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UNCERTAINTY PRINCIPLES FOR A NONCOMMUTATIVE HYPERGROUP

Kouakou Germain Brou1, Pie Coulibaly, and Kinvi Kangni

ABSTRACT. Let G be a locally compact hypergroup and let K be a compact sub-
hypergroup of G. (G,K) is a Gelfand pair if Mc(G//K), the algebra of measures
with compact support on the double coset G//K, is commutative for the convolu-
tion. In this paper, assuming that (G,K) is a Gelfand pair, we establish uncertainty
principles for the pair (G,K).

1. INTRODUCTION

Hypergroups generalize locally compact groups. They appear when the Banach
space of all bounded Radon measures on a locally compact space carries a con-
volution having all properties of a group convolution apart from the fact that the
convolution of two point measures is a probability measure with compact support
and not necessarily a point measure. The intention was to unify harmonic analysis
on duals of compact groups, double coset spaces G//H (H a compact subgroup
of a locally compact group G), and commutative convolution algebras associated
with product linearization formulas of special functions. The notion of hypergroup
has been sufficiently studied (see for example [2,5,7,8]). Harmonic analysis and
probability theory on commutative hypergroups are well developed meanwhile
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where many results from group theory remain valid (see [1]). When G is a com-
mutative hypergroup, the convolution algebra Mc(G) consisting of measures with
compact support on G is commutative. The typical example of commutative hy-
pergroup is the double coset G//K when G is a locally compact group, K is a
compact subgroup of G such that (G,K) is a Gelfand pair. In [5], R. I. Jewett has
shown the existence of a positive measure called Plancherel measure on the dual
space Ĝ of a commutative hypergroup G; he has also established many properties
of the Fourier and the inverse Fourier transform. In [11], Michael Voit relying on
these results, has established an uncertainty principle for a commutative hyper-
group G. When the hypergroup G is not commutative, it is possible to involve a
compact sub-hypergroup K of G leading to a commutative subalgebra of Mc(G).
In fact, if K is a compact sub-hypergroup of a hypergroup G, the pair (G,K) is
said to be a Gelfand pair if Mc(G//K) the convolution algebra of measures with
compact support on G//K is commutative. The notion of Gelfand pairs for hyper-
groups is well-known (see [3, 9, 10]). When (G,K) i a Gelfand pair; it has been
shown in [4] the existence of a Plancherel measure on Ĝ. The goal of this paper is
to extend Voit’s work by obtaining a quantitative uncertainty princilple for Gelfand
pair associated with noncommutative hypergroup. This result will generate a cer-
tain qualitative uncertainty principle. In the next section, we give notations and
setup useful for the remainder of this paper. In section 3, we give some properties
of the Fourier transform and it reverse. Finally, thanks to these properties, we
prove a quantitative and a qualitative uncertainty principles for the paire (G,K).

2. NOTATIONS AND PRELIMINARIES

We use the notations and setup of this section in the rest of the paper without
mentioning. Let G be a locally compact space. We denote by:

- C(G) (resp. M(G)) the space of continuous complex valued functions (resp.
the space of Radon measures) on G,

- Cb(G) (resp. Mb(G)) the space of bounded continuous functions (resp. the
space of bounded Radon measures) on G,

- K(G) (resp. Mc(G)) the space of continuous functions (resp. the space of
Radon measures) with compact support on G,

- C0(G) the space of elements in C(G) which are zero at infinity,
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- C(G) the space of compact sub-space of G,

- δx the point measure at x ∈ G,
- spt(f) the support of the function f .
- spt(µ), the support of the measure µ.

Let us notice that the topology on M(G) is the cône topology [5] and the topology
on C(G) is the topology of Michael [6].

Definition 2.1. G is said to be a hypergroup if the following assumptions are sat-
isfied.

(H1) There is a binary operator ∗ named convolution on Mb(G) under which
Mb(G) is an associative algebra such that:

i) the mapping (µ, ν) 7−→ µ ∗ ν is continuous from Mb(G) × Mb(G) in
Mb(G).

ii) ∀x, y ∈ G, δx ∗ δy is a measure of probability with compact support.
iii) the mapping: (x, y) 7−→ supp(δx ∗ δy) is continuous from G × G in

C(G).
(H2) There is a unique element e (called neutral element) in G such that δx∗δe =

δe ∗ δx = δx,∀x ∈ G.
(H3) There is an involutive homeomorphism: x 7−→ x from G in G, named

involution, such that:
i) (δx ∗ δy)

− = δy ∗ δx,∀x, y ∈ G with µ−(f) = µ(f−) where f−(x) =

f(x),∀f ∈ C(G) and µ ∈ M(G).
ii) ∀x, y, z ∈ G, z ∈ supp(δx ∗ δy) if and only if x ∈ supp(δz ∗ δy).

The hypergroup G is commutative if δx ∗ δy = δy ∗ δx,∀x, y ∈ G. For x, y ∈ G,
x ∗ y is the support of δx ∗ δy and for f ∈ C(G),

f(x ∗ y) = (δx ∗ δy)(f) =
∫
G

f(z)d(δx ∗ δy)(z).

The convolution of two measures µ, ν in Mb(G) is defined by: ∀f ∈ C(G)

(µ ∗ ν)(f) =
∫
G

∫
G

(δx ∗ δy)(f)dµ(x)dν(y) =
∫
G

∫
G

f(x ∗ y)dµ(x)dν(y),

For µ in Mb(G), µ∗ = (µ)−. So Mb(G) is a *-Banach algebra.

Definition 2.2. H ⊂ G is a sub-hypergroup of G if the following conditions are
satisfied.
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(1) H is non empty and closed in G,

(2) ∀x ∈ H, x ∈ H,

(3) ∀x, y ∈ H, supp(δx ∗ δy) ⊂ H.

Let us now consider a hypergroup G provided with a left Haar measure µG and
K a compact sub-hypergroup of G with a normalized Haar measure ωK . Let us
put MµG

(G) the space of measures in Mb(G) which are absolutely continuous with
respect to µG. MµG

(G) is a closed self-adjoint ideal in Mb(G). For x ∈ G, the dou-
ble coset of x with respect to K is K ∗{x}∗K = {k1 ∗ x ∗ k2; k1, k2 ∈ K}. We write
simply KxK for a double coset and recall that KxK =

⋃
k1,k2∈K

supp(δk1 ∗ δx ∗ δk2).

All double coset form a partition of G and the quotient topology with respect to
the corresponding equivalence relation equips the double cosets space G//K with
a locally topology ( [1], page 53). The natural mapping pK : G −→ G//K defined
by: pK(x) = KxK , x ∈ G is an open surjective continuous mapping. A function
f ∈ C(G) is said to be invariant by K or K − invariant if f(k1 ∗ x ∗ k2) = f(x)

for all x ∈ G and for all k1, k2 ∈ K. We denote by C♮(G), (resp. K♮(G)) the
space of continuous functions (resp. continuous functions with compact support)
which are K−invariant. For f ∈ C♮(G), one defines the function f̃ on G//K by
f̃(KxK) = f(x) ∀x ∈ G. f̃ is well defined and it is continuous on G//K. Con-
versely, for all continuous function φ on G//K, the function f = φ ◦ pK ∈ C♮(G).

One has the obvious consequence that the mapping f 7−→ f̃ sets up a topo-
logical isomorphism between the topological vector spaces C♮(G) and C(G//K)

(see [9, 10]). So, for any f in C♮(G), f = f̃ ◦ pK . Otherwise, we consider
the K-projection f 7−→ f ♮ (by identifying f ♮ and f̃ ♮) from C(G) into C(G//K)

where for x ∈ G, f ♮(x) =
∫
K

∫
K
f(k1 ∗ x ∗ k2)dωK(k1)dωK(k2). If f ∈ K(G), then

f ♮ ∈ K(G//K). For a measure µ ∈ M(G), one defines µ
♮ by µ

♮
(f) = µ(f ♮) for

f ∈ K(G). µ is said to be K−invariant if µ♮
= µ and we denote by M ♮ (G) the

set of all those measures. Considering these properties, one defines a hyper-
group operation on G//K by: δKxK ∗ δKyK(f̃) =

∫
K
f(x ∗ k ∗ y)dωK(k) (see [9]

and [1]). This defines uniquely the convolution (KxK) ∗ (KyK) on G//K. The
involution is defined by: KxK = KxK and the neutral element is K. Let us put
m =

∫
G
δKxKdµG(x), m is a left Haar measure on G//K. We say that (G,K) is a

Gelfand pair if the convolution algebra Mc(G//K) is commutative. Mc(G//K) is
topologically isomorphic to M ♮

c (G). Considering the convolution product on K(G),
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K(G) is a convolution algebra and K♮(G) is a subalgebra. Thus (G,K) is a Gelfand
pair if and only if K♮(G) is commutative ( [3], theorem 3.2.2).

3. UNCERTAINTY PRINCIPLE

Let put Ĝ the space of continuous, bounded function ϕ on G such that:

(i) ϕ is K- invariant,
(ii) ϕ(e) = 1,

(iii)
∫
K
ϕ(x ∗ k ∗ y)dwK(k) = ϕ(x)ϕ(y) ∀x, y ∈ G,

(iv) ϕ(x) = ϕ(x) ∀x ∈ G.

The function 1 : x 7−→ 1 belongs to Ĝ.

Equipped with the topology of uniform convergence on compacta, Ĝ is a locally
compact Hausdorff space. Ĝ is the dual space of the hypergroup G (see [4]).

3.1. Fourier transform and inverse Fourier transform.
For β belongs to Mb(G), the Fourier transform of β, is the mapping

β̂ : Ĝ −→ C defined by : β̂(ϕ) =

∫
G

ϕ(x)dβ(x).

The Fourier transform of f ∈ K(G) is defined by

f̂(ϕ) = f̂µG(ϕ) =

∫
G

ϕ(x)f(x)dµG(x),{
f̂ ; f ∈ K(G)

}
is a sup-norm dense subspace of C0(Ĝ). (For more detail on the

Fourier transform, see [4]).

Definition 3.1. Let σ ∈ Mb(Ĝ), we call inverse Fourier transform of σ, the mapping

∨
σ : G −→ C defined by :

∨
σ(x) =

∫
Ĝ

ϕ(x)dσ(ϕ).

The inverse Fourier transform of φ ∈ L1(Ĝ, π) is defined by

∨
φ(x) = (φπ)∨(x) =

∫
Ĝ

ϕ(x)φ(ϕ)dπ(ϕ),

where π is the Plancherel measure (see [4]) on Ĝ.

For σ ∈ Mb(Ĝ),
∨
σ is K− invariant and belongs to Cb(G). (K(Ĝ))∨ is a sup-norm

dense subspace of C0(G). If f ∈ K♮(G) with f̂ ∈ L1(Ĝ, π), then f̂∨ = f .
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Let us establish some properties of the Fourier transform and the inverse Fourier
transform.

Proposition 3.2. The Fourier transform is a bijective isometry from L
♮

2(G, µG) onto
L2(Ĝ, π).

Proof. In the usual way: for f ∈ L
♮

2(G, µG), f̂ is defined as the L2(Ĝ, π)-limite of a
sequence (f̂n)n in L2(Ĝ, π) where (fn)n ⊂ K♮(G) satisfies f = lim fn in L2(G, µG).
Since f̂ = f̂ ♮ for f ∈ L2(G, µG), then the Fourier transform is extended to the
whole space L2(G, µG) and by the Plancherel theorem, it defines an isometry from
L

♮

2(G, µG) into L2(Ĝ, π). Otherwise, let φ belongs to L2(Ĝ, π); since K̂♮(G) is dense
in L2(Ĝ, π), then φ = lim f̂n in L2(Ĝ, π) where (fn)n ⊂ K♮(G). By the isometry,
(fn)n converges to a certain f in L2(G, µG). As above, f̂ = f̂ ♮ = lim f̂n in L2(Ĝ, π),
that is φ = f̂ ♮, so the surjection. □

Proposition 3.3. Let 1 ≤ p ≤ 2 and q such that 1
p
+ 1

q
= 1.

(i) If f ∈ Lp(G, µG), then f̂ ∈ Lq(Ĝ, π) and
∥∥∥f̂∥∥∥

q
≤ ∥f∥p .

(ii) If φ ∈ Lp(Ĝ, π), then
∨
φ ∈ Lq(G, µG) and

∥∥∥∨
φ
∥∥∥
q
≤ ∥φ∥p.

Proof. (i) Let f ∈ K(G). We have(∫
Ĝ

∣∣∣f̂ ♮(ϕ)
∣∣∣q dπ(ϕ)) 1

q

=

(∫
Ĝ//K

∣∣∣∣ ˜̂f ♮(ϕ̃)

∣∣∣∣q dπ̃(ϕ̃)) 1
q

(see [4])

=

(∫
Ĝ//K

∣∣∣∣ ̂̃f ♮(ϕ̃)

∣∣∣∣q dπ̃(ϕ̃)) 1
q

≤
(∫

G//K

∣∣∣f̃ ♮(KxK)
∣∣∣p dm(KxK)

) 1
p

=

(∫
G

∣∣f ♮(x)
∣∣p dµG(x)

) 1
p

≤ ∥f∥p .

That is,
∥∥∥f̂∥∥∥

q
=

∥∥∥f̂ ♮

∥∥∥
q
≤ ∥f∥p .
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(ii) Let us show that
∨
φ̃ =

∨̃
φ for φ ∈ K(Ĝ). In fact, since φ ∈ K(Ĝ) then

∨
φ ∈ C♮

b(G)

and φ̃ ∈ K(Ĝ//K). So
∨
φ̃ and

∨̃
φ belong to Cb(G//K). For KxK ∈ G//K, we have

∨
φ̃(KxK) =

∫
Ĝ//K

ϕ̃(KxK)φ̃(ϕ̃)dπ̃(ϕ̃)

=

∫
Ĝ

ϕ(x)φ(ϕ)dπ(ϕ)

=
∨
φ(x)

=
∨̃
φ(KxK).

If φ ∈ K(Ĝ), then(∫
G

∣∣∣∨φ(x)∣∣∣q dµG(x)

) 1
q

=

(∫
G//K

∣∣∣∣ ∨̃φ(KxK)

∣∣∣∣q dm(KxK)

) 1
q

=

(∫
G//K

∣∣∣∣∨φ̃(KxK)

∣∣∣∣q dm(KxK)

) 1
q

=

∥∥∥∥∨
φ̃

∥∥∥∥
q

in Lq(G//K,m)

≤ ∥φ̃∥p in Lp(Ĝ//K, π̃)

=

(∫
Ĝ//K

∣∣∣φ̃(ϕ̃)∣∣∣p dπ̃(ϕ̃)) 1
p

=

(∫
Ĝ

|φ(ϕ)|p dπ(ϕ)
) 1

p

= ∥φ∥p in Lp(Ĝ, π).

So
∥∥∥∨
φ
∥∥∥
q
≤ ∥φ∥p and the proof is complete. □

3.2. A quantitative and a qualitative uncertainty principles.
Let 1 ≤ p ≤ 2 and q such that 1

p
+ 1

q
= 1.

Let us fixe the sets T ⊂ G and U ⊂ Ĝ such that µG(T ) < ∞ and π(U) < ∞.
Let 1T and 1U be their respective indicator functions. Let us define the operators
P = PT and Q = QU by

Pf = 1T .f and Qf = (1U .f̂)
∨ for f ∈ Lp(G, µG).

In the following theorems we establish some properties of these operators.
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Theorem 3.4. Let 1 ≤ p ≤ 2; s ≥ 1; f ∈ Lp(G, µG) and ζ : G −→ [0; +∞[ a
continuous function, then

∥ζPQf∥s ≤ [(ζsµG)(T )]
1/s π(U)1/p ∥f∥p .

In particular, for p = s we have the operator norm inequality

∥PQ∥p ≤ µG(T )
1/pπ(U)1/p.

Proof. For x ∈ G, we have

(3.1)

Qf(x) =
∫
Ĝ
ϕ(x)1U(ϕ)f̂(ϕ)dπ(ϕ)

=
∫
G
f(y)(

∫
Ĝ
ϕ(y)ϕ(x)1U(ϕ)dπ(ϕ))dµG(y)

=
〈
f, kx

〉
with kx(y) =

∫
Ĝ
ϕ(y)ϕ(x)1U(ϕ)dπ(ϕ).

Since ϕ ∈ Ĝ, then

kx(y) =
∫
Ĝ

∫
K
ϕ(x ∗ k ∗ y)dk1U(ϕ)dπ(ϕ)

=
∫
K

∫
G

∫
Ĝ
ϕ(z)1U(ϕ)dπ(ϕ)d(δx ∗ δk ∗ δy)(z)dwk

=
∫
K

∫
G
1∨U(z)d(δx ∗ δk ∗ δy)(z)dwk.

Thanks to Jensen’s inequality we have

(3.2)

|kx(y)|q ≤
∫
K

∣∣∫
G
1∨U(z)d(δx ∗ δk ∗ δy)(z)

∣∣q dwk

≤
∫
K

∫
G
|1∨U(z)|

q d(δx ∗ δk ∗ δy)(z)dwk

=
∫
K
|1∨U(x ∗ k ∗ y)|q dwk.

Since G is unimodular, then
∥kx∥q ≤ ∥1∨U∥q .

So by the Hölder inequality we deduce that

|Qf(x)| =
∣∣〈f, kx〉∣∣

≤ ∥f∥p ∥1∨U∥q .
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Otherwise, we have

|ζ.PQf(x)|s ≤ |ζ(x)1T (x)|s ∥Qf∥s∞ , that is

∥ζ.PQf∥s ≤ ∥Qf∥∞
(∫

G
|ζ(x)1T (x)|s dµG

)1/s
≤ ∥Qf∥∞

(∫
T
|ζ(x)|s dµG

)1/s
≤ ∥Qf∥∞ (ζsµG)(T ))

1/s

≤ ∥f∥p ∥1∨U∥q (ζsµG)(T ))
1/s

≤ ∥f∥p ∥1U∥p (ζsµG)(T ))
1/s

= ∥f∥p (π(U))1/p (ζsµG)(T ))
1/s .

□

Theorem 3.5. Let 1 ≤ p ≤ 2; s ≥ q and f ∈ Lp(G, µG), then

(i) ∥QPf∥s ≤ µG(T )
1/sπ(U)1/p ∥f∥p;

(ii) ∥QPf∥s ≤ µG(T )
1/pπ(U)1/p ∥Pf∥s .

Proof. (i) By (3.1), we have QPf(x) = Q1Tf(x) =
〈
1Tf, kx

〉
=

〈
f, 1Tkx

〉
∀x ∈ G.

Using (3.2), we have

∥1Tkx∥q =
(∫

G
1T (y) |kx(y)|q dµG(y)

)1/q
≤

(∫
G
1T (y)

∫
K
|1∨U |

q (x ∗ k ∗ y)dwkdµG(y)
)1/q

≤
(∫

K

∫
G
1T (y) |1∨U |

q (x ∗ k ∗ y)dµG(y)dwk

)1/q
=

(∫
K
(|1∨U |

q ∗ 1T )(x ∗ k)dwk

)1/q
.

Thanks to the Hölder inequality and using the ineqality above, we have

∥QPf∥s =
(∫

G
|QPf(x)|s dµG

)1/s
≤

(∫
G

(
∥f∥p ∥1Tkx∥q

)s

dµG(x)
)1/s

≤ ∥f∥p
(∫

G

(∫
K
(|1∨U |

q ∗ 1T )(x ∗ k)dwk

)s/q
dµG(x)

)1/s

≤ ∥f∥p
(∫

G
((|1∨U |

q ∗ 1T )(x))s/q dµG(x)
)1/s

, since G is unimodular

= ∥f∥p
(
∥|1∨U |

q ∗ 1T∥s/q
)1/q

.



390 K.G. Brou, P. Coulibaly, and K. Kangni

Since |1∨U |
q ∈ L1(G, µG) and 1T ∈ Ls/q(G, µG), then

∥QPf∥s ≤ ∥f∥p
(
∥(1∨U)

q∥1 ∥1T∥s/q
)1/q

= ∥f∥p ∥1∨U∥q µG(T )
1/s

≤ ∥f∥p ∥1U∥p µG(T )
1/s

= ∥f∥p π(U)1/pµG(T )
1/s.

(ii) Using P 2 = P , we can replace f by Pf in the first inequality. This leads to

∥QPf∥s ≤ ∥Pf∥p π(U)1/pµG(T )
1/s.

Moreover, let us put r = s/p and r′ such that 1/r+1/r′ = 1. Since |Pf |p ∈ Lr(G, µG)

and 1T ∈ Lr′(G, µG), we have

∥Pf∥pp =
∫
G
1T (x) |Pf(x)|p dµG(x)

= ∥1T |Pf |p∥1
≤ ∥1T∥r′ ∥|Pf |p∥r
= ∥1T∥r′ ∥Pf∥ps .

This implies
∥Pf∥p ≤ ∥Pf∥s (∥1T∥r′)

1/p

= ∥Pf∥s µG(T )
1/pr′

= ∥Pf∥s µG(T )
1/p−1/s.

Hence
∥QPf∥s ≤ ∥Pf∥s µG(T )

1/p−1/sπ(U)1/pµG(T )
1/s

= ∥Pf∥s µG(T )
1/pπ(U)1/p,

and the proof is complete. □

Let T , U and p giving as above; for ε, δ ≥ 0, let us remind those definitions.

Definition 3.6. f ∈ Lp(G, µG) is called ε-concentrated on T if ∥f − Pf∥p ≤ ε ∥f∥p
and δ-bandlimited to U if there exists fU ∈ Lp(G, µG) with

{
ϕ ∈ Ĝ; f̂U(ϕ) ̸= 0

}
⊂

U and ∥f − fU∥ ≤ δ ∥f∥p .

Let us put Af = {x ∈ G; f(x) ̸= 0} and Bf =
{
ϕ ∈ Ĝ; f̂(ϕ) ̸= 0

}
. Thanks to the

results above, we establish the following results which are uncertainty principles.
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Theorem 3.7.

(i) Let 1 ≤ p ≤ 2 and ε, δ ≥ 0. If f ∈ Lp(G, µG) with f ̸= 0 is ε-concentrated on
T and δ-bandlimited to U , then

∥PQ∥p ≥
1− ε− δ

1 + δ
.

(ii) Let f be a K−invariant function belongs to L1(G, µG) ∩ L2(G, µG). If
µG(Af )π(Bf ) < 1, then f = 0.

Proof. (i)Using fU = QfU and ∥P∥p = sup
∥f∥p≤1

∥Pf∥p ≤ 1, we have

∥f∥p − ∥PQf∥p ≤ ∥f − PQf∥p
≤ ∥f − Pf∥p + ∥Pf − PfU∥p + ∥PQfU − PQf∥p
≤ ε ∥f∥p + δ ∥f∥p + ∥PQ∥p δ ∥f∥p
= (ε+ δ + δ ∥PQ∥p) ∥f∥p .

Thus ∥PQf∥p ≥ (1− ε− δ − δ ∥PQ∥p) ∥f∥p, hence ∥PQ∥p ≥
1−ε−δ
1+δ

.

(ii) By their definitions, PAf
f = f and 1Bf

f̂ = f̂ . So QBf
f = (1Bf

f̂)∨ = (f̂)∨ = f

since f is K−invariant.
If µG(Af ) = 0, then f = 0. If π(Bf ) = 0, then f̂ = 0, thus f = 0.
Let suppose µG(Af ) ̸= 0 and π(Bf ) ̸= 0. µG(Af )π(Bf ) < 1 =⇒ µG(Af ) < ∞

and π(Bf ) < ∞. Since PAf
f = f and QBf

f = f , then f is 0−concentrated
on Af and 0−bandlimited to Bf . If f ̸= 0, by theorem 3.4 and (i), we have
1 ≤ ∥PQ∥2 ≤ µG(T )

1/2π(U)1/2 < 1, which is absurd, hence f = 0. □

Remark 3.8. In the theorem above, (i) is a quantitative uncertainty principle and
(ii) is a qualitative one.
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