
ADV  MATH
SCI  JOURNAL

Advances in Mathematics: Scientific Journal 12 (2023), no.1, 287–306
ISSN: 1857-8365 (printed); 1857-8438 (electronic)
https://doi.org/10.37418/amsj.12.1.17

ON NIL SKEW GENERALIZED POWER SERIES REFLEXIVE RINGS

Eltiyeb Ali

ABSTRACT. Let R be a ring and (S,≤) a strictly ordered monoid. In this paper,
we deal with a new approaches to reflexive property for rings by using nilpotent
elements. In this direction we introduce the notions of (S, ω)-reflexive and (S, ω)-
nil-reflexive. Examples are given that, (S, ω)-nil-reflexive is not (S, ω)-reflexive.
Under some suitable conditions, we proved that, if R is a right APP -ring, then
R is (S, ω)-reflexive and R be a semiprime ring with the ACC on left annihilator
ideals, (S,≤) an a.n.u.p.-monoid, then R is (S, ω)-reflexive. Also, we proved that,
R is (S, ω)-nil-reflexive if and only if R/I is (S, ω)-nil-reflexive, R is (S, ω)-nil-
reflexive if and only if Tn(R) is (S, ω)-nil-reflexive and we will show that, if R is a
right Noetherian ring, then R is (S, ω)-nil-reflexive. Moreover, we investigate ring
extensions which have roles in ring theory.

1. INTRODUCTION

Throughout this article, all rings are associative with identity unless otherwise
stated. The notion of Armendariz ring is introduced by Rege and Chhawchharia
(see [1]). They defined a ring R to be Armendariz if f(x)g(x) = 0 implies aibj = 0,

for all polynomials f(x) = a0+a1x+a2x
2+ · · ·+amx

m, g(x) = b0+b1x+b2x
2+ · · ·+

bnx
n ∈ R[x]. Mason introduced the reflexive property for ideals, and this concept
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was generalized by some authors, defining idempotent reflexive right ideals and
rings, completely reflexive rings, weakly reflexive rings (see namely, [2], [3], [4]).
Let R be a ring and I be a right ideal of R. In [3], I is called a reflexive right ideal
if for any x, y ∈ R, xRy ⊆ I implies yRx ⊆ I. The reflexive right ideal concept is
also specialized to the zero ideal of a ring, namely, a ring R is called reflexive [3]
if its zero ideal is reflexive.

An ideal I of a ring is called semiprime if aRa ⊆ I implies a ∈ I for a ∈ R and
R is called semiprime if 0 is a semiprime ideal. Note that every semiprime ideal
is reflexive by a simple computation, and so every ideal of a fully idempotent ring
(i.e., I2 = I for every ideal I) is reflexive by [5]. Reflexive rings are generalized to
weakly reflexive rings in [3]. The ring R is said to be weakly reflexive if arb = 0

implies bra is nilpotent for a, b ∈ R and all r ∈ R. In [3], a ring R is called com-
pletely reflexive if for any a, b ∈ R, ab = 0 implies ba = 0. Completely reflexive
rings are called reversible by Cohn in [6] and also studied in [7]. The rings with-
out nonzero nilpotent elements are said to be reduced rings. Reduced rings are
completely reflexive and every completely reflexive ring is semicommutative, i.e.
according to [1], a ring R is called semicommutative if for all a, b ∈ R, ab = 0

implies aRb = 0. This is equivalent to the definition that any left (right) annihi-
lator of R is an ideal of R. In [8], semicommutativity of rings is generalized to
nil-semicommutativity of rings. A ring R is called nil-semicommutative if a, b ∈ R

satisfy that ab is nilpotent, then arb ∈ nil(R) for any r ∈ R where nil(R) de-
notes the set of all nilpotent elements of R. Clearly, every semicommutative ring
is nil-semicommutative.

Let R be a ring, (S,≤) a strictly ordered monoid, and ω : S →End(R) a monoid
homomorphism. For s ∈ S, let ωs denote the image of s under ω, that is, ωs = ω(s).

Let H be the set of all functions f : S → R such that the support supp(f) = {s ∈
S : f(s) ̸= 0} is artinian and narrow. Then for any s ∈ S and f, g ∈ H the set

Xs(f, g) = {(u, v) ∈ supp(f)× supp(g) : s = uv}

is finite. Thus one can define the product fg : S → R of f, g ∈ H as follows:

(fg)(s) =
∑

(u,v)∈Xs(f,g)

f(u)ωu(g(v))
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(by convention, a sum over the empty set is 0). With pointwise addition and multi-
plication as defined above, H becomes a ring, called the ring of skew generalized
power series with coefficients in R and exponents in S, see [9] and denoted by
[[RS,≤, ω]] (or by R[[S, ω]] when there is no ambiguity concerning the order ≤).

We will use the symbol 1 to denote the identity elements of the monoid S,

the ring R, and the ring [[RS,≤, ω]] as well as the trivial monoid homomorphism
1 : S →End(R) that sends every element of S to the identity endomorphism. A

subset P ⊆ R will be called S-invariant if for every s ∈ S it is ωs-invariant (that
is, ωs(P ) ⊆ P ). To each r ∈ R and s ∈ S, we associate elements cr, es ∈ [[RS,≤, ω]]

defined by

cr(x) =

 r, x = 1,

0, x ∈ S\{1},
, es(x) =

 1, x = s,

0, x ∈ S\{s}.

It is clear that r 7→ cr is a ring embedding of R into [[RS,≤, ω]] and s 7→ es, is a
monoid embedding of S into the multiplicative monoid of the ring [[RS,≤, ω]], and
escr = cωs(r)es.

Motivated by the works on reflexivity, in this note we study new two concepts of
reflexive property, namely, skew generalized power series reflexive (S, ω)-reflexive,
and nilpotent property of it ((S, ω)-nil-reflexive). Examples are given that, (S, ω)-
nil-reflexive is not (S, ω)-reflexive. We proved that If R is a right APP -ring, then
R is (S, ω)-reflexive. Also we prove that, R is (S, ω)-nil-reflexive if and only if R/I

is (S, ω)-nil-reflexive, and R is (S, ω)-nil-reflexive if and only if Tn(R) is (S, ω)-nil-
reflexive, when n is a positive integer. If R be a semiprime ring with the ACC

on left annihilator ideals, (S,≤) an a.n.u.p.-monoid and ω : S →Aut(R) a monoid
homomorphism, then R is (S, ω)-reflexive. Moreover, we proved that for right
Noetherian ring, then R is (S, ω)-nil-reflexive. Some results of (S, ω)-nil-reflexive
we discussed.

In what follows, we will write monoids multiplicatively unless otherwise in-
dicated. If R is a ring and X is a nonempty subset of R, then the left (right)
annihilator of X in R is denoted by ℓR(X)(rR(X)), and we will denote by End(R)

the monoid of ring endomorphisms of R, and by Aut(R) the group of ring au-
tomorphisms of R. Any concept and notation not defined here can be found in
Ribenboim ( [10]− [12]), Elliott and Ribenboim [13]. N and Z denote the set of
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natural numbers and the ring of integers, and for a positive integer n,Zn is the
ring of integers modulo n. For a positive integer n, let Matn(R) denote the ring
of all n × n matrices and Tn(R) the ring of all n × n upper triangular matrices
with entries in R. We write R[x], P (R), and Sn(R), for the polynomial ring over a
ring R, the prime radical of R, and the subring consisting of all upper triangular
matrices over a ring R with equal main diagonal entries.

2. ON SKEW GENERALIZED POWER SERIES REFLEXIVE RINGS

In the following we discus some results for (S, ω)-reflexive rings which is an
extend to the definition of S-reflexive rings by [14]. Clark defined quasi-Baer rings
in [15]. A ring R is called quasi-Baer if the left annihilator of every left ideal of
R is generated by an idempotent. Note that this definition is left-right symmetric.
Some results of a quasi-Baer ring can be found in [15] and [16] and used them
to characterize when a finite dimensional algebra with unity over an algebraically
closed field is isomorphic to a twisted matrix units semigroup algebra. A ring R

is called a right (resp., left) PP -ring if every principal right (resp., left) ideal is
projective (equivalently, if the right (resp., left) annihilator of an element of R is
generated (as a right (resp., left) ideal) by an idempotent of R). A ring R is called
a PP -ring (also called a Rickart ring [17, p. 18]) if it is both right and left PP. We
say a ring R is a left APP -ring if the left annihilator lR(Ra) is right s-unital as an
ideal of R for any element a ∈ R.

As a generalization of quasi-Baer rings, Birkenmeier, Kim and Park in [18] intro-
duced the concept of principally quasi-Baer rings. A ring R is called left principally
quasi-Baer (or simply left p.q.-Baer) if the left annihilator of a principal left ideal
of R is generated by an idempotent. Similarly, right p.q.-Baer rings can be defined.

A ring is called p.q.-Baer if it is both right and left p.q.-Baer. Observe that bireg-
ular rings and quasi-Baer rings are p.q.-Baer. For more details and examples of left
p.q.-Baer rings, see [18], [19] and [20]. We say a ring R is a left APP -ring if the
left annihilator lR(Ra) is right s-unital as an ideal of R for any element a ∈ R. This
concept is a common generalization of left p.q.-Baer rings and right PP -rings.

According to [21], a ring R is called quasi-Armendariz if whenever polynomials
f(x) = a0+a1x+a2x

2+ · · ·+amx
m, g(x) = b0+b1x+b2x

2+ · · ·+bnx
n ∈ R[x] satisfy

f(x)R[x]g(x) = 0, then aiRbj = 0 for each i, j. It was proved in [7, Proposition
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2.4] that if R is an Armendariz ring, then R is completely reflexive if and only if
R[x] is completely reflexive. In [22], a ring R is called (S, ω)-quasi-Armendariz,
if whenever f, g ∈ [[RS,≤, ω]] ≡ A, fAg = 0 implies f(u)Rωu(g(v)) = 0 for all
u, v ∈ S. We start by the first concept in this paper.

Definition 2.1. Let R be a ring, (S,≤) a strictly ordered monoid, and ω : S →End(R)

a monoid homomorphism. The ring R is called skew generalized power series re-
flexive ((S, ω)-reflexive), if whenever f [[RS,≤, ω]]g = 0 for f, g ∈ [[RS,≤, ω]], then
g[[RS,≤, ω]]f = 0.

Let S = (N ∪ {0},+) and ≤ is the usual order. Then, [[RS,≤, ω]] ∼= R[[x]]. Let ω
be the trivial order. Then the ring R is (S, ω)-reflexive, if and only if, R is power
series reflexive.

The following result appeared in [23].

Definition 2.2. Let R be a ring, (S,≤) a strictly ordered monoid and ω : S →End(R)

a monoid homomorphism. The ring R is said to be S-compatible (resp. S-rigid) if ωs

is compatible (resp. rigid) for every s ∈ S; to indicate the homomorphism ω, we will
sometimes say that R is (S, ω)-compatible (resp. (S, ω)-rigid).

The following results appeared in [23] and [24].

Lemma 2.1. Let R be a ring, (S,≤) a strictly ordered monoid and ω : S → End(R)

a monoid homomorphism. Then [[RS,≤, ω]] is reduced if and only if R is reduced.

Let R be a ring, (S1,≤1), (S2,≤2), . . . , (Sn,≤n) be strictly ordered monoid, and
ωi : Si → End(R) be a monoid homomorphism for every i. Define ω : S → End(R)

as
ω(s1, s2, . . . , sn) = ωs1ωs2 · · ·ωsn .

That is,
ω(s1,s2,...,sn) = ωs1ωs2 · · ·ωsn .

Then ω is well-defined.

Lemma 2.2. If R is Si-compatible for each i, then R is S-compatible.

A ring R is symmetric if for all a, b, c ∈ R we have abc = 0 implies that acb = 0.

A ring R is called reversible if for all a, b ∈ R we have ab = 0 if and only if ba = 0.

Reversible rings were defined by Cohn in [6]. Reversible rings are clearly reflexive.
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It is shown by [4, Lemma 2.1] that a ring R is reflexive if and only if IJ = 0 implies
JI = 0 for all ideals I, J of R. These arguments naturally give rise to extending
the study of symmetric ring property to the lattice of ideals. A generalization of
symmetric rings was defined by Camillo, Kwak and Lee in [25]. A ring R is called
ideal-symmetric if IJK = 0 implies IKJ = 0 for all ideals I, J,K of R. It is obvious
that semiprime rings are ideal-symmetric.

Theorem 2.1. Let R be a ring, (S,≤) a strictly ordered monoid and ω : S → End(R)

a monoid homomorphism. Assume that R is S-compatible (S, ω)-quasi-Armendariz.
Then we have:

(i) R is reflexive if and only if [[RS,≤, ω]] is reflexive.
(ii) R is ideal-symmetric if and only if [[RS,≤, ω]] is ideal-symmetric.

Proof. We only prove (ii), because the proof of the other case is similar. As-
sume that R is ideal-symmetric and f1, f2, f3 ∈ H = [[RS,≤, ω]] are such that
f1Hf2Hf3 = 0. Since R is an S-compatible (S, ω)-quasi-Armendariz, we have
f1(u)Rf2(v)Rf3(w) = 0 for all u, v, w ∈ S. Since R is ideal-symmetric, we have
f1(u)Rf3(w)Rf2(v) = 0. Now, by compatibility of R implies that, f1Hf3Hf2 =

0. Hence H is ideal-symmetric. Conversely, suppose that H is ideal-symmetric.
Let aRbRc = 0 for all a, b, c ∈ R. Since R is an S-compatible, caHcbHcc = 0.

Thus caHccHcb = 0 and aRcRb = 0 for all a, b, c ∈ R. Therefore, R is ideal-
symmetric. □

Proposition 2.1. Let R be a ring, (S,≤) a strictly ordered monoid and ω : S →
End(R) a monoid homomorphism. If R is S-compatible and semicommutative ring,
then R is (S, ω)-Armendariz if and only if R is (S, ω)-reflexive.

Proof. The proof is clear. □

An ideal I of R is said to be right s-unital if, for each a ∈ I there exists an
element e ∈ I such that ae = a. Note that if I and J are right s-unital ideals, then
so is I ∩ J (if a ∈ I ∩ J, then a ∈ aIJ ⊆ a(I ∩ J)).

The following result follows from Tominaga [26, Theorem 1].

Lemma 2.3. An ideal I of a ring R is left (resp. right) s-unital if and only if for
any finitely many elements a1, a2, . . . , an ∈ I, there exists an element e ∈ I such that
ai = eai(resp. ai = aie) for each i = 1, 2, . . . , n.



ON NIL SKEW GENERALIZED POWER SERIES REFLEXIVE RINGS 293

According to [27], a ring R with a monomorphism α is called α-weakly rigid if
for each a, b ∈ R, aRb = 0 if and only if aα(Rb) = 0. For any positive integer n,

a ring R is α-weakly rigid if and only if, the n × n upper triangular matrix ring
Tn(R) is α-weakly rigid. Also if R is a semiprime α-weakly rigid ring, then the
ring of polynomials R[X], for X an arbitrary nonempty set of indeterminates, is a
semiprime α-weakly rigid ring. For every prime ring R and any automorphism α,
the rings Tn(R), R[X] and the power series ring R[[X]] are α-weakly rigid rings.

Definition 2.3. [28] Let R be a ring, (S,≤) a strictly ordered monoid and ω : S →
End(R) a monoid homomorphism. We say R is S-weakly rigid if ωs is weakly rigid
monomorphism for every s ∈ S.

Theorem 2.2. Let R be a ring, (S,≤) a strictly ordered monoid and ω : S → End(R)

a monoid homomorphism. If R is right APP -ring and ωs is an automorphism for
each s ∈ S and R is S-weakly rigid, then R is (S, ω)-reflexive.

Proof. Let 0 ̸= f, g ∈ [[RS,≤, ω]] with f [[RS,≤, ω]]g = 0. By Ribenbiom [11], there
exists a strict total order ≤′ on S, which is finer than ≤ (that is, for all u0, v0 ∈
S, u0 ≤ v0 implies u0 ≤′ v0). We will use transfinite induction on the strictly totally
ordered set (S,≤′) to show that g[[RS,≤, ω]]f = 0. For any u, v ∈ S, let u0 and v0

denote the minimum elements of supp(f) and supp(g) in the ≤′ order, respectively.
If u ∈ supp(f) and v ∈ supp(g) are such that u + v = u0 + v0, then u0 ≤′ u and
v0 ≤′ v. If u0 <′ u, then u0 + v0 <′ u + v = u0 + v0, a contradiction. Thus u = u0.

Similarly, v = v0. Hence

0 = (fctg)(u0 + v0) =
∑

(u,v)∈Xu0+v0 (f,ctg)

f(u)ωu(tg(v)) = f(u0)ωu0(tg(v0)).

So by rigidness f(u0)Rg(v0) = 0, and g(v0)Rf(u0) = 0, Now, let λ ∈ S with
u0+ v0 ≤ λ and assume that for any u ∈ supp(f) and any v ∈ supp(g), if u+ v < λ,

then f(u)Rg(v) = 0. We claim that f(u)Rg(v) = 0, for each u ∈ supp(f) and each
v ∈ supp(g) with u+ v = λ. For convenience, we write Xλ(f, g) = {(u, v) | u+ v =

λ, u ∈ supp(f), v ∈ supp(g)} as {(ui, vi) | i = 1, 2, . . . , n} such that u1 < u2 < · · · <
un, where n is a positive integer (Note that if u1 = u2, then from u1 + v1 = u2 + v2

we have v1 = v2, and then (u1, v1) = (u2, v2)). Since f [[RS,≤, ω]]g = 0, for any t ∈ R
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we have:

0 = (fctg)(λ) =
∑

(u,v)∈Xλ(f,ctg)

f(u)ωu(tg(v)) =
n∑

i=1

f(ui)ωui
(tg(vi)). (2.1)

Note that u1vi ≺ uivi = λ for any i = 2, hence by induction hypothesis,
f(u1)Rωu1(g(vi)) = 0. Since ωu1 is automorphism, there exists y1 ∈ R such that
ωu1(y1) = f(u1). Then ωu1(y1Rg(vi)) = f(u1)Rωu1(g(vi)) = 0. Consequently y1Rg(vi) =

0, for i = 2. Hence g(vi) ∈ rR(y1R), for i = 2. By hypothesis, rR(y1R) is left s-unital,
and hence by Lemma 3.3, there exists eu1 ∈ rR(y1R) such that g(vi) = eu1g(vi), for
i = 2. Let t′ ∈ R be an arbitrary element. Since y1Reu1 = 0, f(u1)ωu1(Reu1g(v1)) =

0. Hence f(u1)ωu1(t
′eu1g(v1)) = 0. Take t = t′eu1 in (2.1). Hence

n∑
i=2

f(ui)ωui
(tg(vi)) = 0. (2.2)

Now, (2.1) and (2.2), imply that f(u1)ωu1(Rg(v1)) = 0. Since and ωu1 is automor-
phism, we have, f(u1)Rωu1(g(v1)) = 0.

Next, note that u2vi ≺ uivi = w for any i = 3, so by induction hypothesis,
f(u2)Rωu2((g(vi))) = 0. Since ωu2 is an automorphism, there exists y2 ∈ R such
that ωu2(y2) = f(u2). So y2Rg(vi) = 0, for i = 3. Hence g(vi) ∈ rR(y2R), for i = 3.

By hypothesis, rR(y2R) is left s-unital, and hence by using again Lemma 3.3, there
exists eu2 ∈ rR(y2R) such that g(vi) = eu2g(vi), for i = 3. Let t′ ∈ R be an arbitrary
element. Since y2Reu2 = 0, f(u2)ωu2(Reu2g(v2)) = 0. Hence f(u2)ωu2(t

′eu2g(v2)) =

0. Take t = t′eu2 in (2.2). We get
n∑

i=3

f(ui)ωui
(tg(vi)) = 0. (2.3)

Now, (2.2) and (2.3), imply that f(u2)ωu2(Rg(v2)) = 0. Since ωu2 is an auto-
morphism, we have f(u2)Rωu2(g(v2)) = 0. Continuing this process, we can de-
duce f(un−1)ωun−1(Rg(vn−1)) = 0, . . . , f(u2)ωu2(Rg(v2)) = 0, f(u1)ωu1(Rg(v1)) = 0.

Thus f(u)Rωu(g(v)) = 0. Therefore, by transfinite induction, for any u ∈ supp(f)

and any v ∈ supp(g) with uv = w, and we have g(v)Rf(u) = 0. Thus g[[RS,≤, ω]]f =

0, and the proof is complete. □
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Corollary 2.1. Let R be an S-compatible ring, (S,≤) a strictly ordered monoid and
ω : S → End(R) a monoid homomorphism. If I is a finitely generated left ideal of R
then for all a ∈ lR(I), a ∈ alR(I). So R is (S, ω)-reflexive.

Proof. By Theorem 2.2 and [29, Proposition 2.6]. □

Corollary 2.2. Let R be an S-compatible ring, (S,≤) a strictly ordered monoid and
ω : S → End(R) a monoid homomorphism. If R is a Baer ring. Then R is (S, ω)-
reversible if and only if R is (S, ω)-reflexive.

It is obvious that commutative rings are symmetric and symmetric rings are re-
versible, but the converses do not hold by [30, Examples I.5 and II.5] and [31, Ex-
amples 5 and 7]. Every reversible ring is semicommutative, but the converse need
not hold by [7, Lemma 1.4 and Example 1.5]. On the other hand, it can be easily
checked that reversible rings are reflexive, and hence there exists a reflexive and
semicommutative ring which is not symmetric by [31, Examples 5 and 7]. How-
ever, we have the following which is a direct consequence of routine computations.

Proposition 2.2. Let R be a reduced ring, (S,≤) a strictly ordered monoid and
ω : S → End(R) a monoid homomorphism. Then R is semicommutative and (S, ω)-
reversible if and only if R is (S, ω)-reflexive.

A ring R is called semiprime if for any a ∈ R, aRa = 0, implies a = 0. Let R
be a ring and (S,≤) a strictly totally ordered monoid. A ring R is called (S, ω)-
semiprime if f [[RS,≤, ω]]f = 0, then f = 0 for each f ∈ [[RS,≤, ω]].

The following result appeared in [32]

Lemma 2.4. Let R be a ring, (S,≤) a strictly ordered monoid and ω : S → End(R)

a monoid homomorphism. Then R is a semiprime ring if and only if [[RS,≤, ω]] is a
semiprime ring.

One can find the next definition in [23].

Definition 2.4. Let (S,≤) be an ordered monoid. We say that (S,≤) is an artinian
narrow unique product monoid (or an a.n.u.p. monoid, or simply a.n.u.p.) if for
every two artinian and narrow subsets X and Y of S there exists a u.p. element in
the product XY. We say that (S,≤) is quasitotally ordered (and that ≤ is a quasitotal
order on S) if ≤ can be refined to an order ⪯ with respect to which S is a strictly
totally ordered monoid.
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For any ordered monoid (S,≤), the following chain of implications holds:

S is commutative, torsion-free, and cancellative

⇓

(S,≤) is quasitotally ordered

⇓

(S,≤) is a.n.u.p.

⇓

S is u.p.

The converse of the bottom implication holds if ≤ is the trivial order. For more
details, examples, and interrelationships between these and other conditions on
ordered monoids, we refer the reader to [33].

Theorem 2.3. Let R be a semiprime ring with the ACC on left annihilator ideals,
(S,≤) an a.n.u.p.-monoid and ω : S →Aut(R) a monoid homomorphism. If R is
S-weakly rigid, then R is (S, ω)-reflexive.

Proof. Assume on the contrary that there exist f and g in R[[S, ω]] such that
fR[[S, ω]]g = 0 and f(u)Rωu(g(v)) ̸= 0 for some u, v ∈ S. Since R is semiprime,
the intersection of all minimal prime ideals of R is equal to (0). Hence there exists
a minimal prime ideal P ∗ of R such that f(u)Rωu(g(v)) ̸⊆ P ∗. Thus the sets

X = {u ∈ S|f(u) ̸∈ P ∗} and Y = {v ∈ S|(∃u ∈ S)ωu(g(v)) ̸∈ P ∗}

are non-empty. Since X ⊆ supp(f) and Y ⊆ supp(g), X and Y are artinian and
narrow subsets of S, and since S is an a.n.u.p.-monoid, there exists (a, b) ∈ X × Y

such that ab is a u.p.-element of XY. Let r be an arbitrary element of R. Since
fcrg = 0, we obtain

0 = (fcrg)(ab) = f(a)ωa((rg(b)) +
∑

(u,v)∈Xab(f,crg)\{(a,b)}

f(u)ωu(rg(v)). (2.4)

Observe that if (u, v) ∈ Xab(f, crg) \ (a, b), then since ab is a u.p.-element of XY,

we have u ̸∈ X or v ̸∈ Y, and thus f(u)ωu(Rg(v)) ⊆ P ∗. So (2.4) implies that
f(a)ωa(Rg(b)) ⊆ P ∗. Because ωa is surjective, we have f(a)Rωa(g(b)) ⊆ P ∗. Since
a ∈ X, it follows that ωa(g(b)) ∈ P ∗. On the other hand, since R is semiprime
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with the ACC on left annihilator ideals, lR(Rωa(g(b))R) = ∩n
i=1Pi such that Pi

is minimal prime which Rωa(g(b))R ̸⊆ P ∗
i , for each 1 ≤ i ≤ n, by [34, Lemma

11.40, Theorem 11.43]. Now, if lR(Rωa(g(b))R) ⊆ P ∗ which contradicts P ∗ being
a minimal prime. Therefore lR(Rωa(g(b))R) ̸⊆ P ∗. Hence yRωa(g(b)) = 0 for some
y ∈ R\P ∗. Because R is S-weakly rigid, we have yRωu(g(b)) = 0 for every u ∈ S,

thus b ̸∈ Y. This final contradiction, we have g(v)Rf(u) = 0. Thus R is (S, ω)-
reflexive. □

Corollary 2.3. Let R be a left PP ring or a right p.q.-Baer ring, (S,≤) a quasitotally
ordered monoid and ω : S → Aut(R) a monoid homomorphism. Then R is (S, ω)-
reflexive.

3. ON NIL SKEW GENERALIZED POWER SERIES REFLEXIVE RINGS

In this section, we first give the following concept, so called nil skew gener-
alized power series reflexive, that is a generalization of skew generalized power
series reflexive and study the relations between nil skew generalized power series
reflexive and some certain classes of rings.

Definition 3.1. Let (S,≤) a strictly ordered monoid and ω : S → End(R) a monoid
homomorphism. A ring R is called nil skew generalized power series reflexive ((S, ω)-
nil-reflexive) if whenever f, g ∈ [[RS,≤, ω]] satisfy fhg ∈ [[nil(R)S,≤, ω]] implies ghf ∈
[[nil(R)S,≤, ω]] for each h ∈ [[RS,≤, ω]].

Let S = (N ∪ {0},+) and ≤ is the usual order. Then, [[RS,≤, ω]] ∼= R[[x]]. Let ω
be the trivial order. Then the ring R is (S, ω)-nil-reflexive, if and only if, R is nil

power series reflexive.
In [14] Ali, show that there are nil generalized power series reflexive over which

matrix rings need not be generalized power series reflexive. In the next, we pro-
vide some examples for nil skew generalized power series reflexive rings. It is
show that, nil skew generalized power series reflexive need not be skew general-
ized power series reflexive.

Lemma 3.1. [24, Lemma 2.5] Let ω : S →End(R) a monoid homomorphism. For
each a, b ∈ R, each s ∈ S, the followings holds:

(i) ab ∈ nil(R) ⇔ aωs(b) ∈ nil(R).
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(ii) ab ∈ nil(R) ⇔ ωs(a)b ∈ nil(R).

Example 1. Let (S,≤) a strictly ordered monoid and ω : S → End(R) monoid
homomorphism. Assume that R is S-compatible. Then

(i) If R is a reduced ring with nil(R) an ideal of R. Then R is (S, ω)-nil-reflexive.
(ii) For any reduced ring R, the ring Tn(R) is (S, ω)-nil-reflexive. However, the

ring of all 2×2 matrices over any field and satisfying the condition that 0 ≤ s

for every s ∈ S is not (S, ω)-nil-reflexive.
(iii) For R be a reduced ring. Consider the ring

Sn(R) =




a a12 a13 · · · a1n

0 a a23 · · · a2n

0 0 a · · · a3n
...

...
... . . . ...

0 0 0 · · · a

 | a, aij ∈ R; 1 ≤ i, j ≤ n


.

Then Sn(R) is not (S, ω)-reflexive, when n ≥ 4, but Sn(R) and R are (S, ω)-
nil-reflexive for all n ≥ 1.

Proof. (i) Assume that f, g ∈ [[RS,≤, ω]], with fhg is nilpotent for all h ∈ [[RS,≤, ω]].

So there exists a positive integer n such that (fhg)n = 0. By compatibility, there-
fore (f(u)h(w)g(v))n = 0, for any u, v, w ∈ S. Then f(u)h(w)g(v) ∈ nil(R) and so
g(v)h(w)f(u)g(v)h(w)f(u) ∈ nil(R). Hence g(v)h(w)f(u) is nilpotent. Thus, ghf
is nilpotent.

(ii) For a ring R, by [37], nil(Tn(R)) =


nil(R) R R · · · R

0 nil(R) R · · · R

0 0 nil(R) · · · R
...

...
... . . . ...

0 0 0 · · · nil(R)

 .

Let R be a reduced ring. Then nil(R) = 0 and so nil(Tn(R)) is an ideal. By
(i), Tn(R) is (S, ω)-nil-reflexive. For (S,≤) a strictly ordered monoid. Let the
element s ̸= 1. We show that the ring M2(R) of 2 × 2 matrices over R is not
(S, ω)-nil-reflexive, where ω : S →End(M2(R)) is a monoid homomorphism given
by ωs((aij)) = (ωs(aij)) for all s ∈ S. Let f = cE12 + cE11es and g = cE11+E12 −
(cE21+E22)es be elements of M2(R)[[S, ω]]. Then fg = 0 ∈ nil(M2(R))[[S, ω]]. But
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f(s)ωs((g(1)) =

(
1 1

0 0

)
is not nilpotent. Thus M2(R) is not (S, ω)-nil-reflexive.

(iii) By the same argument as in [14, Example 3.2] that Sn(R) is not (S, ω)-
reflexive when n ≥ 4. Since R is reduced, R is (S, ω)-nil-reflexive. Note that

nil(Sn(R)) =




a a12 a13 · · · a1n

0 a a23 · · · a2n

0 0 a · · · a3n
...

...
... . . . ...

0 0 0 · · · a

 | a ∈ nil(R), aij ∈ R; 1 ≤ i, j ≤ n


.

The ring R being reduced implies that nil(Sn(R)) is an ideal. By (i), Sn(R) is
(S, ω)-nil-reflexive. □

By Example 1(ii), for n by n upper triangularmatrix ring over R. It is easy to
verify the next proposition.

Proposition 3.1. Let R be a ring, (S,≤) a strictly ordered monoid and ω : S →
End(R) a monoid homomorphism. If R is S-compatible. Then R is (S, ω)-nil-
reflexive if and only if Tn(R) is (S, ω)-nil-reflexive, for any positive integer n.

Proof. Suppose that Tn(R) is (S, ω)-nil-reflexive. Note that R is isomorphic to the
subring of Tn(R). Thus R is (S, ω)-nil-reflexive, since each subring of (S, ω)-nil-
reflexive ring is also (S, ω)-nil-reflexive. For the forward implication, first consider
the map ϕ : Tn(R)[[S, ω]] → Tn([[R[[S, ω]]), given by ϕ(f) = fij where fij(s) =

(f(s))ij for all s ∈ S and the (f(s))ij is the (i, j)th entry of f(s). It is easy to show
that ϕ is an isomorphism. Now, assume that f, g ∈ Tn(R)[[S, ω]] such that fhg ∈
nil(Tn(R)[[S, ω]]). Since nil(Tn(R)) = {(aij)|aij ∈ nil(R)}, by the above isomor-
phism we have fiihiigii ∈ nil(R) for each 1 ≤ i ≤ n. Since R is (S, ω)-nil-reflexive,
there exists some positive integer mu,w,v,i such that (fii(u)ωu(hii(w)gii(v)))

mu,w,v,i =

0 for any i and any u,w, v ∈ S. Let mu,w,v = max{mu,w,v,i|1 ≤ i ≤ n}. Then
(fii(u)ωu(hii(w)gii(v)))

m = 0, so gii(v)ωv(hii(w)fii(u)) is nilpotent. Therefore, Tn(R)

is (S, ω)-nil-reflexive. □

Lemma 3.2. [14] Let S be a torsion-free and cancellative monoid, ≤ a strict order
on S. The following conditions are equivalent for a ring R, u ∈ S.

(i) f(u)R ⊆ nil(R) for any f(u) ∈ nil(R).
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(ii) Rf(u) ⊆ nil(R) for any f(u) ∈ nil(R).

The next result gives a source of nil skew generalized power series reflexive.

Proposition 3.2. Let S be a torsion-free and cancellative monoid and ω : S →
End(R) a monoid homomorphism. If R is S-compatible, that f(u)R ⊆ nil(R) for
any f(u) ∈ nil(R), for each u ∈ S. Then R is (S, ω)-nil-reflexive.

Proof. Assume that f, g ∈ [[RS,≤, ω]] with fhg ∈ [[nil(R)S,≤, ω]] for any h ∈ [[RS,≤, ω]].

So there exists a positive integer n such that (fhg)n = 0. Therefore,
(f(u)ωu(h(w)g(v)))

n = 0, for any u, v, w ∈ S. So f(u)ωu(h(w)g(v)) ∈ nil(R), by
hypothesis and compatibility, f(u)g(v)R ⊆ nil(R). Hence g(v)h(w)f(u) ∈ nil(R)

for any h(w) ∈ R. Thus, ghf ∈ [[nil(R)S,≤, ω]]. □

By [41, Lemma 3.1], in a semicommutative ring R, nil(R) is an ideal of R. In [3,
Example 2.1] shows that any semicommutative ring need not be reflexive, but
in [35] show that every nil-semicommutative is nil-reflexive. Since any (S, ω)-
Armendariz is (S, ω)-quasi-Armendariz. Here we have.

Proposition 3.3. Let R be a ring, (S,≤) a strictly ordered monoid and ω : S →
End(R) a monoid homomorphism. Assume that R is (S, ω)-Armendariz and S-
compatible. Then R is (S, ω)-nil-reflexive.

Proof. Let f, g ∈ [[RS,≤, ω]] be such that (fhg) ∈ [[nil(R)S,≤, ω]] for some positive
integer n, (fhg)n = 0. Then fcrg = 0 and hence f(u)ωu(rg(v)) ∈ nil(R), for all
r ∈ R and all u, v ∈ S. Thus, f(u)Rωu(g(v)) ∈ nil(R). Since R is (S, ω)-Armendariz,
them R is abelian, for each u,w, v ∈ S we have g(v)h(w)f(u) ∈ nil(R). □

Corollary 3.1. Let R be a ring, (S,≤) a strictly ordered monoid and ω : S → End(R)

a monoid homomorphism. Assume that R is (S, ω)-Armendariz and ωs is compatible
for some s ∈ S. Then [[RS,≤, ω]] is nil-semicommutative.

Proposition 3.4. Let R be a ring, (S,≤) a strictly ordered monoid and ω : S →
End(R) a monoid homomorphism. Assume that R is S-compatible and semicommu-
tative ring, then R is (S, ω)-nil-Armendariz if and only if R is (S, ω)-nil-reflexive.

Proof. The proof is clear. □
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Corollary 3.2. Let R be a ring, (S,≤) a strictly ordered monoid and ω : S → End(R)

a monoid homomorphism. Assume that R is S-compatible and (S, ω)-reversible ring,
then R is (S, ω)-nil-reflexive.

Let I be an index set and Ri be a ring for each i ∈ I. Let (S,≤) be a strictly
ordered monoid, if there is an injective homomorphism f : R →

∏
i∈I Ri such

that, for each j ∈ I, πjf : R → Rj is a surjective homomorphism, where πj :∏
i∈I Ri → Rj is the jth projection.

Proposition 3.5. Let (S,≤) a strictly ordered monoid and ω : S → End(R) a monoid
homomorphism. Assume that R is S-compatible. If R is finite subdirect product of
(S, ω)-nil-reflexive rings, then R is (S, ω)-nil-reflexive ring.

Proof. Let Ik(k = 1, . . . , l) be ideals of R such that R/Ik is (S, ω)-nil-reflexive ring
and

⋂l
k=1 Ik = 0. Let f and g be in [[RS,≤, ω]] with fhg ∈ [[nil(R)S,≤, ω]], for all

h ∈ [[RS,≤, ω]]. Clearly f̄ h̄ḡ ∈ [[nil(R/Ik)
S,≤, ω]]. Since R/Ik is (S, ω)-nil-reflexive,

by compatibility, we have (f(u)h(w)g(v))ru,w,v,k ∈ Ik, for each u,w, v ∈ S and k =

1, . . . , l. Assume that ru,w,v = max{ru,w,v,k|k = 1, . . . , l}. So (f(u)h(w)g(v))ru,w,v ∈⋂l
k=1 Ik = 0. Hence f(u)h(w)g(v) ∈ nil(R), for each u,w, v ∈ S, then g(v)h(w)f(u)

∈ nil(R). Thus, ghf ∈ [[nil(R)S,≤, ω]], and we are done. □

Lemma 3.3. [24, Definition 2.24] Let R be a ring, (S,≤) a strictly ordered monoid
and ω : S →End(R) a monoid homomorphism. We say that a ring R is completely
S-compatible if, for any ideal I of R, R/I is S-compatible, to indicate the homomor-
phism ω, we will sometimes say that R is completely (S, ω)-compatible.

Proposition 3.6. Let (S,≤) a strictly ordered monoid and ω : S → End(R) a monoid
homomorphism. If R is (S, ω)-nil-reflexive, completely S-compatible and rR(I) is S-
invariant for an ideal I of R, then R/rR(I) is (S, ω)-nil-reflexive.

Proof. Let A = rR(I). Suppose that f, g ∈ (R/A)[[S, ω]] such that fhg

∈ [[nil(R/A)S,≤, ω]], for any h ∈ [[(R/A)S,≤, ω]]. Hence, we have (fhg)(s) ∈ A and
s ∈ S. Then yfhg(s) = 0 for all y ∈ I and s ∈ S. It follows that (cyf)R[[S, ω]]g = 0

for all y ∈ I. Since R is (S, ω)-nil-reflexive, there exist some positive integer
n, such that (yf(s)Rωs(g(v)))

n = 0, by Lemma 3.2 and Lemma 3.3, we obtain
yg(v)Rωv(f(s)) ∈ nil(R) for each s, v ∈ S and y ∈ I. Thus g(v)Rωv(f(s)) ∈ A.

Then g(v)(R/A)ωv(f(s)) = 0 for all s, v ∈ S, and therefore R/A is (S, ω)-nil-
reflexive. □



302 Eltiyeb Ali

By combining Theorem 2.2 and Proposition 3.6, we obtain the following corol-
lary.

Corollary 3.3. Let R be a right APP -ring, (S,≤) a quasitotally ordered monoid and
ω : S → Aut(R) a monoid homomorphism. Then R/A is (S, ω)-nil-reflexive and
R is completely S-compatible ring, where A is an S-invariant right annihilator of a
principal right ideal in R.

Let I be an index set and Ri a ring for each i ∈ I. Let (S,≤) be a strictly
ordered monoid and ωi : S → End(Ri) a monoid homomorphism. Then the
mapping ω : S → End(

∏
i∈I Ri) is a monoid homomorphism given by ωs({ri}i∈I) =

{(ωi)s(ri)}i ∈ I for all s ∈ S.

Proposition 3.7. Let I be an index set and Ri a reducsd ring for each i ∈ I. Assume
that (S,≤) is a strictly ordered monoid and ωi : S → End(Ri) a monoid homo-
morphism, for each i ∈ I. If each Ri is (S, ωi)-nil-reflexive, then R =

∏
i∈I Ri is

(S, ω)-nil-reflexive ring.

Proof. Let f, g ∈ [[RS,≤, ω]] with fhg ∈ [[nil(R)S,≤, ω]] for any h ∈ [[RS,≤, ω]]. By
a similar argument as in [14, Proposition 2.18], we can see that there exists an
isomorphism of rings φ : [[RS,≤, ω]] → [[

∏
i∈I(R)S,≤i , ωi]] defined by φ(f) = (fi)i∈I

where fi = πiof. Thus, in [[RS,≤
i , ωi]] we have fi[[R

S,≤
i , ωi]]gi = 0 for all i ∈ I.

Since each Ri is (S, ωi)-nil-reflexive, there exist some positive integer m, such that
(fihigi)

m = 0, for any hi ∈ [[RS,≤
i , ωi]], and we have (fi(u)Ri(ωiu(hi(w)(gi(v))))

mu,w,v

∈ nil(Ri) for all u,w, v ∈ S, mu,w,v = max{mu,w,v,i|1 ≤ i ≤ n}. and for all i ∈ I.

by reduced ring, it follows that g(v)Rωv(f(u)) =∈ nil(R) for all u, v ∈ S. Thus,
ghf ∈ [[nil(R)S,≤, ω]] and hence R is (S, ω)-nil-reflexive. □

Proposition 3.8. Let R be an abelian ring, (S,≤) a strictly ordered monoid and
ω : S → End(R) a monoid homomorphism. If the endomorphism ωs is idempotents-
tabilizing, for every s ∈ S, then the following statements are equivalent:

(i) R is (S, ω)-nil-reflexive;
(ii) eR and (1− e)R are (S, ω)-nil-reflexive, for each idempotent e ∈ R;

(iii) Re and R(1− e) are (S, ω)-nil-reflexive, for each idempotent e ∈ R.

Proof. (i) ⇒ (ii) and (ii) ⇒ (iii) are clear.
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(iii) ⇒ (i) Let f, g ∈ R[[S, ω]] with fhg ∈ nil(R)[[S, ω]], for all h ∈ R[[S, ω]]

Let e be an idempotent of R. It is easy to see that ce is an idempotent element of
R[[S, ω]] and ceg = gce for every g ∈ R[[S, ω]]. Then (cef)(ceh)(ceg) ∈ nil(eR)[[S, ω]]

and ((1− ce)f)((1− ce)h)((1− ce)g) ∈ nil((1− e)R)[[S, ω]] (as ce is central). Since
eR, (1 − e)R are (S, ω)-nil-reflexive, we have ef(u)ωu(eh(w)(eg(v))) ∈ nil(R) and
(1 − e)f(u)ωu((1 − e)h(w)((1 − e)g(v))) ∈ nil(R) for all u,w, v ∈ S. On the other
hand, since ωs is idempotent-stabilizing, one can see that ef(u)ωu(eh(w)eg(v))) =

ef(u)ωu(h(v)(g(v))) = e(f(u)h(v)g(v)). Similarly, we have (1−e)f(u)ωu((1−e)h(w)

((1 − e)g(v))) = (1 − e)f(u)ωu(h(w)(g(v))) = (1 − e)(f(u)h(w)g(v)). Hence ef(u)

h(w)g(v) and (1 − e)f(u)h(w)(g(v)) ∈ nil(R) for all u,w, v ∈ S. It follows that
f(u)h(w)(g(v)) ∈ nil(R), so g(v)h(w)f(u) ∈ nil(R). Thus ghf ∈ nil(R)[[S, ω]]. □

In the next, we investigate the relations between a ring R and R/I for some
ideal I of R in terms of nil skew generalized power series reflexivity. By Theorem
2.1, symmetric ring is nil skew generalized power series reflexive.

Theorem 3.1. Let (S,≤) a strictly ordered monoid and ω : S → End(R) a monoid
homomorphism. Suppose that R is completely S-compatible. If I be an ideal of R
contained in nil(R). Then R is (S, ω)-nil-reflexive if and only if R/I is (S, ω)-nil-
reflexive.

Proof. Since I is nil, we have nil(R/I) = nil(R)/I. Hence, by completely compati-
bility, fhg ∈ [[nil(R)S,≤, ω]] if and only if fhg ∈ [[nil(R/I)S,≤, ω]]. Also, acb ∈ nil(R)

if and only if acb ∈ nil(R/I). Therefore, R is (S, ω)-nil-reflexive if and only if R/I

is (S, ω)-nil-reflexive, as desired. □

Now we give some characterizations of nil generalized power series reflexivity
by using the prime radical of a ring.

Corollary 3.4. Let (S,≤) a strictly ordered monoid and ω : S → End(R) a monoid
homomorphism. Suppose that R is completely S-compatible. A ring R is (S, ω)-nil-
reflexive if and only if R/P (R) is (S, ω)-nil-reflexive.

Proof. Since every element of P (R) is nilpotent, it follows from Theorem 3.1. □

We denote the the unique maximal nil ideal and the set of all nilpotent elements
of R by N∗(R) and N(R) respectively. Recall that Köthe′s conjecture means that
the sum of two nil left ideals is nil. In [38], a ring R is called NI if N∗(R) = N(R).
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IFP rings are NI and NI rings are nil-IFP, are nil-reflexive, but not conversely
each case. Köthe′s conjecture holds clearly in NI rings.

Proposition 3.9. Let (S,≤) a strictly ordered monoid and ω : S → End(R) a monoid
homomorphism. If R be a ring in which Köthe′s conjecture holds, and assume that
aR is nil for all a ∈ N(R). Then R is (S, ω)-nil-reflexive.

Proof. It directly comes from [39, Lemma 1.3]. □

Proposition 3.10. Let (S,≤) a strictly ordered monoid and ω : S → End(R) a
monoid homomorphism. Assume that R be a nil-IFP and right Noetherian ring.
Then R is (S, ω)-nil-reflexive.

Proof. It is well-known that Köthe′s conjecture holds in right Noetherian rings.
Thus the result follows from Proposition 3.9. □
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