

—3fi+2fi1 — 3five
h
then we get

= O+ 2= DY+ OF2 + (52 55 )WY + O,

—3fi +4fi1 — firo
2h

7 = + S H(3) + O(h)"
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The forward difference approximation of 2nd order accuracy

—3fi +4fix1 — firo
2h

1
(3.1 fi(l) = + E where E = gthi(‘g).

4. THE DISCRETE MODEL

A finite difference method proceeds by replacing the derivatives in the differen-
tial equations by finite difference approximations. This gives a discrete model as

fellows:
—35; + 45;-;1 — Siya a— CIL(1+~IL) — pS; + aR;,
4.1) —31; + 42[;;1 —Iio _ C’IiSi(l + ’Yfi) —(B4+pu+d-0)I,
—3R; + 45}?1 — Ria _ BI; — (a+ p)R;.

After arrangement of the previous equations, we obtain:
Siva = —38; + 4841 — 2h(a — CL(1 + 1) — pS; + aR;,
(4.2) Livo = =2h(CLS;(1 +~L;) — (B+p+ 06 —b)L;) — 31; + 4144,
Rito = —2h(BL; — (a+ p)R;) — 3R; + 4R 11.

The initial conditions (ICs) for the above model are given as follows: S(0) > 0,
I(0) > 0 and R(0) > 0.

5. NUMERICAL RESULTS

In this section, we present some numerical results obtained by applying the new
methods. These results indicate the efficiency of the methods. Consider model
(4.2)) with the parameters given in Figure 3.

Using the differential equations of the SIR model and converting them to nu-
merical discrete forms, one can set up the recursive equations and calculate the S,
I, and R populations with any given initial conditions but accumulate errors over
a long calculation time from the reference point. Sometimes a convergence test
is needed to estimate the errors. Given a set of initial conditions and the disease-
spreading data, one can also fit the data with the SIR model and pull out the three
reproduction numbers when the errors are usually negligible due to the short time
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FIGURE 3. The Parameters in our Model
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step from the reference point. Let us now implement the model in MATLAB, using

the ode45 command to numerically solve differential equations. The script SIR.m

provided on the web page will also help you to plot the results as in Fig. 4 and

Fig.
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5 with runing the model with the preset parameters.
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