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SOME DISTINGUISHING CHARACTERISTICS OF THE LINEAR
IMMUTABILITY OF CONTINUOUS TIME SERIES VIA BIVARIATE VECTOR
VALUED STOCHASTIC PROCESSES

A.L El-Deosokey!, M.A. Ghazal, and A.M. Ben Aros

ABSTRACT. During the process of analyzing the continuous expanded finite Fourier
transforms of strictly stable (i + j) vector-valued time series, it is presumed that
some of the observations have been misplaced. This is done on the basis of an
assumption. This is due to the fact that the method entails looking at continuous
extended finite Fourier transforms. This is done so that the findings can be inter-
preted in a manner that is as precise as is practical given the information that is
available. The reason for this is so that the findings can be used to make better
decisions. Consequently of this additional data, the continuous Fourier transform
will become the focal point of the researchers’ achievements. At the present time,
the concept of asymptotic moments is garnering a large amount of interest from
researchers all around the world. In this investigation we will apply our theoreti-
cal study in case study on the subject of Electricity Energy,

1. INTRODUCTION

Assuming a linear relationship between X (¢) and Y'(¢), we investigate the sta-
tistical features of the extended finite Fourier transform similar to the ones pro-
posed by D.R. Brillinger, M.Rosenblatt, and others in 1967, D.R. Brillinger in 2001,
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Ghazal and Farag in 2005, Ghazal in 1999, Teamah in 2004, Ghazal, et al., in
2005, and Elhassain in (2014). A quick overview of the paper’s structure: Section
(1) provides introduction, Section 2 investigates the Approximated Characteristics
of the Observed Procedure, Section 3 explores the Approximated Characteristics
of the Unobserved Procedure, and Section 4 puts our theoretical concepts into
practical, in the period between January 2006 and December 2015, we used this
technique to analyze the General Electric Company’s average monthly Imported
and exported Energy.
Consider a fixed series with vector valued (i + j),

@ ™) = [x) v

t =0,4£1,+2,... with X (¢), i- vector-valued and Y'(¢) j-vector-valued. The series
(2.1) is assumed to be a firmly fixed (i + j) vector-valued series with components

X, (t) Ys(t)r, r=12,...,7,s = 1,2,..,4, all of whose moments exist, and
then we define the mean function as:
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For any ¢, there exists 5,(t),a = 1,2, t € R) which is not dependent on

i (
%(t)P[ﬁa(t) = 1] = pa,
0

Noting that
E{pa(t)} = P.
The success of an independent data does not depend on the success of another.
The modified series definition could be as follows:

where

(22) 6a(t> — Ba(t)%a(t>,

and

(2.3) Balt) = { 1, ify Xa@, Y, (t) are recorded,
0, otherwise

Assumption. In the data window, I{” (t) is constrained to have finite range, finite
variation, and disappear at time0 < t <7 — 1. Let

T [ N
Voo (h) = /O [H I (t)] exp {—iht} dt
r=1

2. APPROXIMATED CHARACTERISTICS OF THE UNOBSERVED PROCEDURE

Theorem 2.1. Given that X,(t),Y,(t),a = 1,2,...,min(i, j) represents a fixed sto-
chastic procedure and that §,(t) = B,(t)R.(t),a = 1,2,....min(i, j) represents data
points that were missing and that (3,(t) is a Bernoulli sequence of random variables
satisfying (2.2) and (2.3), we get the following.

E{04(t)} =0,

Tee(9) Te(9) K (h)T

Cov {84, (1), 0, (t2)} = Payas K(h)me(g) K (h)malg) K ()T
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Lemma 2.1. If we fix w((ZT)(h), a=1,....,min(j,7) equal to

-

G WD) = {% /0 : (ng>@))2] 2 /_ Zzgﬂ(t)(sa(t) exp {—iht} dt.

for h € R, then we find that wflT)(h) has the following dispersion:
(3.2)  Dw, T (h)

b | S el = )X @)y [ aalh = 0K () X Caal) ]
f K (h) faa(h — )% Caa(@)d [22 K (D) faa(h — ) K ()" X Caa(e)dip |
where
Caa () = { /0 (27r)(za<T>(t)dt] ‘aam(x),
9,0 (x) = / : 1D (t) exp(—izt)dt,
xr € R.

Proof. Using equation (3.1) we have

Dw D (h) = Payay [pl p2] ,

P3 D4
where -
b1 = / fa1a2 (U)XCam (hl —u, h2 - u)du>
b2 = / fa1a2 xcawz( - u, hQ - u)du

p3s = / K falaz (U)XCOLlCLz (hl -, h'2 - u)du7

Py = / K(R) fayay (W) K (D) X Caray (R — u, hy — u)du.
When a; = a3 = a,a = 1,2,...,min(i, ), and hy = hy = h, h € R, by substituting
h —u = 1, then equation (3.2) is obtained. O

Theorem 2.2. Given the spectral density functionfo,(z),a = 1,...,min(i, j),x € R
is bounded and continuous at a pointz = h,h € R, and if the function (o' (x),



CONTINUOUS TIME SERIES VIA BIVARIATE VECTOR VALUED STOCHASTIC PROCESSES

a=1,...,min(i,j), x € R meets these conditions, then
T
(3.3) Lim Dwa(T)(h) _ faa(h)) Jaa(h)K (v) e
T—oo K(v) faa(h)) K (V) faa(h) K (V)
a=1,...,min(i, 7).

Proof. In order to establish formula (3.3), we must demonstrate that

T
Lim Dwa(T)(h)—paa faa(h)) Jaa(h) K (v) Al =0,
oo [ K(0)faa(h)) K (v) faa(h) K (v)"
Now from Lemma (3.1) we have
T
Dy, D () = paa faa(h)) faa(R) K (v)
) =B ) () K () faaB) ()T
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We shall explain each of them. Since f,,(¢) is continuous at point ¥ = a,b =

1,...,min (7, j), then we get
f Jua =) I foo Cr=w)l(®Y’ |
B,=p.|, .
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Given that fab(%)) is continuous at ¢ = h,a,b=1,... ,min (4, j), we have By < Q.
Now, Bs is extremely low according any (2 is very small thus, By = 0. If f,a(h),
a=1,...,min(i,j), h € R is constrained to a finite value by a constant G, then,

—
anq/ D (W)dp - 0,
50 T—o0

Similarly, B3 — 0. Therefore
T—o00

T—oo

(0)faa(h)) K (0) faa(R) K (v)"

Thus, the proof of the theorem is complete. O

faa(R)) faa(R) K (0)7 ]

Dwa(T) (h) — Paa [K

3. PRACTICAL STUDY

3.1. Analyzing the imported and exported Energy.
This study provides a monthly average of General Electric Company’s exported
Energy and its imported Energy from January 2006 through December 2015.

3.1.1. Analyzing the imported Energy.

Our results, based on a model of firmly fixed time series with some missing
data, will be compared to those produced using the traditional approach, in which
all data is recorded. We assume that the dataX,(¢),(t = (1,2,...,7T], which is
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the average of the monthly imported Energy, where all observations are avail-
able of the series, is available with some missing, and write the result as (,(t) =
Ba(t)Xu(t),a = 1,2,... i, where X,(t),(t = 0,%£1,...) is an i-vector valued time
series that is firmly fixed, and 3,(¢) is a Bernoulli sequence of random variables
that is stochastically independent of X,(¢). Table 4.2.1 compares the results with
and without missing data for the traditional situation 5 = 1, (,(t) = X,(t) with the
scenario where some observations are missing in a random way, g = 0.

3.1.2. Analyzing the Exported Energy.

Our research results, which are based on a model of fixed-time series with some
missing data, will be compared to those obtained by the traditional technique, in
which all data is observed. Assuming Y,(¢), (¢t = (1,2,...,7] is a fixed j-vector val-
ued time series and [3,(t) is a stochastically independent Bernoulli sequence of ran-
dom variables, we may represent the results as w,(t) = B,(t)Y,(t),a = 1,2, ..., 7,
whereY, (t), (t = 0,=£1,...) is a monthly average of exported Energy for which all
data are available of the series. The results for the standard case 5 = 1,w,(t) =
Y,(t) and the case where some observations are missing at random § = 0 are
compared in table 4.2.2.

3.1.3. Analyzing of Energy Imported and Exported Using a Regression Model.

This study will compare our results; a regression model between the averages
monthly imported and exported of energy, with the classical results, when all ob-
servations are available, for the two scenarios presented in the table 4.2.3.

4. CONCLUSION

(1) The analysis of time series with missing data yielded the same results as
the analysis of traditional time series.

(2) The outcomes of the studied regression model between classical time se-
ries X(t) and Y(t) were the same as in the case of missing data, in that
both models satisfied the theoretical, mathematical, and least squares con-
straints.
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5. FIGURES

Table 4.1.1. Comparing of the outcomes with and without missing data of the imported

Energy
without missing data with missing data
Time Series of Imported Energy Time Series Plot of Imported Energy
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ARIMA Model: imported Energy without missing data

ARIMA(1,1,1)

Final Estimates of Parameters

Type Co-ef SE Co-ef T P
AR 1 0.6234 0.0821 819 0.000

MA L 0.8981 0.0100 47.94 0.000

Residuals: SS=4021137281 , MS=127791227, DF=116
Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Lag 12 22 36 48
Chi-Square 875 200 31.2 4496
DF 9 21 33 45
P-Value 0450 0.605 0.501 0.432

ARIMA Model: imported Energy with missing data

ARIMA(LLT)

Final Estimates of Parameters

Type Co-ef SE Co-ef T P
AR 1 0.5486 0.0798 7.80 0.000

MA 1 0.9014 0.0100 73.15 0.000

Residuals: SS=3901621742 , MS=27576233, DF =116
Modified Box-Pierce (Ljung-Box) Chi-Square statistic
Lag 12 24 36 48

Chi-Square 5.98 185 294 355

DF 9 21 33 45

P-Value 0.721 0.803 0.628 0.794
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Table 4.1.2. Comparing of the outcomes with and without missing data of the Exported

Energy
without missing data with missing data
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ARIMA Model: The exported Energy with missing data

ARIMA(1,1,1)

Final Estimates of Parameters

Type Co-ef SE Co-¢f T P
AR 1 0.7536 0.0615 8.98 0.000
AM 2 0.9014 0.0151 4747  0.000

Residuals: SS = 89431624, MS = 638140, DF=116
Modified Box-Pierce (Ljung-Box) Chi-Square statistic

Lag 12 24 36 48
Chi-Square 8.1 1993 2589 448
DF 9 21 33 45

P-Value 0.515  0.522  0.720 0.622

ARIMA Model: The exported Energy without missing
data

ARIMA(1,1,1)

Final Estimates of Parameters

Type Co-¢ef SECoef T P
AR 1 0.7656  0.0589  98.69 0.000
AM 1 0.8902  0.0093 6798 0.000

Residuals: S5 = 90135160, MS = 682338, DF =116
Modified Box-Fierce (Ljung-Box) Chi-Square statistic

Lag 12 24 36 48
Chi-Square 12.1 2598 3589 511
DF 9 21 33 45

P-Value 0.202 0205 0.317 0.258
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Table 4.1.3. Comparing of the outcomes with and without missing data of the regression

[1]

(2]

(3]

(4]

(5]

(6]

(71

analysis

Without missing data With missing data
The regression model is The regression model is
Exported Energy = 3260 + 0.190 imported Energy Exported Energy=2413 + 0.189 imported Energy
Predictor Co-¢f SE Co-¢ef T P Predictor Co-ef SE Co-ef T P
Constant 3260 1242 249 0013 Constant 2413 1374 149 0.038
imported Energy 0.1901 0.003589  30.29 0.000 imported Energy 0.189 0.006423 24.83 0.000
$=459317 R-Sq=885% R-Sq=884% S =645.097 R-Sq=82.8% R-Sq(adj)=82.7%
Analysis of Variance Analysis of Variance
Source DF 55 MS F P Source DF 35 M3 F P
Regression 1 186005060 186005060 917.73 0.000 Regression 1 167904350 178004361 608.05 0.000
Residual Error 118 24520185 223663 Residual Error 118 29140020 297304
Total 119 210525245 Total 119 197044370
Durbin-watson statistic = 1.69868 Durbin-watson statistic = 1.57860
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Normal rarrnal
Bz B
£ 3 L
IR IR I N i
-1500 -1000 -500 o 500 1000 1500 -2000 - 1000 o 1000 2000
RESI1 RESI1
Plot fpr the Residuals Plot fpr the Residuals
REFERENCES

A.AM. TEAMAH, H.S. BAKOUCH: Multivariate Spectral Estimators Time Series with Dis-
torted Observations, International Journal of Pure and Applied Mathematics, 1(1) (2004),
45-57.

A. ELHASSAIN: On the Theory of continuous Time series, Indian J. Pure Appl. Math, June,
45(3) (2014), 297-310.

D.R. BRILLINGER, M. ROSENBLATT: Approximated theory of estimates of k-th order spectra,
in: BHarris (Ed.), Advanced Seminar on Spectral Analysis of time series, Wiley, New York,
1967, 153-188 .

D.R. BRILLINGER: Time Series Data Analysis and Theory, SIAM: Society for Industrial and
Applied Mathematics, 2001.

G.S. MokaDDIS, M.A. GHAZAL AND A.E. EL-DESOKEY: Approximated properties of Spec-
tral Estimates of Second-Order with Missing Observations, Journal of Mathematics and statis-
tics, 6(1) (2010), 10-16.

M.A. GHAZAL: On a spectral density estimate on non-crossed intervals observation, Int. J.
Appl. Math., 1(8) (1999), 875-882.

M.A. GHAZAL, A.l. ELDESOKEY, A.M. BEN AROS: Periodogram Analysis with missed ob-
servation between two vector valued stochastic process, International Journal of Advanced Re-
search, 5(11) 2017, 336-349.



356 A.L El-Deosokey, M.A. Ghazal, and A.M. Ben Aros

[8] M.A. GHAZAL, E.A. FARAG, A.E. EL-DESOKEY: Some properties of the Discrete Expanded
finite Fourier transform with missing Observations, 40(3) (2005), 887-902.
[9] M.A. GHAZAL, G.S. MOKADDIS, A. E. EL-DESOKEY: Spectral analysis of strictly stationary
continuous time series, Journal of Mathematical Sciences, 3(1) (2009).
[10] R. DAHLHAUS: On a Spectral Density Estimate Obtained by Averaging Power Spectral, J. Appl.
Prob., 22 (1985), 592-610.

DEPARTEMENT OF COMPUTER SCIENCE

HIGHER FUTURE INSTITUTE FOR SPECIALIZED TECHNOLOGICAL STUDIES

CAIRO, EGYPT.

Email address: aeldesokey@gmail.com, amira.eldesouky@fa-hists.edu.eg

DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE
UNIVERSITY OF DAMIETTA
EGYPT.

DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE
UNIVERSITY OF DAMIETTA
EGYPT.



	1. Introduction
	2. Approximated Characteristics of the Unobserved Procedure
	3. Practical Study
	3.1. Analyzing the imported and exported Energy

	4. Conclusion
	5. Figures
	References

