
ADV  MATH
SCI  JOURNAL

Advances in Mathematics: Scientific Journal 12 (2023), no.2, 329–344
ISSN: 1857-8365 (printed); 1857-8438 (electronic)
https://doi.org/10.37418/amsj.12.2.2

INFLUENCE OF UNOBSERVED DATA IN THE TIME SERIES OF THE
DEPENDENT VARIABLE AND THEIR POSITION IN ANALYSIS OF MULTIPLE

LINEAR REGRESSION ON PREDICTION - CASE STUDY ON: FACTORS
AFFECTING CO2 EMISSIONS

Amira I. El-Desokey

ABSTRACT. Using a variety of statistical techniques, time series forecasting is cru-
cial for preparing for and predicting the future. It is contingent on making an
accurate forecast as to the value of a variable at some unknown time in the future.
This research analyzed the missing data from the time series (a model with no
missing observations and three models were considered to be missing data for the
dependent variable at various positions). By a standard multiple linear regression
of the four models of the study, it is clear that the series is consistent, transpar-
ent, within the bounds of statistical acceptability, the analysis used the Ordinary
least square and the weighted least square to find the best prediction model with
missed observation.

1. INTRODUCTION

Missing observations has attracted the interest of scientists and researchers, es-
pecially missing observations in time series, which may produce less efficient es-
timates, some bias in the results, and inconsistency in the statistical tests used.
With the development of additional statistical programs, especially in analysis,
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there has been an increase in interest in missing values, their procedures, and
the method for processing them. To achieve this purpose, the researcher should
pay more attention to the statistical method used, which is compatible with his
data. One of the most important problems related to missing data interpolation
is the estimation of future data in the presence of an imprecise history. The ex-
pected data can be evaluated using the weighted least square method. Cheng and
Pourahmadi [3] proposed a technique to compute the linear regression forecasting
model. This algorithm is a generalization of the innovation algorithm introduced
in Brockwell and Davis [2], and it applies to any stationary time series with fi-
nite or infinite observations (1991, Prop. 5.2.2), Grenander and Rosenblatt [4],
produced a closed form expression for the prediction error variance when the pre-
vious data is transformed by a finite values of missing data with arbitrary pattern.
Allison [1] evaluated the effect of substituting value computation methods for
treating values. According to the conclusions, linear imputation without rounding
performs excellently, particularly when predicting regression coefficients in the
case of simple linear regression. While Kayaalp [5] shown that the influence of
missing time series observations on the parameters of the estimated model based
on the least-squares method will have an effect on some of the functions the model
provides. Mohsen [6] investigated the estimation and generation of data in stable
time series by determining multiple forecasts using statistical software packages,
as well as the possibility of utilizing some methods to find the missing values in
the development of the transaction methodology. Simultaneous estimation of co-
efficients and missing data in time series. To estimate missing values in a time
series, we have to determine out whether the missed happened on the dependent
or independent side of the relationship. Only a decrease in the dependent variable
is the main factor in linear regression.

The purpose of this paper is to Performing a Multiple linear regression analysis
after missing some of the dependent variable observations, assessing the impor-
tance of that missed observation, as well as identifying the impact of the missed
observation on the analysis. Section 2 introduces the Estimate of the model pa-
rameters for the multiple linear regressions. Section 3 presented the Weighted
Least Square conditions. Section 4 introduce the practical study, we introduced
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a case Study on the Co2 Mission in Egypt (1990-2019), to predict the mission in
future using SPSS, conclusion, in section 5.

2. ESTIMATE THE MODEL PARAMETERS FOR THE MULTIPLE LINEAR REGRESSION

We can notice that there is a clear influence during forecasting time series, es-
pecially stable ones, if the missed arises from the dependent variables during re-
gression analysis when we evaluate the relationship between a dependent variable
(Zi) and independent multivariable (Yi). Assuming that the independent variables
are completely observed, the study will investigate missing values in the depen-
dent variable. Some of the data were missing, and the impact of this omission
will be illustrated in the multiple linear regression analysis. The analysis process
will include more than one variable, one of which is dependent and the others are
independent, but before we proceed, we will explore estimation methodology.

The multiple linear regression model is used to describe the relationship be-
tween the dependent variable Z and the independent variables (y1, y2, . . . , yk),
which may be described by the following equation

Zi = β0 + β1yi1 + β2yi2 + . . .+ βnyin + τi

Zi = β0 +
k∑

j=1

βjyij + τi

i = 1, 2, . . . , n. Here β0, β1, β2, . . . , βnthe coefficients of the regression model, τiis
the random error for the observation (residuals), since we have n, observations,
so we have n, equations which can be formulated as:

z1

z2

.

.

.

zn


=


1 y11 y12 . . . y1k

1 y21 y12 . . . y2k

. . . . . . . . . . . . . . .

1 yn1 yn2 . . . ynk

 ·



β0

β1

.

.

.

βk


+



τ1

τ2

.

.

.

τn


Z = Y β + V,

where,



332 Amira I. El-Desokey

- Z is the vector matrix of the dependent values,
- Y is the vector matrix of independent values,
- β is the vector matrix of the coefficient of regression,
- V is the vector matrix of random errors (residuals).

The method of ordinary least squares (OLS) is one of the most widely used
approaches to estimating the parameters of a Multiple linear regression model,
OLS is distinguished from other estimation techniques by the (BLUE) ( (Best Linear
Unbiased Estimate).

The method of ordinary least squares (OLS) is used to estimate the parameters
of the multiple linear regression model, (β0, β1, β2, . . . , βn), which minimize the
sum of the squares of the error or residual as little as possible:

V = Z − Y β

U = V \V = (Z − Y β)\(Z − Y β)

U = V \V = Z\Z − 2β\Y \Z + β\Y \Y β

In order to find the value of βthat minimizes U as little as possible, we find the
derivative with respect to βJ , and set it equal to zero, giving us:

(2.1)
∂U

∂β
=


∂U
∂β0

∂U
∂β1

. . .
∂U
∂βk

 = −2Y \Z + 2Y \Y β̂

Equation (2.1) can be reduced to:
Y \Y β̂ = Y \Z,

β̂ =
(
Y \Y

)−1
Y

\
Z,

where β̂ is the vector of the residuals.
Using equation (2.1) then we have
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n∑
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3. WEIGHTED LEAST SQUARE METHOD (WLS)

In case of ordinary least square (OLS), if the dependent values don’t have con-
stant variance. If the data for the dependent variable for the regression come from
a population whose distribution violates the assumption of: normality or outliers
are present, and then the multiple linear regression on the original data may pro-
vide misleading results, or may not be the best test available. In such cases, fitting
a different linear model or a nonlinear model, performing a weighted least squares
linear regression, transforming the Y or Z data or using an alternative straight line
regression method may provide a better analysis. The weighted least square linear
regression (WLS) is dealing with unequal variances in Z by performing a weighted
least squares fit. We use the OLS (Ordinary Least square) and WLS (Weighted
least square) method to estimate the parameters (β0, β1, . . . βn) in the multiple
linear regressions.

4. APPLICATION: STUDY THE CO2 MISSION IN EGYPT (1990-2019)

We investigate the effects of factors on the total mission of CO2 including Land-
Use Change and Forestry (LUCF) in Egypt from 1990 to 2019. The factors are:
Building, Transportation, Land-Use Change and Forestry, in the original case (no
missed observations in the dependent variable), and in three cases with missed
observations in the first, middle, and end of the series. We compare the four
regression models using the WLS (Weighted least squares) method and select the
best fit model.

4.1. STUDY THE NORMALITY FOR THE DATA USING SPSS.
In Fig. 1, we examine the normality of the dependent variable and find that it

does not follow the normal distribution.
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FIGURE 1.

Table 1 shows that there are unhomogeneous values of variances and that the
variances are not equal.

Table 1

Because of the non-normality of the data in the dependent variable, we will
investigate the weighted least square multiple linear regression (WLS) instead of
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the ordinary least square multiple regression (OLS) to find the best regression
model.

4.2. STUDY THE WLS IN THE ORIGINAL MODEL (WITHOUT MISSED OBSER-
VATIONS).

We study the WLS in the original model, and Table 2, displays the Regression
model summary.

Table 2

We observed that the regression coefficient is 0.994a and the determination co-
efficient is 0.988.

Table 3 displays the Anova Table for the model and demonstrates that it is sig-
nificant.

Table 3

Table 4 discussed the model coefficients. The coefficients are β0= -100.073,
β1=17.581, β2=1.187, β3= 8.449. And it shows that all the variables are signifi-
cance
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Table 4

The regression model is:

Yi = −100.073 + 17.581xi1 + 1.187xi2 + 8.449xi3.

The time series diagram depicted in Fig. 2, demonstrates that the observed values
are consistent with the fitted values.

FIGURE 2.

Now we will examine the WLS method for missing observations in the depen-
dent variable.



CASE STUDY ON: FACTORS AFFECTING CO2 EMISSIONS 337

4.3. EXAMINES THE WLS WITH MISSED OBSERVATIONS IN THE FIRST OF
THE SERIES.

Now we examine the missing observations in the first of the series to determine
whether the position of the missing values has an effect on the predicted model or
not. Table 5 displays a summary of the Regression model.

Table 5

We observe that the regression coefficient is 0.991a and the determination coef-
ficient is 0.983.

Table 6 displays the Anova Table for the model and demonstrates that it is sig-
nificant.

Table 6

Table 7 examined the regression model coefficients which are β0= -99.008,
β1=17.517, β2=1.190, β3= 8.213. It shows that each variable has statistical sig-
nificance.
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Table 7

The regression model is:

Yi = −99.008 + 17.517xi1 + 1.190xi2 + 8.213xi3.

Fig. 3 Is a time series diagram which demonstrating that the observed values
consist to the fitted values.

FIGURE 3.

4.4. STUDY THE WLS WITH MID-SERIES MISSED OBSERVATIONS.
Now we examine the missing observations in the mid of the series, Table 8,

displays a summary of the Regression model.
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Table 8

We observe that the regression coefficient is 0.992a and the coefficient of de-
termination is equal 0.985. Table 9 displays the Anova Table for the model and
demonstrates that it is significant.

Table 9

Table 10 examined the regression model coefficients which are β0= -103.347,
β1=17.882, β2=1.128, β3= 8.233. It shows that each variable has statistical sig-
nificance.

Table 10
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The regression model is:

Yi = −103.347 + 17.882xi1 + 1.128xi2 + 8.233xi3.

Fig 4, is the time series diagram which shows that the observed values are con-
sistent with the fit values with the declaration of the position of the missed obser-
vations.

FIGURE 4.

4.5. EXAMINE THE WLS WITH MISSED OBSERVATIONS At THE END OF THE SE-
RIES.

Now we examine the missing observations at the end of the series, Table 8,
displays a summary of the Regression model.

Table 11
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We observed that the regression coefficient is equal 0.990a and the coefficient
of determinant is equal 0.981.

Table 12 displays the Anova Table for the model and demonstrates that it is
significant.

Table 12

Table 13 examined the regression model coefficients which are β0= -91.040,
β1=17.254, β2=1.006, β3= 10.086. It shows that each variable has statistical
significance.

Table 13

The regression model is:

Yi = −91.040 + 17.254xi1 + 1.006xi2 + 10.086xi3.

Fig. 5 is the time series diagram which shows that the observed values are
consistent with the fit values with the declaration of the position of the missed
observations.
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FIGURE 5.

4.6. Comparative Analysis of Regression Models.
As shown in Table 14, we now compare the three models of the regression with

missing observations to the standard model to determine the optimal regression
model.

Table 14

The preceding table demonstrates that the model with missing observations
in the mid-series, which has the highest coefficient of determination, is the best
model for missing observations when compared with the standard model.
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5. CONCLUSION

(1) If any value of the dependent variable is missed at any position, the influ-
ence of missing data time series will have an impact on the prediction of
these data, as well as the degree of accuracy in the prediction.

(2) The correlation value of the four models was found to be greater than
0.90, confirming the efficacy of the data analysis method as well as the
rate of missing values.

(3) it has been found that the position of the missing data significantly affects
the parameter estimation, leading to a difference in the predicted values
outside of the time series, regardless of whether the missing observation
occurred at the beginning, the middle, or the end of the time series, par-
ticularly if the estimation is performed using the general trend approach,
which is heavily impacted by the overall trend in the range of the Obser-
vations.

(4) Results from the R2 statistic indicates that the estimated model is prefer-
able when intermediate observations are missing from a data set. With a
value of 0.985, it is the best predictive model.
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