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SOME DISTINGUISHING CHARACTERISTICS OF THE LINEAR
IMMUTABILITY OF CONTINUOUS TIME SERIES VIA BIVARIATE VECTOR

VALUED STOCHASTIC PROCESSES

A.I. El-Deosokey1, M.A. Ghazal, and A.M. Ben Aros

ABSTRACT. During the process of analyzing the continuous expanded finite Fourier
transforms of strictly stable (i + j) vector-valued time series, it is presumed that
some of the observations have been misplaced. This is done on the basis of an
assumption. This is due to the fact that the method entails looking at continuous
extended finite Fourier transforms. This is done so that the findings can be inter-
preted in a manner that is as precise as is practical given the information that is
available. The reason for this is so that the findings can be used to make better
decisions. Consequently of this additional data, the continuous Fourier transform
will become the focal point of the researchers’ achievements. At the present time,
the concept of asymptotic moments is garnering a large amount of interest from
researchers all around the world. In this investigation we will apply our theoreti-
cal study in case study on the subject of Electricity Energy,

1. INTRODUCTION

Assuming a linear relationship between X(t) and Y (t), we investigate the sta-
tistical features of the extended finite Fourier transform similar to the ones pro-
posed by D.R. Brillinger, M.Rosenblatt, and others in 1967, D.R. Brillinger in 2001,
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Ghazal and Farag in 2005, Ghazal in 1999, Teamah in 2004, Ghazal, et al., in
2005, and Elhassain in (2014). A quick overview of the paper’s structure: Section
(1) provides introduction, Section 2 investigates the Approximated Characteristics
of the Observed Procedure, Section 3 explores the Approximated Characteristics
of the Unobserved Procedure, and Section 4 puts our theoretical concepts into
practical, in the period between January 2006 and December 2015, we used this
technique to analyze the General Electric Company’s average monthly Imported
and exported Energy.

Consider a fixed series with vector valued (i+ j),

(2.1) R(t) =
[
X(t) Y (t)

]T
t = 0,±1,±2, . . . with X(t), i- vector-valued and Y (t) j-vector-valued. The series
(2.1) is assumed to be a firmly fixed (i+ j) vector-valued series with components[
Xr(t) Y s(t)

]T
, r = 1, 2, . . . , j, s = 1, 2, .., i, all of whose moments exist, and

then we define the mean function as:

EX(t) = 0, EY (t) = 0

and covariance

E
{
[X(t+ g)− τx][X(t)− τx]

T
}
= τxx(g)

E
{
[X(t+ g)− τx][Y (t)− τy]

T
}
= τxy(g)

E
{
[Y (t+ g)− τy][Y (t)− τy]

T
}
= τyy(g),

with spectral densities

fxx(h) =

∫ ∞

−∞

1

(2π)

∞∑
g=−∞

τxx(g)Exp(−ihg)

fxy(h) =

∫ ∞

−∞

1

(2π)

∞∑
g=−∞

τxy(g)Exp(−ihg)

fyy(h) =

∫ ∞

−∞

1

(2π)
g

∞∑
u=−∞

τyy(g)Exp(−ihg), −∞ < h <∞.
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For any t, there exists βa(t), a = 1, 2, . . . , i, (t ∈ R) which is not dependent on

R(t)P [βa(t) = 1] = pa,

P [βa (t) = 0] = qa.

Noting that
E {βa(t)} = P.

The success of an independent data does not depend on the success of another.
The modified series definition could be as follows:

δ(t) = β(t)R(t),

where

(2.2) δa(t) = βa(t)Ra(t),

and

(2.3) βa(t) =

{
1, if y Xa(t), Ya(t) are recorded,
0, otherwise

.

Assumption. In the data window, l(T )a (t) is constrained to have finite range, finite
variation, and disappear at time0 < t < T − 1. Let

γ(T )a1,...,ak
(h) =

∫ T

0

[
N∏
r=1

l(T )ar (t)

]
exp {−iht}dt

2. APPROXIMATED CHARACTERISTICS OF THE UNOBSERVED PROCEDURE

Theorem 2.1. Given that Xa(t), Ya(t), a = 1, 2, . . . ,min(i, j) represents a fixed sto-
chastic procedure and that δa(t) = βa(t)Ra(t), a = 1, 2, . . . .min(i, j) represents data
points that were missing and that βa(t) is a Bernoulli sequence of random variables
satisfying (2.2) and (2.3), we get the following.

E {δa(t)} = 0,

Cov {δa1(t1), δa2(t2)} = Pa1a2

[
τxx(g) τxx(g)K(h)T

K(h)τxx(g) K(h)τxx(g)K(h)T

]
.
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Lemma 2.1. If we fix ω(T )
a (h), a = 1, . . . .,min(j, i) equal to

(3.1) ω(T )
a (h) =

[
2π

∫ T

0

(
l(T )a (t)

)2]− 1
2
∫ ∞

−∞
l(T )a (t)δa(t) exp {−iht} dt,

for h ∈ R, then we find that ω(T )
a (h) has the following dispersion:

(3.2) Dωa
(T ) (h)

= Paa ×

[ ∫∞
−∞ faa(h− ψ)×ζaa(ψ)dψ

∫∞
−∞ faa(h− ψ)K(h)T×ζaa(ψ)dψ∫∞

−∞K(h)faa(h− ψ)×ζaa(ψ)dψ
∫∞
−∞K(h)faa(h− ψ)K(h)T×ζaa(ψ)dψ

]
,

where

ζaa
(T )(x) =

[∫ T

0

(2π)(la
(T )(t)dt

]−1 ∣∣∣∂a(T )(x)∣∣∣ ,
∂a

(T )(x) =

∫ T

0

la
(T )(t) exp(−ixt)dt,

x ∈ R.

Proof. Using equation (3.1) we have

Dωa
(T )(h) = pa1a2

[
p1 p2

p3 p4

]
,

where
p1 =

∫ ∞

−∞
fa1a2(u)×ζa1a2(h1 − u, h2 − u)du,

p2 =

∫ ∞

−∞
fa1a2(u)K(h)T×ζa1a2(h1 − u, h2 − u)du

p3 =

∫ ∞

−∞
K(h)fa1a2(u)×ζa1a2(h1 − u, h2 − u)du,

p4 =

∫ ∞

−∞
K(h)fa1a2(u)K(h)T×ζa1a2(h1 − u, h2 − u)du.

When a1 = a2 = a, a = 1, 2, . . . ,min(i, j), and h1 = h2 = h, h ∈ R, by substituting
h− u = ψ, then equation (3.2) is obtained. □

Theorem 2.2. Given the spectral density functionfaa(x), a = 1, . . . ,min(i, j),x ∈ R

is bounded and continuous at a pointx = h, h ∈ R, and if the function ζaa
(T )(x),
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a = 1, . . . ,min(i, j), x ∈ R meets these conditions, then

(3.3) Lim
T→∞

Dωa
(T )(h) =

[
faa(h)) faa(h)K(υ)T

K(υ)faa(h)) K(υ)faa(h)K(υ)T

]
,

a = 1, . . . ,min(i, j).

Proof. In order to establish formula (3.3), we must demonstrate that

Lim
T→∞

∣∣∣∣∣Dωa(T )(h)− paa

[
faa(h)) faa(h)K(υ)T

K(υ)faa(h)) K(υ)faa(h)K(υ)T

]∣∣∣∣∣ = 0,

Now from Lemma (3.1) we have∣∣∣∣∣Dωa(T )(h)− paa

[
faa(h)) faa(h)K(υ)T

K(υ)faa(h)) K(υ)faa(h)K(υ)T

]∣∣∣∣∣
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= B1 +B2 +B3.

We shall explain each of them. Since fab(ψ) is continuous at point Ψ =, a, b =

1, . . . ,min (i, j), then we get
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B2 ≤
∫ ψ

−ψ
ηaa

(T )(ψ)dψ ≤ Ω

∫ ∞

−∞
ηaa(ψ)dψηaa

(T )(ψ)dψ.

Given that fab(ψ) is continuous at ψ = h, a, b = 1, . . . ,min (i, j), we have B2 ≤ Ω.
Now, B2 is extremely low according any Ω is very small thus, B2 = 0. If faa(h),

a = 1, . . . ,min(i, j), h ∈ R is constrained to a finite value by a constant G, then,

B1 ≤ 2G

∫ −ψ

−∞
ηaa

(T )(ψ)dψ →
T→∞

0,

Similarly, B3 →
T→∞

0. Therefore∣∣∣∣∣Dωa(T )(h)− paa

[
faa(h)) faa(h)K(υ)T

K(υ)faa(h)) K(υ)faa(h)K(υ)T

]∣∣∣∣∣ →
T→∞

0

Thus, the proof of the theorem is complete. □

3. PRACTICAL STUDY

3.1. Analyzing the imported and exported Energy.
This study provides a monthly average of General Electric Company’s exported

Energy and its imported Energy from January 2006 through December 2015.

3.1.1. Analyzing the imported Energy.
Our results, based on a model of firmly fixed time series with some missing

data, will be compared to those produced using the traditional approach, in which
all data is recorded. We assume that the dataXa(t), (t = (1, 2, . . . , T ], which is
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the average of the monthly imported Energy, where all observations are avail-
able of the series, is available with some missing, and write the result as ζa(t) =
βa(t)Xa(t), a = 1, 2, . . . , i, where Xa(t), (t = 0,±1, . . .) is an i-vector valued time
series that is firmly fixed, and βa(t) is a Bernoulli sequence of random variables
that is stochastically independent of Xa(t). Table 4.2.1 compares the results with
and without missing data for the traditional situation β = 1, ζa(t) = Xa(t) with the
scenario where some observations are missing in a random way, β = 0.

3.1.2. Analyzing the Exported Energy.
Our research results, which are based on a model of fixed-time series with some

missing data, will be compared to those obtained by the traditional technique, in
which all data is observed. Assuming Ya(t), (t = (1, 2, ..., T ] is a fixed j-vector val-
ued time series and βa(t) is a stochastically independent Bernoulli sequence of ran-
dom variables, we may represent the results as ϖa(t) = βa(t)Ya(t), a = 1, 2, ..., j,
whereYa(t), (t = 0,±1, ...) is a monthly average of exported Energy for which all
data are available of the series. The results for the standard case β = 1, ϖa(t) =

Ya(t) and the case where some observations are missing at random β = 0 are
compared in table 4.2.2.

3.1.3. Analyzing of Energy Imported and Exported Using a Regression Model.
This study will compare our results; a regression model between the averages

monthly imported and exported of energy, with the classical results, when all ob-
servations are available, for the two scenarios presented in the table 4.2.3.

4. CONCLUSION

(1) The analysis of time series with missing data yielded the same results as
the analysis of traditional time series.

(2) The outcomes of the studied regression model between classical time se-
ries X(t) and Y(t) were the same as in the case of missing data, in that
both models satisfied the theoretical, mathematical, and least squares con-
straints.
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5. FIGURES
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