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BAYESIAN ANALYSIS UNDER UNBALANCED AND BALANCED LOSS
FUNCTIONS APPLYING DIFFERENT PRIOR INFORMATIONS

Issra Nada Benatallah1, Hamida Talhi, Hiba Aiachi, and Nawel Khodja

ABSTRACT. In this paper, We perform a Bayesian analysis of Zeghdoudi distribu-
tion based on type II censored data. Using two type of loss functions; balanced
and unbalanced loss functions, we use three different loss functions. this estima-
tion includes three cases of prior informations; availability and lack of primary
information, we obtain Bayes estimators and the corresponding posterior risks.
the analytical forms of these estimators are out of reach, so, we propose Markov
chain Monte-Carlo (MCMC) procedure. Moreover, given initial values for the pa-
rameters of the model,we obtain maximum likelihood estimators. Furthermore,
we compare their performance with those of the Bayesian estimators using bal-
anced and unbalanced loss functions.

1. INTRODUCTION

One of the commonly used distributions is the exponential distribution, it deals
with the failures and survival times. The one parameter distribution introduce by
Lindley is a mixture of exponential and gamma distributions. This distribution is
commonly used in modelling lifetime data sets. In 2018 Messaadia suggested
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a one parameter distribution which is a mixtures of two gamma distributions
(Γ(2, θ) and Γ(3, θ)) [5], it is known as the Zeghdoudi distribution, in lifetime data
sets where the Lindley distribution gave poor fit, this distribution fits well those
data sets. the Bayesiann estimation of this model using diffrent loss functions us-
ing upper truncation, (Talhi and Aiachi 2021) [6], Many researchers have dealt
with Bayesian analysis using balanced loss functions, A.L Firas Monther Al-Badran
(2019) [2] has given the Bayes estimation under balanced Loss functions ofthe
exponential model, M.J Jozani (2012) [9] studied the Bayesian robust analysis
under a general class of balanced loss functions.

In This study we are interested in comparing Balanced and unbalanced loss
functions while using three prior informations. the Bayesian estimations of Zegh-
doudi distribution is based on type II censored data.

2. THE ZEGHDOUDI DISTRIBUTION

The probability density function of the Zeghdoudi distribution (see Messaadia
and Zeghdoudi (2018)) is

(2.1) fZD(x, θ) =
θ3x(1 + x)e−θx

2 + θ
, x, θ > 0,

and its cumulative function is

(2.2) FZD(x) =
1− (x2θ2 + θ(θ + 2)x+ θ + 2)

(θ + 2)e−θx
, x, θ > 0.

3. ESTIMATION OF THE UNKNOWN PARAMETERS

3.1. Maximum likelihood function. Let the sample (x1, x2, . . . , xn) be generated
from Zeghdoudi model, assuming that the data is type II censored, i.e., we only
observe(x1, x2, . . . , xm), for a given m ∈ (1, 2, ,m). The likelihood function is

L (x, θ) = N × [1− FXi (xm)]n−m ×
m∏
i=1

fXi (xi) ,

where N = n!
(n−m)!

the likelihood function is given by:

(3.1) L (x, θ) =
Nθ3m

(θ + 2)n
Bn−m ×

m∏
i=1

Aie
−θxi .
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Here, {
Ai = xi (1 + xi)

B = [θ2x2m + θ (θ + 2)xm + θ + 2] e−θxm
.

The corresponding logarithm is

l (x, θ) = lnL (x, θ) = lnN + 3m.lnθ + n. ln (θ + 2)

+ (n−m) lnB +
m∑
i=1

[lnAi − θxi].
(3.2)

The solution of the following non-linear system yields the maximum likelihood
estimators θMLE of the parameter θ

(3.3) ∂
∂θ
l (x, θ) = 3m

θ
+ n

θ+2
+ (n−m) B1

B
−

m∑
i=1

xi = 0 ,

where

B1 = [θ2 (x3m − x2m) + θxm + 1] e−θxm .

The solution of the equation (3.3) seems analytically intractable. We will rely
on numerical methods to obtain approximate solutions. We will use the R package
BB to obtain the approximate value of the maximum likelihood estimator θMLE

of the parameter θ. The R package BB is successfully used for solving non-linear
system of equations; see Varadhan and Gilbert (2010).

3.2. Bayesian Estimation under different loss functions.

Prior and posterior distributions
Prior can be divided into two types according to the abundance of primary in-

formation as: Informative prior and non-informative prior, the posterior distri-
bution for the parameters (θ) differs according to the used prior distribution; it
can be evaluate by using the three mentioned prior as:

(i) Informative Prior
We assume here that the parameter θ of Zeghdoudi distribution do follow inde-

pendent gamma distribution:

π1 (θ) =
ab

Γ (b)
θb−1 exp (−aθ) , θ > 0, a, b > 0,
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where the constants a, b are called hyper-parameters The posterior distribution of
θ reads

(3.4) π1 (θ |x) = K
θ3m+b−1Bn−m

(θ + 2)n
e−aθ

m∏
i=1

Aie
−θxi ,

where K is a normalizing constant.

(ii) Non Informative Prior

π2 (θ) =
1

θ
, θ > 0(3.5)

The posterior distribution of θ reads

(3.6) π2 (θ |x) = K
θ3m−1Bn−m

(θ + 2)n

m∏
i=1

Aie
−θxi .

(iii) Fisher information Prior
Fisher information is defined as:

π3 (θ) = I (θ) = −E

[
∂2l (x, θ)

∂θ2

]
,(3.7)

π3 (θ) = EX

[
3m

θ2
+

n

(θ + 2)2
+ (n−m)

B2B −B2
1

B2

]
= Eθ,(3.8)

where

B2 = [θ2 (x3m − x4m) + θ (2x3m − x2m)] e−θxm .

The posterior distribution of θ reads

(3.9) π3 (θ |x) = KEθ
θ3mBn−m

(θ + 2)n

m∏
i=1

Aie
−θxi .

Bayesian Estimation under unbalanced different loss functions

Now we will find Bayes estimators under unbalanced loss function sequentially
as follows:

(A) The generalized quadratic loss function

The generalized quadratic loss function is defined as L
(
θ̂, θ
)

= τ (θ)
(
θ̂ − θ

)2
and τ (θ) = θα−1.
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1 - Informative Prior
In the case of the generalized quadratic loss function, the Bayes estimators are

given by the formulas:

θ̂GQ1 =

∞∫
0

θ3m+b+α−1Bn−m

(θ+2)n
e−aθ

m∏
i=1

Aie
−θxidθ

∞∫
0

θ3m+b+α−2Bn−m

(θ+2)n
e−aθ

m∏
i=1

Aie−θxidθ

.

The corresponding posterior risks are then

PR
(
θ̂GQ1

)
= Eπ1

(
θα+1

)
+ θ̂2GQ1Eπ1

(
θα−1

)
− 2θ̂GQ1Eπ1 (θα) .

2 - Non Informative Prior
In the case of the generalized quadratic loss function, the Bayes estimators are

given by the formulas:

θ̂GQ2 =

∞∫
0

θ3m+α−1Bn−m

(θ+2)n

m∏
i=1

Aie
−θxidθ

∞∫
0

θ3m+α−2Bn−m

(θ+2)n

m∏
i=1

Aie−θxidθ

.

The corresponding posterior risks are then

PR
(
θ̂GQ2

)
= Eπ2

(
θα+1

)
+ θ̂2GQ2Eπ2

(
θα−1

)
− 2θ̂GQ2Eπ2 (θα) .

3 - Fisher information Prior
In the case of the generalized quadratic loss function, the Bayes estimators are

given by the formulas:

θ̂GQ3 =

∞∫
0

Eθ
θ3m+αBn−m

(θ+2)n

m∏
i=1

Aie
−θxidθ

∞∫
0

Eθ
θ3m+α−1Bn−m

(θ+2)n

m∏
i=1

Aie−θxidθ

The corresponding posterior risks are then

PR
(
θ̂GQ3

)
= Eπ3

(
θα+1

)
+ θ̂2GQ3Eπ3

(
θα−1

)
− 2θ̂GQ3Eπ3 (θα)

(B) The Entropy loss function
The Entropy loss function is defined as L

(
θ̂, θ
)

=
(
θ̂
θ

)p
− p ln

(
θ̂
θ

)
− 1.
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1 - Informative Prior
Under the entropy loss function, we obtain the following estimators:

θ̂E1 =

K ∞∫
0

θ3m+b−p−1Bn−m

(θ + 2)n
e−aθ

m∏
i=1

Aie
−θxidθ

− 1
p

.

The corresponding posterior risks are then

PR
(
θ̂E1

)
= p

[
Eπ1

(
ln θ − ln θ̂E1

)]
.

2 - Non Informative Prior
Under the entropy loss function, we obtain the following estimators:

θ̂E2 =

K ∞∫
0

θ3m−p−1Bn−m

(θ + 2)n

m∏
i=1

Aie
−θxidθ

− 1
p

.

The corresponding posterior risks are then

PR
(
θ̂E2

)
= p

[
Eπ2

(
ln θ − ln θ̂E2

)]
.

3 - Fisher information Prior
Under the entropy loss function, we obtain the following estimators:

θ̂E3 =

K ∞∫
0

Eθ
θ3m−pBn−m

(θ + 2)n

m∏
i=1

Aie
−θxidθ

− 1
p

.

The corresponding posterior risks are then

PR
(
θ̂E3

)
= p

[
Eπ3

(
ln θ − ln θ̂E3

)]
.

(C) The Linex loss function

The Linex loss function is defined as L
(
θ̂, θ
)

= exp
(
r(θ − θ̂)

)
− r(θ − θ̂)− 1.

1- Informative Prior
Under the Linex loss function, we obtain the following estimators:

θ̂L1 = −1

r
ln

K ∞∫
0

θ3m+b−1Bn−m

(θ + 2)n
e−θ(a+r)

m∏
i=1

Aie
−θxidθ

 .
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and the corresponding posterior risks are

PR
(
θ̂L1

)
= r

[
θ̂GQ1 − θ̂L1

]
.

2- Non Informative Prior
Under the Linex loss function, we obtain the following estimators:

θ̂L2 = −1

r
ln

K ∞∫
0

θ3m−1Bn−m

(θ + 2)n
e−θr

m∏
i=1

Aie
−θxidθ

 ,
and the corresponding posterior risks are

PR
(
θ̂L2

)
= r

[
θ̂GQ2 − θ̂L2

]
.

3 - Fisher information Prior
Under the Linex loss function, we obtain the following estimators:

θ̂L3 = −1

r
ln

K ∞∫
0

Eθ
θ3mBn−m

(θ + 2)n
e−θr

m∏
i=1

Aie
−θxidθ

 ,
and the corresponding posterior risks are

PR
(
θ̂L3

)
= r

[
θ̂GQ3 − θ̂L3

]
.

Bayesian Estimation under Balanced different loss functions

Balanced loss function

We use comprehensive criterion put down by (Zellner, 1994), which is the Bal-
anced criterion or equilibrium criterion. The objective of achieving equilibrium
in the loss function is to increase accuracy and conformity in the estimation pro-
cess. The loss functions that are discussed above are consider an unbalanced loss
functions.

Apart from the symmetry criterion, the loss function can be a balanced according
to Zellner’s formula as follows:

LL,ω,θ̂GQ

(
θ̂GQB, θ

)
= ωL

(
θ̂GQ, θ̂GQB

)
+ (1− ω)L

(
θ̂GQB, θ

)
,

where:
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- L
L,ω,

∧
θGQ

(
∧

θGQB, θ

)
Balanced loss function;

- ω weighted coefficient, w ∈ (0, 1);
- θ0 Primary estimator for the parameter θ depends on the observations;
- L
(
θ̂GQ, θ̂GQB

)
Unbalanced loss function;

- L
(
θ̂GQ, θ̂GQB

)
Unbalanced loss function for the likelihood function.

Clearly that the balanced loss function heavily depends on the weighted coeffi-
cient (θ), and the initial estimator θ0.

Now we will find bayes estimators under balanced loss function sequentially as
follows:

(A) The generalized quadratic losss function

The general formula of the balanced generalized quadratic loss function:

LL,ω,θ̂GQ

(
θ̂GQB − θ

)
= ωL

(
θ̂GQ, θ̂GQB

)
+ (1− ω)L

(
θ̂GQB − θ

)
.

1 - Informative Prior
The Bayes estimator under the balanced generalized quadratic loss function are

given by the formula:

θ̂GQB1 =
ω
[
θ̂GQ1

]α
+ (1− ω) Eπ1 (θα)

ω
[
θ̂GQ1

]α−1
+ (1− ω) Eπ1 (θα−1)

,

and the corresponding posterior risks are

PR
(
θ̂GQB1

)
= E∗π1

(
τ (θ)

(
θ − θ̂GQB1

))
2 - Non Informative Prior
The Bayes estimator under the balanced generalized quadratic loss function are

given by the formula:

θ̂GQB2 =
ω
[
θ̂GQ2

]α
+ (1− ω) Eπ2 (θα)

ω
[
θ̂GQ2

]α−1
+ (1− ω) Eπ2 (θα−1)

,
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and the corresponding posterior risks are

PR
(
θ̂GQB2

)
= E∗π2

(
τ (θ)

(
θ − θ̂GQB2

))
.

3 - Fisher information Prior
The Bayes estimator under the balanced generalized quadratic loss function are

given by the formula:

θ̂GQB3 =
ω
[
θ̂GQ3

]α
+ (1− ω) Eπ3 (θα)

ω
[
θ̂GQ3

]α−1
+ (1− ω) Eπ3 (θα−1)

,

and the corresponding posterior risks are

PR
(
θ̂GQB3

)
= E∗π3

(
τ (θ)

(
θ − θ̂GQB3

))
.

(B) The Entropy loss function
The general formula of the balanced Entropy loss function:

LL,ω,θ̂E

(
θ̂EB, θ

)
= ωL

(
θ̂E, θ̂EB

)
+ (1− ω)L

(
θ̂EB, θ

)
.

1 - Informative Prior
The Bayes estimator under the balanced Entropy loss function are given by the

formula:

θ̂EB1 =

 ω(
θ̂E1

)p + (1− ω) Eπ1

(
1

θp

)− 1
p

,

and the corresponding posterior risks are

PR
(
θ̂EB1

)
= p

[
E∗π1

(
ln θ − ln θ̂EB1

)]
.

2 - Non Informative Prior
The Bayes estimator under the balanced Entropy loss function are given by the

formula:

θ̂EB2 =

 ω(
θ̂E2

)p + (1− ω) Eπ2

(
1

θp

)− 1
p

,
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and the corresponding posterior risks are

PR
(
θ̂EB2

)
= p

[
E∗π2

(
ln θ − ln θ̂EB2

)]
.

3 - Fisher information Prior
The Bayes estimator under the balanced Entropy loss function are given by the

formula:

θ̂EB3 =

 ω(
θ̂E3

)p + (1− ω) Eπ3

(
1

θp

)− 1
p

,

and the corresponding posterior risks are

PR
(
θ̂EB3

)
= p

[
E∗π3

(
ln θ − ln θ̂EB3

)]
.

(C) The Linex loss function
The general formula of the balanced Entropy loss function:

LL,ω,θ̂L

(
θ̂LB, θ

)
= ωL

(
θ̂L, θ̂LB

)
+ (1− ω)L

(
θ̂LB, θ

)
.

1 - Informative Prior
The Bayes estimator under the balanced Linex loss function are given by the

formula:

θ̂LB1 = −1

r
ln
[
ω exp

(
−rθ̂L1

)
+ (1− ω) Eπ1 (exp ( −rθ))

]
,

and the corresponding posterior risks are

PR
(
θ̂LB1

)
= r

[
θ̂GQB1 − θ̂LB1

]
.

2 - Non Informative Prior
The Bayes estimator under the balanced Linex loss function are given by the

formula:

θ̂LB2 = −1

r
ln
[
ω exp

(
−rθ̂L2

)
+ (1− ω) Eπ2 (exp ( −rθ))

]
,

and the corresponding posterior risks are

PR
(
θ̂LB2

)
= r

[
θ̂GQB2 − θ̂LB2

]
.
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3 - Fisher information Prior
The Bayes estimator under the balanced Linex loss function are given by the

formula:

θ̂LB3 = −1

r
ln
[
ω exp

(
−rθ̂L3

)
+ (1− ω) Eπ3 (exp ( −rθ))

]
,

and the corresponding posterior risks are

PR
(
θ̂LB3

)
= r

[
θ̂GQB3 − θ̂LB3

]
.

4. SIMULATION AND RESULTS

In this simulation study, we have chosen samples sizes (n = 10, 25, 50, 100),
several parameter values (θ = 0.2, 0.5, 1, 5), also (a = b = 2) and (α = p = r =

2), also we select (w = 0.5) in order to override the aligned in the estimation
process, i.e., this weighted value will give the same loss to the initial estimator
and Bayes estimator in their customize formulas. The number of replications used
was (K = 1000). The simulation program written by using (R3.5.1) program.
After the parameter estimated.

The results of the simulation study are summarized and tabulated in table (1).
The estimated values of the parameters are very close to the real values as the

sample size increase.
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When θ is increasing, the estimated parameter values will pull away from the
real values.

In the case of the non-informative prior, the estimated values of the parameter
under the balanced loss functions are closer to the real values than these estima-
tors that are estimated by the unbalanced loss functions, but the opposite is true
in the case of the informative prior.

5. CONCLUSIONS

We conclude through the experimental part results that the balanced loss func-
tions provide an efficient Bayesian estimators in the absence (not defined) of in-
formation about the studied phenomenon, as in the case of non-informative prior.
While in the case of the informative prior, balanced loss functions may not be as
efficient; which means the unbalanced loss functions have a better performance.
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