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A CLASS OF OPTIMAL EIGHTH ORDER ITERATIVE METHODS FOR
SOLVING NONLINEAR EQUATIONS WITHOUT DERIVATIVES

Laila A. Alnaser

ABSTRACT. The objective of this paper is to develop new class of optimal itera-
tive methods that do not need any derivative evaluations for solving nonlinear
equations. Those new methods consist of an approximation of the eighth order
and require four function evaluations per iteration which support the Kung-
Traub assumption on optimal order for without memory schemes. Lastly, to
show those new methods’ performance and effectiveness, they are compared
numerically with other similar methods in high-precision computation.

1. INTRODUCTION

In numerical analysis, one of the most important computational challenges is
finding the real roots of the nonlinear equation f(z) = 0. Many practical prob-
lems that are encountered in Mathematics, Chemistry, Physics, and Engineering
require the solution of nonlinear equations. It is rare to obtain the exact solution
in most of the cases of nonlinear equations [|11]. When this occurs, the iterative
methods can be used to find the approximate solution [2,3]]. The iterative meth-
ods can be classified into two schemes, single-point and multi-point. Those two
schemes are also sub-divided into two categories, with and without derivative.
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Because multi-point methods have high order of efficiency index EI = pn%l,
since p is order convergent method and have high order of convergence, they
are considered to be more important than single-point methods. In some cases,
there is either no derivative for f(x) or it is difficult to compute f(x) derivative.
Kung and Traub [4] assumed that convergence order of 2" could be achieved
with optimal iterative method requiring n + 1 function evaluations per iteration.
So, it is generally preferred to utilize methods that do not use f(z) derivative
because they reduce the number of function evaluations for each iteration. A
small number of derivative-free methods have been presented in research arti-
cles [7-9] and [11-14].

One of the most important issues in solving nonlinear equations with iterative
methos is to choose a good initial approximation. So, to assure convergence of
the solution, it must be ensured that the initial approximation and the solution
are close enough. There are multiple methods that can be used to find good
initial approximation.

Definition 1.1. Suppose that x,_1,x, and x,.; are three consecutive iterations
closer to root a. Methods are approximated by computational order of convergence
(COCQC) [5]], since

~ In | f(2p1) /f (20)
In| f(2) /f (xn-1)

The goal of this paper is to develop two derivative-free methods without mem-
ory of order eight by using a number of four function evaluations per iteration,
which are extended methods of Mirzaee and Hamzeh’s derived method [|10].

(1.1) coc

2. EIGHTH-ORDER ITERATIVE METHOD

Here, we consider a general optimal eighth order derivative free scheme [8]
in the following way

Wy = f(x)z + T,
f ()

Yn = Tn — 777
[, wn)

2.1)
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o A(tn)
Zn = Yn — [ (Yn) Flonwl’
(2.2) Tpgl = Zp — f (zn) (B (b, un) + G (sn)),n =0,1,2,...
f[zmwn]
where B (t,,u,), G (s,) are wight function has been considered in [8], [12],
) S fG)

TRy ST F@) T Faw

and
n n n y’l’L
F [men] _ f (wn) : f (Zn)
Wy, — Zn

Here, to approximate the value of derivative, we use forward difference f’ (z,,) =
F [n, wy] = L02)=En) where w, = f(x)% + zp.

Wn—Tn

Theorem 2.1. Let a € D be exact zero of an adequately differentiable func-
tion f : D C R — R for an open interval D which contains ty as an ini-
tial approximation of a. Then the order of convergence of method defined in
is eight if A(0) = A'(0) = 1,A4”(0) = 6,A”(0) = 54 and AW < ||,
B(0,0) =1, B,(0,0) = 1, B,(0,0) = 1, B;(0,0) = 6, B.,(0,0) = 0, B;(0,0) = 60,
and the error equation is given by

1 1 1
Ent1 = ((5) C2C§Buu(0a 0) — (5) Cgchttu(O, 0) — (ﬂ) A(4)(0)0303 - 030304
— f'(@)?cyes — eacy — Tches + 8c3c3) €8 + O (€)

Proof. Suppose « be the exact zero of f(x). We introduced the error equation at
n® iteration as x, = a + e,. Using Taylor series in each term involved in (2.2)
about the exact zero «, we get

2.3) f(z) = f(@) (c2e® + 3’ + cae® + c5€° + ce’ + cre”

8 9 10 11
+cge” + cge” + cipe + c11€ ) s

(@)
itf7(a)

w, =a + e+ f'(a)? [‘32 + 2c9¢® + (Cg + 263) ¢! + (26205 + 2c4) 65} o
(24)  + fl(a)* (2c2c6 + 2c3¢5 + ¢ + 2c7) €8 + O (),

where ¢; = ,1=2,3,.... Moreover, we obtained
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dy =a + e+ f'(@)? [e2 4 2c0e® + (3 + 2¢3) €' + (20203 4 2¢4) €” + -+
(2.5 + f(a)? (26206 + 2c305 + 2 + 207) S+ 0 (eg) — a,

and then

flwn) = fl(@) e+ (c2 +f(a)?) € + (3 +4f (a)’cy) €
+ (ca+5f (@) ecs + 51 ()’ + f'(a)'cs) €] + -
+ (18caf'(a)cacs + 4265 f' () ’ca + 24cs f' (@)’ )
(2.6) + 15¢e3f' ()3 4+ 9cs () ca + ddes f(a) ey + 48cuf' ()’ c
+ 36¢4c3f'()® + 24esf' (@) ey + 3f(a)3cs + 6c2 f'(a)”
+ f'(@)c) + 15 fd(a)® + 10cs f' ()" + cuf’(a)® + 9f' (a)3c?
1017 (a)fer + 18 (@) escs + 18 () escs + f(a)cs)
+0 (¢).

So, we find the value

[ lzn,wa] = /(@) + 2 (@)cae + (3f (a)es + f/(@)’cs) €
+ (4f(@)es + 3f'(a)’cs + 2f'(a)’c3) €°
+ (5 ()es + 6f"(a)’cs + 8f(a)’cacs + s f' ()’
2.7) +f(@)’S) et + -
+ (20caf (@) cacs + 1265 f' (@) ca + des f'(@)°ch
+ 32f" ()3 eace + 12¢5f'(a)?c3 + 26 f' () cscs
+ 40cs f'(a)’cy + 24es f' (@)’ + 20cse3f' ()’ + 6ea f () ey
+ 21f"(a)?cy + 20c6 f'(@)® + Bes f/(a)" + 12f(a)c]
+3f'(a)’cy + 8 (a)cs) € + O (€) .

/

From (2.3) and (2.7), we have

Y = 0+ c2€% + (f’(a)202 — 22+ 203) e3
+ (= f'(a)’c3 + 3f"(a)cs + 4c5 — Teacs + 3cq) €' + -+
+ (162c4 f'(a)?cacs + 64ch — 348c5cscs + 118cac3¢5
+162f'(a)cycs — 99f' (o) caes — 189! () 3¢5 — 304ches
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+ 176¢5c4 + 408c5ca — 92¢5cs — 135cyc5 + 44csc + 64coch
+ 75c2cy — f'(a)bc; — 36 ()% + 39c2 f/ () ca

(2.8) — 43csf'(a) ey 4 Tesf'(@)®ch + 5des f/(a)?c3 — 10cs f' (o) ey
+27eaf' (@) c; — 43cqcs f (@) — Segf!(a)bey + 36 (a)?cs
— 63 f'(a)® + 10f"(a)*c) + 20cs f'(a)* + Besf'(a)® — 19¢qcr
— 27cscs — 3leyes — 30 (a)?ch + 21 f (a)?cr — 24 (a)?cace
—51f"(a)?cses + Teg) € + O (7)),

£ () = F@)eac® + (£/(@)Per — 28(0) + 2f ()co) &
+ 5/ ()3 — f'(a)’c + 3f(a)’cs — Teaf (@) es + 3/ (a)ca) €
+ (20caf' () cacs + 134cacs f'(a) s — 455c5cs [/ (a)ea + 2975 ' (a)ca
+ T3cyca f/ () + T5eaf(a)ey — 55265 f(a)cs + 582csca f/ (o)
(2.9) — 147cyc f/ (o) — 264 f ()’ cacs — 1T1eaf (o) ey — 19¢o f' (a)cr
+303chesf' (@) + 54caf (a)cg — 2Tes fd (o) cg
— 13465 f'(a)es — 3legf'(a)es — 865 /() — 3f/ (o) ey + 144 f' (a)ch

[ Ynywn] = f/(@) + f(@)cse + (f(@)es + f(a)’ca + 3 f/(@)) €
+ (f(@)ea+2f (a)’cs + 3f(a)’c; — 2f'(a)ch
+3cof'(a)es) e + - - -

(2.10) + (—10cy () cacs — 30cacs f'(a)cs + 92c5es f ()

— T4c, f'(@)ey — 16coci (@) — T f'(a)eq + 11265 f'(a)es
— 94 f(a) + 1leycd f/(a) + 33f (a)?cacs + 36¢qf'(a)cs
+ Teof (@) er — Blcyes f'(a)® — 172 f (a)cg + Tesf'(a)ce
+ 373 f'(a)es + Teaf'(a)es + 1665 f(a)® + f'(a)7c)
— 32f'(a)ch + T3 f/ () ea + 153 f (o) cy — ez f/ ()3
— 8csf'(a)?ch + 40cs f'(a)’cy + 164 f' ()’ + 35cacs f/()®
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+ 8c4f’(a)762 + 32f" () cacs + 35f () cses + 3/ (a)?ch
+c3f'(a)" = 4f'(@)’c; + 10 /(@) + des f'(@)]
+18f'(a)’cy + 6f'(a)’cr + f'(a)cs) e + O (€%) .

Then, from and (2.8), we get

@11 A(f) = A(0) + A'(0)t + @ A(0)22 + A (0) .

i + A0 )4|
Substituting the values of ¢ in (2.2)), we obtain
Zn=a+ (—A(0)cy + cg) e + -
+ (162¢cy f'(ar)cacs — 68A(0)c5e6 + 34A(0)czce
+ 142A(0)cyes + - - - + T4A'(0) e + 114A(0) coch
+ 136 A'(0)czeq — 18A’(0) f(0)Ccy — 439A47(0) f/(v)?cS
— 2118A4’(0)c5es + 872A'(0)cheq + 1936 A'(0)cacs
—289A(0)cies + 104A'(0) f'(a)*c3 — 6A'(0)ca f/ ()"
+ 130A(0) f'(a)*c5 + 470A(0)c5c3eq — 162A(0)cacses
— 248 f'(a)* A(0)cqcacs + H00A'(0) ey f' () cacy
— 81A”(0)eaf'(a)*cacs + 64cy — 348c3csey + 118cyc3cs
+ 162/ (a)?cyes — 99f/ (@) caes — 189 (a)?c5c3
— 135¢yc3 + d4cics + 64cyc; + Tocey — f(a)’c)
—36f"(a)?ch — 304chcs + 176¢5¢4 + 408c5ca — 92¢ics
+ bdes f'(a)?cs — 10cs ' (a) ey + 27caf () e
(2.12) — 43cyesf (@) — Beaf'(@)bey + 39caf (o) ey
— 43csf(a)'cy + Tesf'()c3 + 36 (a)?c3 — 63 f(a)°
+10f"(a)*ch + 20c6 f'(a)* + Bes f/(a)® — 51f(a)?escs
—24f"(a)?cacs — 30f (a)?ch + 211 (a)?c; — 19¢pcr
—2Tcscs — 3leges + Tes) € + O (€7) .

Now, by imposing these conditions A(0) = A’(0) =1, A”(0) = 6, A”(0) = 54 and
AW < |ool, in the above equation, we get possible order of convergence is four
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and by using it, we can get

Zn = a — cacse’ + (2c5¢3 — 2f' ()3 — 2" (a)cacs — 2090 — 2¢3) € 4 - -
43
+ (—7204f’(a)20203 — (§> AD(0)ch

- (3) avorerda+ (5) 400 @

85 D
+ (E) AD(0)c5es — < ) AD(0)chey — (g) AD(0)c3c2

D
— (E) AD(0) f'(a)*c5 + 2289ch — 4Tc2eseq + 20c5¢3¢5

+ 1553 f"(a)?cyes — 5f (o) caey — 5Tf (@) cics — 35cycs

(2.13)  + 5cics + 10eac] + 1dcseq — Tf' ()¢ — 1451 f'(a)?cS
— 3696¢5c3 + 424c5c4 + 1175c5c5 — 5eaes — 28¢5 f'(a)?c;
— 10¢s.f'(a)*cy — 60csf' () cs — 23cqesf' ()
—cuf'(@)bcy — 1263 f' (@) ey — THesf'(a) e
—23c3f(a)bc3 — 12f'(a)?cd — A f'(a)® + 274 f (a)*c)
—35f"(a)?cses — 14 (o) cacs — 21f'(a)?c; — Beacr
—136306 - 17C4C5) e’ + @) (69) .

Now, we formulate the algorithm as follows

f (wn) = f ()

Wy, — 2p

f [znawn] =

To find the proper weight functions B and G in (2.2]), providing order eight,
we will use the method of undetermined coefficients and Taylor’s series about
zero, since ¢, u and s tend to zero when z tends to a. The technique of undeter-
mined coefficients was studied in [[1]. We have

4

G(s) = G(0) + G'(0)s + (%) G (0)s* +G"(0)5; e T
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8+ G(t,s)

Let us write the partial derivatives of B(t, s) at the originas B; ; = 555

(0,0)

t,s
1
B(t,u) = B(0,0) + B,(0,0)t + B,(0,0)u + (5) Buu(0,0)¢2 + By (0, 0)ut
1 2 1 3 1 2
+ 5 Buu<07 O)U + 6 Bttt(O, O)t + 5 Btm(O, O)t u
1 2 1 3

Now, by imposing these conditions B(0,0) = 1, B;(0,0) = 1, B,(0,0) = 1, By4(0,0) =
6, B1,(0,0) = 0, By#:(0,0) = 60;G(0) = 0,G’(0) = 2, in the above equation, we
get possible order of convergence is four and by using it, we can get

1 1
Tpt+1 = & + ((§> CQC%BUU(O, O) — <§) CgCgBttu(O, O)
1
(2.19) — (ﬂ) A(4)(O)0303 — cleseq — f'(a)’ces — CQCg
—Tc3es 4+ 8c33) €® + O (€)

3. NUMERICAL COMPARISONS

In order to prove the accuracy of those proposed methods, it is important
to numerically compare them with other similar studied methods. The effec-
tiveness of those proposed methods are compared with some existing methods.
Here we denote eighth order derivative free method (Eq:9) in [[13], which is
denoted by SKHM

( — f ()
Yn = Tp f[wmwn]
ey T ) f (@) + B ()
"I (@) @)+ (B—2)f (ya)

N 1C

\ n+1 n g — €104

where
C1 = f (zn)
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cs = [ [Uns Zns Wn] + af [Yn, W)
f [ynaznaxn] _ f[ynazmwn]
f [ynawn] - f [ymxn]
f (@) = g (xn) = [ lwn, 0] + 2 (W — 20) f [Wny Toy Yn] = f [Yn, Wi + f {20, Ya] -

Cqy =

Here
o = T+ f (2n)  f [y ] = 12 =S 0]
Tn — Yn
and
f [wn, T, yn] = f [wm f:] : f [xm yn] )
Yn
and method (Eq:8) [[13]], which is denoted by SKHM2
S 1
mT f[wmxn]’
o =gy — L W) f (@) + BT ()
T g () f(wn) + (B —2)f (yn)
. — f(l’)(m1+m2+m3)
U T i f [way @)+ Mo f (Y @) + s f (20, 0]
where

my = f (yn) f (zn) (Zn - yn) )
my = f (wn) f (2n) (Wn — 20)
mz = f(wn) f (Yn) (Yn — wn) -

Then, we also compare our proposed eighth order derivative free methods with
the similar scheme given in [[7]], which is denoted by TOM1

Wy = xn"_ﬁf (ZEn),

Zn = Yn — (f {x[::)j"} {uffjl ;n]) 7

A 2f (32)°
= (1-705) <1+f(wn)2f(l‘n))

' (f [Wn: 20] — f{x(zy)] + f [, zn]) ’
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and given by in [7]], which is denoted by KTM

o f(mn)2
Yo = (f(wn) - f(xn)) ’

Zn = Yn — (ff(;::;)_f;lé};i)) {f[lj, ] f[?j: y]} ’

= (L)

- {(f(zn) - f(wn)) {f[yl, S f[vj,y]]
1 1 1
- (f(yn> - f(xn)) {f[w,y] - f[w,x]]}

The previous methods have been compared with our following methods accord-
ing to the examples listed in Table 1.

4. METHOD 1 (LM1)
If the functions A(t), G(s) and B(t, u) are define by:
A(t) = cos(t) +t + gt2 + 9¢t3,
G(s) = sin(s) + s,
B(t,u) = cos(tu) +t + 3t* + 10t* + v,
satisfy the conditions in (2.2)), then

Wy = f(ZL‘)2 + T,

g = 1, — )
n n f [xn, wn] )
cos (t,) +t+ 22 + o2
P I (zn) (cos (tpuy) + t, + 3t2 + 1063 + wu,, + sin (s,,) + s5,)
n+l — #n f [Zn’ wn] 9

n=0,1,2,....
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5. METHOD 2 (LM2)

If the functions A(t), G(s) and B(t, u) are define by:
A(t) = exp(t) + ?t?’ + gtg,
G(s) = exp(s) +s— 1,
B(t,u) = exp(tu) + t +u + 3t> + 10t° — tu,
satisfy the conditions in (2.2)), then

w, = f(x)? +

_ [ (7,)
Yn =Ty — ————
[ [, wy]
() exp (t,) + 25 + 542
Zn = Yn — Yn y
I [Yn, wy]
I (2n) (exp (taun) + tn + up + 32 + 1083 — t,u, +exp (s,) + 8, — 1)
Tptl = Zp — .
i f [Zm wn]
n=0,1,2,....

The functions of the test and their exact roots are listed in Table 1. We have
used as stopping criteria that |z,, — z,, ;| < 1075 and | f,,(x)| < 107'°. TABLES 2
and 3 presents the number of iterations to approximate the zero (IT) and con-
tains the value of | f,,(z)|, |z,, — ,—1]| and COC'. The values of the computational
order of convergence COC may be approximated as (1.I]), we have observed
that our proposed methods perform better when compared with other similar
existing eighth order methods. The illustrative numerical results demonstrate
that they agree with the theoretical results obtained in Theorem 2.1.

TABLE 1. Function and their exact roots

Function Exact Roots
fi(z) = sin(3z) + x cos(x) 1.197769535217117

folz) = exp(sm( ) —x+1  2.630664147927904

fa(x) = L(5co8(2x) + 5 — 2 1.085982678007472

fulz) = atan( ) 4.588036768824585¢ — 3256
folr) = 22 — (1 — )% 0.143739259299754

fo(x) = 2° + log(1 + ) 3.29048930341427¢ — 1009
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TABLE 2. Comparison of numerical results for different derivative
free methods

Methods LM1 TOM1 KTM

IT 4 4 4

| fu(2)] 1.7012e—1008 —1.7012¢ — 1.7012e—1008

1008

|zp — 251 1.15651e—384 6.53836e—479 1.28117e—482

COC 8 8 8

fa(x) = atan(z), x9g=—0.5

Methods LM11 TOM1 KTM

IT 4 4 4

| fu(2))] —4.58804e — O —6.13231e —
3256 1403

|z, — Tp1] 3.93565e—450 4.52535e—328 1.35884e—395

COC 8 11 11

fs(z) = 2% — (1 — x)%, 7o = 0.35

Methods LM1 TOM1 KTM

IT S5 S S

| fl)] _3.54417e — T7.97438¢ — 9.30345¢ —
1009 1009 1009

Ty — Tp1] 3.34248e—312 4.14351e—663 2.28469e—734

COC 8.00002 8 8

folz) = 2 + log(l +

x), x9=0.25

Methods LM1 TOM1 KTM

IT 4 4

| fr(2)] 3.56272¢  — —9.1025le — Division by
3026 3029 Zero

|z, — T 2.93636e—309 8.46255e—389

COC 8.00001 8
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TABLE 3. Comparison of numerical results for different derivative
free methods

fi(z) =sin(3x) + xcos(z), x9=1

Methods LM2 SKHM SKHM2

IT 4 4 4

fal(2)] 779717e  — Ta9717e  — T.79717e  —
1008 1008 1008

|zp — xp1] 2.22754e—333 1.2117e — 376 2.06062e—431

COC 8 8 8

fo(z) = exp(sin(z)) —x+1, z9=2.3

Methods LM2 SKHM SKHM2

IT 4 4 4

| fo(2)] ~8.60172¢ — 5.67067e — 5.67067e —
o272 1008 1008

|zp — 21| 2.49632e—496 7.29951e—440 3.24786e—490

6. CONCLUSION

In this paper, we have created of two class of optimal derivative-free methods
of order eight. It is proven by convergence analysis that the new derivative-
free methods maintain their order of efficiency index and convergence. One
of the advantages of those three-step class of optimal derivative-free methods
of order eight is that they are highly efficient when used with derivatives of
high computational cost as those methods do not have to evaluate the functions
derivatives. Another advantage of those new methods is that they give better
approximation of exact root when compared to other methods.
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