
ADV  MATH
SCI  JOURNAL

Advances in Mathematics: Scientific Journal 12 (2023), no.3, 433–455
ISSN: 1857-8365 (printed); 1857-8438 (electronic)
https://doi.org/10.37418/amsj.12.3.2

VARIATIONAL ANALYSIS OF A VISCOELASTIC FRICTIONAL CONTACT WITH
LONG-TERM MEMORY BODY WITH THERMAL EFFECTS

Karima Sidhoum1 and Abdelbaki Merouani

ABSTRACT. In this article we study a mathematical model which describes the
quasi-static process of contact between a piezoelectric body with long-term mem-
ory and an obstacle. The contact is modeled with a normal conformity condition
and a version of Coulom’s law. The evolution of temperature is described by a
first kind evolution equation. The problem is formulated as a system of scalable
elliptical variational inequalities for displacement, and a variational equality for
electrical stress. We prove the existence of a unique weak solution to the problem.
The proof is based on arguments from time-dependent variational inequalities,
differential equations and fixed point.

1. INTRODUCTION

Due to the importance of contact processes in structural and mechanical sys-
tems, considerable progress has been made recently in mathematical modeling
and analysis and numerical simulations and, therefore, the technical literature on
this subject is quite abundant [1–3] . Contact and friction phenomena are increas-
ingly taken into account in industrial issues. Engineering of wheel-in-rail contact,
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in the modeling of prosthetic medical devices, mechanical assemblies, formula-
tion, etc. This requires having robust, reliable and precise resolution and analysis
tools. The mechanical contact presents the most difficult nonlinearities to take
into account. There are different contact resolution methods. The main idea is to
link abstract results and models for different body types in order to apply these
results in practice. We present a variant formulation of the problem for which we
prove the existence and the uniqueness of the solution with respect to the data and
the parameters. In most systems of continuum mechanics, there are situations in
which a deformable body comes into contact with other bodies or with a rigid or
deformable foundation.

The problem of the contact is primarily to know how the efforts are applied
on a structure and how these structures react when they undergo these efforts.
Mechanical contact problems are mainly found in fields as varied as aeronautics,
mechanics, civil engineering and medicine. Taking into account the behavior of
continuous media includes elasticity, plasticity, etc. Given the importance of the
phenomenon, considerable efforts have been devoted to modelling. The general
mathematical theory of contact mechanics emerged. He is interested in the mathe-
matical structures which are at the origin of the problems of contact with different
laws of behavior, see [1,2].

We study a new constitutive law called thermo-viscoelastic material with long-
term memory given by

(1.1) σ (t) = A (ε (
.
u (t)))+Bε (u (t))+

∫
G (t− s, ε (u (s))) ds+ζ∗∇φ (t)−Mθ (t) ,

(1.2) D (t) = ζε (u (t))−B∇φ (t)− Pθ (t) ,

Here A and B are nonlinear operators describing the purely viscous and the elas-
tic properties of the material, respectively, and G, E(φ) = −∇φ, ζ = (ei,j,k), M,
B, P are respectively relaxation operator, electric field, piezoelectric, thermal ex-
pansion, electric permittivity pyroelectric tensors, and ζ is transpose of ζ. Note
also that when ζ = 0 and D = 0, (1.1)-(1.2) becomes the Kelvin-Voigt thermo-
viscoelastic with long memory constitutive relation used in [4]. Moreover, when
M = 0 and P = 0, the relations (1.1)-(1.2) becomes the Kelvin-Voigt electro-
viscoelastic with long memory constitutive relation used in [5].
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We use an evolution of the temperature field obtained from the conservation of
energy and defined with the following differential equation

(1.3) θ̇ (t)−Div (K(θ (t)) ) = ψ(Mθ (t) ,u̇ (t)+qth)

Here θ is the temperature, K denotes the thermal conductivity tenser, M the ther-
mal expansion tensor, qth is the density of volume heat sources and ψ is a nonlinear
function, assumed here depends on thermal expansion tensor and the velocity.

The Coulomb friction is one of the most useful friction laws and known from
the literature. This law has two basic ingredients mamely the concept of friction
threshold and its dependence on the normal stress.

The normal compliance law is a contact law allowing penetration into the foun-
dation, considered to be deformable. Various versions of the normal compliance
law were recently presented in the literature [6], [7], [8], [9].

In this paper, we use the thermal and the mechanical contacts and we neglect
the electrical contact for some reason used in materials such as car battery there
is no electric field between the battery and the sheet metal.

2. THE MODEL

The physical setting is the following. An thermo-electro-viscoelastic body with
long term memory occupies a bounded domain Ω ⊂ Rd (d = 2, 3) with outer
Lipschitz surface Γ. This boundary is divided into three open disjoint Γ1,Γ2 and
Γ3, on one hand, and a partition of Γ1 ∪ Γ2 into two open parts Γa and Γb, on
the other hand. We assume that meas(Γ1) > 0 and meas(Γa) > 0. Let T> 0 and
let [0, T ] be the time interval of interest. The body is subjected to the action of
body forces of desity f0, a volume electric charges of density q0 and heat source
of constant strength qth. The body is clamped on Γ1× [0, T ] , so the displacement
field vanishes there. A surface traction of density f2 act on Γ2× [0, T ] . We also
assume that the electrical potential vanishes on Γa× [0, T ] and a surface electric
charge of density qb is prescribed on Γb× [0, T ] . Moreover, we suppose that the
temperature vanishes on (Γ1 ∪ Γ2)× [0, T ] . Moreover, we suppose that the body
forces and tractions vary slowly in time, and therefore the accelerations in the
systemmay be neglected. Neglecting the inertial terms in the equation of motion
leads to a quasistatic approach to the process.
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The classical formulation of the mechanical problem is as follows.

Problem P : Find the diplacement field u : Ω × [0, T ] → Rd , the stress
field σ : Ω × [0, T ] → Sd , the electric potential φ : Ω × [0, T ] → R, the electric
displacement field D: Ω×[0, T ] → Rd and the temperature θ : Ω×[0, T ] → R such
that

σ (t)=A
(
ε
( .
u (t)

))
+Bε (u (t))

+

∫
G (t− s, ε (u (s))) ds + ζ∗∇φ (t)−Mθ (t) in Ω × [0, T ]

(2.1)

(2.2) D (t) = ζε (u (t))−B∇φ (t)− Pθ (t) in Ω × [0, T ]

(2.3) θ̇ (t)−Div (k(θ (t))) = ψ(Mθ (t) , u̇ (t) + qth) in Ω × [0, T ]

(2.4) Divσ + f0 = 0 in Ω × [0, T ]

(2.5) DivD = q0 in Ω × [0, T ]

(2.6) u = 0 on Γ1 × [0, T ]

(2.7) σν = f2 on Γ2 × [0, T ]

(2.8)

{
σν = −α | .

uν |, | σν |= −µσν
στ = −λ( .uτ − v∗), if λ ⩾ 0

on Γ3 × [0, T ]

(2.9) −ki,jθinj = ke(θ(t)− θF ) on Γ3 × [0, T ]

(2.10) D.ν = Ψ(uν − g)Φl(φ− φ0) on Γ3 × [0, T ]

(2.11) θ = 0 on (Γ1 ∪ Γ2)× [0, T ]

(2.12) φ = 0 on Γa × [0, T ]

(2.13) D.ν = qb on Γb × [0, T ]

(2.14) u(0) =u0 θ(0) = θ0 in Ω
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We now describe problem (2.1)-(2.14) and provide explanation of equations and
the boundary conditions.

Equations (2.1) and (2.2) represent the thermo-electro-viscoelastic constitutive
law with long term memory, the evolution of the temperature field is governed by
differential equation given by the relation (2.3) where ψ is the mechanical source
of the temperature growth, assumed to be rather general function of the strains.
Next equations (2.4) and (2.5) are the steady equations for the stress and electric-
displacement field, conditions (2.6) and (2.7) are the displacement and traction
boundary conditions. Equation (2.11) means that the temperature vanishes on
(Γ1 ∪ Γ2)× [0, T ] which implies that there is only an electro-mechanical effect on
(Γ1 ∪ Γ2). Next, (2.12) and (2.13) represent the electric boundary conditions for
the electrical potential on Γa and the electric charges on Γb, respectively. Equation
(2.14) represents the initial displacement field and the initial damage field where
u0 is the initial displacement, and θ0 is the initial temperature.

We turn to the contact conditions (2.8)-(2.10) describe the frictional thermo-
mecanical contact on the potential contact surface Γ3. The relation (2.8) describes
a normal compliance conditions with the Coulomb’s law of dry friction where
pν is a prescribed function, and g represents the gap in direction ν. The difference
uν − g, when positive, represents the penetration of the surface asperities into
those of the foundation. Moreover the last two inequalities in the relation (2.8)

describe Coulomb’s law of dry friction. The equation (2.9) represents an associated
temperature boundary condition on contact surface, where ke is a heat exchange
coefficient between the body and the obstacle. and θF is the temperature of the
foundation. Finally, the equation (2.10) shows that there are no electric charges on
the contact surface. We not here for the condition (2.8) we choose the following
version of the normal compliance

pν = µpτ .

This choice can be found often in the literature, here µ is the coefficient of friction
and pτ is called tangential compliance.

3. VARIATIONAL FORMULATION

In order to obtain the variational formulation of the problem P, we use the
following notations and preliminaries.
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3.1. Notations and preliminaries.
We present the notation we recall some preliminary material. For more details,

we refer the reader to [10], [11] .We recall that the canonical inner products and
the corresponding norms on Rd and Sd, respectively are given by

u.v = ui.υi, ∥ v ∥=
√

v.v for all u,v ∈ Rd,

σ.τ = σij.τij, ∥ τ ∥=
√
τ . τ for all σ, τ ∈ Sd,

We introduce the spaces

H = L2(Ω)d =
{
v = (υi) : υi ∈ L2(Ω)

}
,

H =
{
τ =τij : τij = τji ∈ L2 (Ω)

}
,

H1(Ω)d = {v = (υi) ∈ H : ε(v) ∈H } ,

H1 = {τ ∈ : Divτ ∈H} .

Here ε: H1(Ω)d → and Div : H → H are the linearized deformation and
divergence operators, respectively, defined by

ε(v) = (εij(v)), εij(v) =
1

2
(υi,j+υj,i), Divτ = (τ ij,j).

The spaces H, H, H1(Ω)d and H1 are real Hilbert spaces endowed with the canon-
ical inner products given by

(u,v)H =

∫
Ω

ui.υi dx, (σ.τ)H =

∫
Ω

σij.τij dx,

(u,v)H1(Ω)d = (u,v)H + (ε(u), ε(v))H,

(σ.τ)H=(σ.τ) + ( Divσ, Divτ)H .

We introduce the closed subspase of H1(Ω)d defined by

V =
{
v ∈H1(Ω)d : v = 0 on Γ1

}
,

we also introduce the spaces

We =
{
ϕ ∈ H1(Ω)d : ϕ = 0 on Γa

}
,

We =
{
D = (Di) : Di ∈ L2(Ω), DivD ∈L2(Ω)

}
,

Wth =
{
w ∈ H1(Ω) : w = 0 a.e on (Γ1 ∪ Γ2)

}
.
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Since measΓa > 0 and measΓ1 > 0, the Korn’s and Friedrichs-Poincaré inequali-
ties holds, thus,

(3.1) ∥ ε(v) ∥H ⩾ C0 ∥ v ∥H1(Ω)d , ∀v ∈V,

(3.2) ∥ ∇ϕ ∥We ⩾ C1 ∥ ϕ ∥H1(Ω), ∀ϕ ∈We,

(3.3) ∥ ∇w ∥H ⩾ C2 ∥ w ∥H1(Ω), ∀w ∈Wth,

where here and below C0, C1 and C2 are positive constants that depend on the
problem data but is independents of the solutions, the value of which may change
from line to line.

On the spaces V, We,We and Wth , we define the following inner products

(3.4) (u,v)V = (σ, ε(v)H, ∀u,v ∈V ),

(3.5) (φ, ϕ)We = (∇φ, ∇ϕ)We , ∀φ, ϕ ∈We,

(3.6) (w, z)Wth
= (∇w, ∇z)H , ∀w, z ∈Wth,

where

(φ, ϕ)We =

∫
Ω

∇φ. ∇ϕ dx,

(D, E)we =

∫
Ω

D.E dx +

∫
Ω

DivD.DivE dx.

There exists a constants C0, C1 and C2 are positive constants, such that

(3.7) ∥ v ∥L2(Γ3) d ⩽ C0 ∥ v ∥V , ∀v ∈V,

(3.8) ∥ ϕ ∥L2(Γ3)⩽ C1 ∥ ϕ ∥W , ∀ϕ∈We,

(3.9) ∥ z ∥L2(Γ3)⩾ C2 ∥ z ∥Wth
, ∀z ∈Wth,

and we denote by υν and vτ the normal and tangential components of v on Γ given
by

(3.10) υν = v.ν , vτ = v−υνν.
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Similarly, we define its normal and tangential components by

(3.11) σν= (σν).ν, vτ= σν − σνν,

for all σ ∈ H1, θ ∈H1(Ω)d and D ∈ W , the following three Green’s formulas holds:

(3.12) (σ, ε(v))H + (Divσ,v )H =

∫
Γ

σνv da, ∀v ∈ H1(Ω)d,

(3.13) (θ, ∇w)H + (Divθ,w)L2(Ω) =

∫
Γ

θν.w da, ∀w ∈ H1(Ω),

(3.14) (D, ∇ϕ)H + (DivD, ϕ)L2(Ω) =

∫
Γ

Dν.ϕ da, ∀ ϕ∈ H1(Ω),

where
Divθ = θi,i , DivD = (Di,i).

We recall the following Theorem

Theorem 3.1. Let V ⊂ H ⊂ V
′ be a Gelfand triple. Assume that A : V → V

′ is a
hemicontinuous and monotone operator that satisfies

(3.15) (Av, v)V ′×V ⩾ ω∥v∥2V + ς, ∀v ∈V,

(3.16) ∥Av∥2
V ′ ⩽ C(∥v∥V + 1), ∀v ∈V.

For some constants ω > 0, C>0 and ς ∈ R then, given u0 ∈ H and f ∈
L2(0, T, V

′
) there exist an unique function u ∈ L2(0, T, V

′
)∩ C(0, T, H) satisfies

u ∈ L2(0, T, V
′
) ∩ C(0, T, H),

.
u ∈ L2(0, T, V

′
),

.
u(t) + Au(t) =f (t) a.e t ∈ (0 , T ),

u(0) = u0.

The proof of this abstract result may be found in [12].
We denote by C(0, T ; X) and C1(0, T ; X) the space of continuous and con-

tinuously differentiable functions from [0, T ] to X , respectively, with the norms

∥f∥C(0, T ; X) = max
t∈[0, T ]

∥f(t)∥C(0, T ; X),

∥f∥C1(0, T ; X) = max
t∈[0, T ]

∥f(t)∥X + max
t∈[0, T ]

∥
.

f(t)∥X .
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If X1 and X2 are real Hilbert spaces then X1 × X2 denotes the product Hilbert
space endowed with the canonical inner product (., .)X1×X2 .

3.2. Assumptions on the problem’s data. The viscosity operator A : Ω × Sd →
Sd satisfies

(3.17)



(a) There exists LA > 0 such that,
∥A(x, ε1)−A(x, ε2)∥ ⩽ LA ∥ε1 − ε2∥

for all ε1, ε2∈ Sd, a.e. x ∈ Ω.

(b) There exists mA > 0 such that

(A(x, ε1)−A(x, ε2))/(ε1 − ε2) ⩾ mA ∥ε1 − ε2∥2

for all ε1, ε2∈ Sd, a.e. x ∈ Ω.

(c) The mapping x 7→ A(x, ε) is Lebesgue measurable on Ω,

for any ε ∈ Sd.
(d) The mapping x 7→ A(x, 0) belong to H

The elasticity operator B : Ω× Sd → Sd satisfies

(3.18)



(a) There exists LB > 0 such that

∥B(x, ε1)− B(x, ε2)∥ ⩽ LB ∥ε1 − ε2∥
for all ε1, ε2∈ Sd, a.e. x ∈ Ω.

(b) The mapping x 7→ B(x, ε) is Lebesgue measurable on Ω,

for any ε∈ Sd.

(c) The mapping x 7→ B(x, 0) belong to H.

The relation operator G : Ω× Sd → Sd satisfies

(3.19)



(a) There exists a cons tan t LG ≻ 0 such that

∥G(x, t1, ε1)− G(x, t2, ε2)∥ ⩽ LG ∥ε1 − ε2∥ for all t1, t2∈ (0, T),

for all ε1, ε2∈ Sd, a.e. x ∈ Ω.

(b) The mapping x 7→ G (x, t, ε) is Lebesgue measurable on Ω,

for any t ∈ (0,T), for any ε ∈ Sd.
(c) The mapping x 7→ G (x, t, ε) is continuous, in (0,T),
for any ε ∈ Sd, a.e. x ∈ Ω.

(d) The mapping x 7→ G (x, 0, 0) ∈ H.
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The piezoelectric operator ε : Ω× Sd → Sd

(3.20)

{
(a) ε(x, t) = (eijkτjk) ,∀τ = (τjk) ∈ Sd , a.e. x ∈ Ω.

(b) eijkτjk = eikjτjk ∈ L∞(Ω) , 1 ⩽ i, j, k ⩽ d.

The thermal expansion operator M : Ω× R → R

(3.21)



(a) There exists a cons tan t LM ≻ 0 such that

∥M(x, θ1)−M(x,θ2)∥ ⩽ LM ∥θ1 − θ2∥ for all θ1, θ1 ∈ R .
(b) Themapping x 7→ M (x, θ) is Lebesgue measurable on Ω

for any θ ∈ R.
(c) The mapping x 7→ M (x, 0) ∈ H.

The nonlinear constitutive function ψ : Ω× R× V −→ R satisfies

(3.22)



(a) There exists a cons tan t Lψ > 0 such that

∥ψ(x,Mθ1,v1)− ψ(x,Mθ2, v2)∥ ⩽ Lψ(∥Mθ1 −Mθ2∥+ ∥v1− v2∥
for all θ1, θ1 ∈ R, for all v1,v2 ∈V, a.e. x ∈ Ω.

(b) The mapping x 7→ψ(x, Mθ, v) is Lebesgue measurable on Ω

for any θ ∈ R, for any v ∈ V.

(c) The mapping x 7→ ψ (x, 0, 0) ∈L2(Ω).

The electric permittivity operator B = (Bij) : Ω× Rd → Rd satisfies

(3.23)


(a) B( x,E ) = (Bij(x)Ej) for all E = (Ei) ∈ Rd, a.e. x ∈ Ω.

(b) Bij = Bji ∈ L∞(Ω). 1 ⩽ i , j ⩽ d .

(c) There exists a cons tan t MB > 0 such that BE.E ⩾ MB | E |2

for all E = (Ei) ∈ Rd, a.e in ∈ Ω.

The pyroelectric operator P : Ω× R → R

(3.24)


(a) There exists a cons tan t LP > 0 such that

∥P(x, θ1)− P(x,θ2)∥ ⩽ LP ∥θ1 − θ2∥ for all θ1, θ2 ∈ R, a.e. x ∈ Ω.

(b) mij = mji ∈ L∞(Ω). 1 ⩽ i , j ⩽ d .

(c) The mapping x 7−→ P (x, 0) belongs to We.
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The thermal conductivity operator K : Ω× R −→ R

(3.25)


(a) There exists a cons tan t LK ≻ 0 such that

∥K(x, θ1)−K(x,θ2)∥ ⩽ LK ∥r1 − r2∥ for all r1, r2 ∈ R, a.e., x ∈ Ω.

(b) mij = mji ∈ L∞(Ω). 1 ⩽ i , j ⩽ d .

(c) The mapping x 7−→ S (x, 0, 0) belongs to L2(Ω).

The normal compliance function pν : Ω× R → R+.

(3.26)



(a) There exists a cons tan t Lν > 0 such that

∥pν(x, r1)−pν(x,r2)∥ ⩽ Lν ∥r1 − r2∥ for all r1, r2 ∈ R, a.e. x ∈ Ω.

(b) The mapping x 7→pν(x, r) is Lebesgue measurable on Γ3,

for any r ∈ R.
(c) The mapping x 7→pν(x, 0) belongs to L

2( Γ3).

We also suppose that the body forces and surfaces tractions have the regularity

(3.27) f0 ∈ C(0, T ; H), f2 ∈ C(0, T ; L2( Γ2)
d
),

(3.28) q0 ∈ C(0, T ;L2(Ω) ), q2 ∈ C(0, T ; L2( Γb)),

(3.29) q2 (t) = 0 on Γ3, ∀t ∈ [0, T ] .

The functions g and µ have the following properties:

(3.30) g ∈ L2( Γ3), g(x) ⩾ 0, a.e. on Γ3

(3.31) µ ∈ L∞( Γ3), µ(x) > 0, a.e. on Γ3

(3.32) u0 ∈ V

and the initial temperature field satisfies

(3.33) θ0 ∈ Wth , θF ∈ L2(0, T,L2( Γ3)), ke ∈ L∞(Ω, R+), qth ∈ L2(0, T,W
′

th).

Using the above notation and Green’s formulas given by (3.12)-(3.14), we obtain
the variatonal formulation of the mechanical problem (2.1)-(2.14), for all functions
v ∈ V , w ∈Wth, ϕ ∈We and a.e t∈ (0, T ) given as follows.

3.3. Problem. PV . Find the displacement field u : [0, T ] → V, the stress field
σ : [0, T ] → H1, the electric potential φ : [0, T ] → W, the electric displacement
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field D:[0, T ] → H and the temperature θ : [0, T ] → V such that

σ (t) = A
(
ε
( .
u (t)

))
+ Bε (u (t)) +

∫
G (t− s, ε (u (s))) ds

+ ε∗∇φ (t)−Mθ (t) ,

(3.34)

(3.35) (σ (t) , ε(v− .
u(t))H + j((u (t) ,v))− j

(
u (t) ,

.
u(t)

)
⩾ (f(t), v− .

u(t))V ,

(3.36) D (t) = εε (u (t))−B∇φ (t)− Pθ (t) ,

(3.37) (D (t) , ∇ϕ)H = −(qe(t), ϕ)W ,

(
.

θ(t),w)Wth×W
′
th
+ (K(∇φ (t)),∇w) = (jth(θ,w) + ψ(Mθ,

.
u (t))

+ (qth,w)W′
th×W

th
,

(3.38)

(3.39) u(0) = u0, θ(0) = θ0, in Ω .

Here j : V × V × L2( Γ3) → R, f : [0, T ] → V, qe : [0, T ] → W, jth :Wth×Wth →
R are respectively, defined by

(3.40) j(u,v)=

∫
Γ3

α ∥ uν ∥ (µ ∥ vτ − v∗ ∥) + vν)da ,

(3.41) f(t,v)V =

∫
Ω

f0(t).v dx +

∫
Γ2

f2(t).v da,

(3.42) (qe(t), ϕ))W =

∫
Ω

q0(t).ϕ dx −
∫
Γb

q2(t).ϕ da,

(3.43) jth = −
∫
Γ3

ke(θ.ν − θF .ν)w da.

We define the mapping h : V ×We →We by

(h(u, φ), ϕ)W =

∫
Γ3

Ψ((uν − g)Φl(φ− φ0)ξ da,

for all v ∈ V ,

(B∇φ,∇ϕ)H − (εε(u,∇ϕ)H + (h(u, φ), ϕ)We
= (q(t), ϕ)We,
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for all u, v ∈ V, θ, w ∈ Wth and ϕ ∈ We and t ∈ [0, T ] . We note that the
definitions of f and qe are based on the Riesz representation theorem. Moreover,
the conditions (3.29) and (3.30) imply that

(3.44) f ∈ C(0 ,T; V), qe∈C(0 ,T; We).

4. EXISTENCE AND UNIQUENESS OF A SOLUTION

Now, we propose our existence and uniqueness result.

Theorem 4.1. Assume that (3.19)-(3.35) hold. Then there exists a constant α0 which
depends only on Ω,Γ1, Γ3 and A such that if

(4.1) Lν(1+ ∥ µ ∥L∞( Γ3)) < α0,

where α0 =
mA

C é
0

such that mA is defined in (3.19) and C0 defined by (3.7). Then

there exists a unique solution {u, σ, θ, φ, D} to problem PV . Moreover, the solution
satisfies

(4.2) u ∈ C1(0 ,T; V),

(4.3) σ ∈ C(0 ,T; H1),

(4.4) θ ∈ L2(0, T,Wth)∩ C(0 ,T; L2(Ω) ),

(4.5) φ ∈ C(0 ,T; We),

(4.6) D ∈ C(0 ,T; We).

The proof of Theorem 4.1 is carried in several steps. It is based on results
of evolutionary variational inequalities, ordinary differential equations and fixed
point arguments.

To prove the theorem we consider the following three auxiliary problems for
given η ∈ C(0 ,T; V), χ ∈ L2(0, T,W

′

th) , λ ∈ C(0 ,T; We) we consider the fol-
lowing three auxiliary problems.
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4.1. Problem PVη. Find a displacement field uη : [0 ,T] → V and a stress field
ση : [0 ,T] → H such that

(4.7) ση (t) = A (ε (
.
uη (t))) + Bε (uη (t)) ,(

ση (t) , ε
(
v− .

uη (t)
))

H + j (uη (t) ,v)− j
(
uη (t) ,

.
uη (t)

)
⩾
(
f (t) , v− .

uη (t)
)
V
,

(4.8)

(4.9) uη (0) = u0, in Ω,

for all uη,v ∈ V and t ∈ C1(0 ,T).

4.2. Problem PVχ. Find the temperature θχ : [0 ,T] → Wth which is solution of
the variational problem

(θχ (t) , w)W′
th×Wth

+ (K(▽θ (t)) , ▽w)
W

′
th

×Wth

=(χ (t) + qth (t) , w)
W

′
th

×Wth

,
(4.10)

(4.11) θχ (0) = θ0, in Ω,

for all θχ,w ∈ Wth, a.e.t ∈(0 ,T),

4.3. Problem PVλ. Find an electrical potential φλ: [0 ,T] → We , Dλ : [0 ,T] →
We such that

(4.12) Dλ(t) = B▽φλ(t)− εε(uη (t))− Pθ,

(4.13) (B▽φλ(t),▽ϕ)H − (εε(uη (t) ,▽ϕ)H = (λ(t), ϕ)We ,

for all φλ, ϕ ∈ We , t ∈(0 ,T).
We begin with an auxiliary result on the priorities of the functional j : V ×V →

R and jth : Wth ×Wth → R defined by (3.42) and (3.43), respectively.

Lemma 4.1. Under the hypotheses (3.19)-(3.35), functionals j and jth satisfy

(4.14) j(u, .) is convex and lawer semicontinuous on V,
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j(u1, v2) + j(u2, v1)− j(u1, v1)− j(u2, v2)(4.15)

⩽ C2
0 (∥ µ ∥L∞( Γ3) +1) ∥ u1 − u2 ∥V ∥ v1 − v2 ∥V ,

for all u1, u2, v1, v2 ∈ V,

(4.16) ∥ (θ1, w)− jth (θ2, w) ∥L2( Γ3)
⩽ Cjth ∥ (θ1(t)− θ2(t)∥Wth

,

for all θ1, θ2,w ∈ Wth.

Proof. We use condition (3.33) and inequality (3.7) to see that the functional j
defined by (3.42) is a seminorm on V and moreover,

∥ j(u1,v)+ j(u2,v) ∥⩽ C2
0 ∥ α ∥L∞( Γ3) (∥ µ ∥L∞( Γ3) +1) ∥ u1−u2 ∥V ∥ v1−v2 ∥V .

Thus, the seminorm j is continuous on V and, therefor, (4.14) holds. From the
definition of the functional j given by (3.42), we have

j(u1,v2) + j(u2,v1)− j(u1,v1)− j(u2,v2)(4.17)

=

∫
Γ3

(α ∥ u1ν − α ∥ u2ν)(µ ∥ v2τ − v∗ ∥ −µ ∥ v1τ − v∗ ∥) + v2ν − v1ν)da

⩽ C2
0 ∥ α ∥L∞(Γ3) (∥ µ ∥L∞(Γ3) +1) ∥ u1 − u2 ∥V ∥ v1 − v2 ∥V .

Next we use the following majoration: For the functional jth defined by (3.43)

jth(θ,w ) = −
∫
Γ3

ke(θ.ν − θF .ν)w da, for all θ, θF , w ∈Wth.

Thus by the assumption (3.35) and majoration (4.17), we get

∥ jth(θ1,w )− jth(θ2,w ) ∥L2( Γ3)⩽∥ ke ∥L∞( Γ3)∥ θ1(t)− θ2(t) ∥L2( Γ3),

∥ jth(θ1,w )− jth(θ2,w ) ∥L2( Γ3)⩽ C1 ∥ ke ∥L∞( Γ3)∥ θ1(t)− θ2(t) ∥Wth
,

thus we can write
∥ jth(θ1,w )− jth(θ2,w ) ∥L2( Γ3)⩽ Cjth ∥ θ1(t)− θ2(t) ∥Wth

, for θ1, θ2 ∈ Wth. □

We have the following result for problem PVη.

Lemma 4.2. Under the hypotheses (3.19) -(3.35), for every η ∈ C(0 ,T; V), problem
PVη has a unique solution {uη, ση} , such that

(4.18) uη ∈ C1(0 ,T; V) , ση ∈ C1(0 ,T; H1).
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Moreover, if {ui, σi} is the solutions of the problem PVηi , corresponding η = ηi ∈
C(0 ,T; V) for i = 1, 2 , then

(4.19) ∥ u1(t)− u2(t) ∥V⩽ C

∫ T

0

∥ η1(s)− η2(s) ∥V ds.

Proof. We chose v =
.
u(t)± ζ in (4.8) , where ζ ∈ D (Ω)d is arbitrary, we find

(ση (t), ε(ϕ)) = (f(t), ϕ)V .

Using the definition (3.43) for f , we deduce

(4.20) Divση(t) + f0(t) = 0, t ∈ (0, T ).

With the regularity assumption (3.29) on f0 we see that Divση(t) ∈ H. Therefore,
ση(t) ∈ H1.

For all u, v ∈V and t ∈ [0, T ] ,

(4.21) ∥ Au− Av ∥V⩽ LA ∥ u− v ∥V ,

which shows that A : V → V is Lipschitz continuous,

(4.22) (Au− Av)V ⩾ mA ∥ u− v ∥2V , ∀u, v ∈V

and by (4.19) and (3.19) we obtain

(4.23) ∥ Bu− Bv ∥V⩽ LB ∥ u− v ∥V ,

if 4.1 is satisfied, since strongly monotone and Lipschitz continuous operator on
V and B is Lipschitz continuous operator on V , j(u, .) satisfies the conditions
(4.14) and (4.15), u0 satisfies the assumption (3.34) and we note that for any fixed
η ∈ C(0 ,T; V) we use the definitions (3.44) and (4.21) to show that fηC(0 ,T; V) .
we deduce from classical results for evolutionary elliptic variational ineqalities
(see for example [10] that there exists a unique function uη ∈ C(0 ,T; V). More-
over, for ui = uηi solutions of the problem PVηi for i=1, 2, then we have

(4.24) ∥ u1(t)− u2(t) ∥V⩽ C

∫ t

0

∥ .
u1 (s)−

.
u2(s) ∥V ds

using (4.25) the inequality (4.26) becomes

(4.25) ∥ u1(t)− u2(t) ∥V⩽ C

∫ T

0

∥ η1(s)− η2(s) ∥V ds.
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□

For the problem PVχ we have the following result.

Lemma 4.3. Under the hypotheses (3.19)-(3.35), for every c, problem PVχ has a
unique weak solution such that

(4.26) θχ ∈ L2(0, T, Wth) ∩ C(0, T, L2(Ω)),

Moreover, if θi is the solution to problem PVχi
, corresponding χ = χi ∈ C(0, T, W

′

th),

(4.27) ∥ θ1(t)− θ2(t) ∥2L2(Ω)⩽ C

∫ T

0

∥ χ1(s)− χ2(s) ∥2W′
th

ds.

Proof. The problem (4.10)-(4.11) may be written as
.

θχ(t) +K θχ(t) = Q(t),

θχ(0) = θ0,

where, K :Wth → W
′

th and Q : [0, T ] → W
′

th are defined as

(4.28) (Kτ ,w)W′
th×Wth

=
d∑

i,j=1

∫
Ω

ki,j
∂τ

∂xj

∂w

∂xi
dx+

∫
Γ3

τ.w da,

(4.29) (Q,w)W′
th×Wth

= (χ(t) + qth(t), w)
W

′
th

×Wth

.

It follows from the definition of the operator K, we obtain

(4.30) ∥ Kτ −Kw ∥W′
th
⩽ LK ∥ τ −w ∥W′

th
,

which shows that is K :Wth −→ W
′

th is continuous and by (4.32)-(3.27)(c), we
obtain

(4.31) (Kτ −Kw,τ −w)
W

′
th

×Wth

⩾ mK ∥ τ −w ∥2Wth
, ∀τ, w ∈Wth,

K is a monotone operator. Choosing w = 0Wth
in (4.33) we fined

((Kτ, τ)
W

′
th

×Wth

⩾ mK ∥ τ ∥2Wth
− ∥ K0Wth

∥W′
th
∥ τ ∥Wth

)

⩾
1

2
mK ∥ τ ∥2Wth

− 1

2mK

∥ K0Wth
∥W′

th
, ∀τ ∈ Wth.
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Thus, K satisfies condition (3.16) with ω =
mK
2

and ζ = − 1
2mK

∥ K0Wth
∥W′

th
and

by (4.32) we deduce that

∥ Kτ ∥W′
th
⩽ LK ∥ τ ∥Wth

+ ∥ K0Wth
∥W′

th
, ∀τ ∈ Wth.

This inequality implies that K satisfies condition (3.18). Moreover, for χ(t) ∈
L2(0, T, Wth) and qth(t) ∈ L2(0, T, L2(Ω)) which implies Q ∈ L2(0, T, W

′

th) and
θ0 ∈ L2(Ω). From theorem 3.2 there exists a unique function function θχ ∈
L2(0, T, Wth) ∩ C(0, T, L2(Ω)) which satisfies the problem PVχ. we take χ =

χ1 and χ = χ2 in (4.10) , we deduce by choosing w =θ1(t)− θ2(t) as test function.
.

(θ1(t)−
.

θ2(t), θ1(t)− (θ2(t))W′
th×Wth

+K θ1(t)−K θ2(t), θ1(t)− θ2(t) )
W

′
th

×Wth

=(χ1(t)− χ2(t), θ1(t)− θ2(t) )
W

′
th

×Wth

.

Then integrating the last property over (0, t), using (3.15)-(4.32) and (4.33), we
deduce (4.29). □

For the last problem PVλ we have the following result.

Lemma 4.4. Under the hypotheses (3.19)-(3.35), for every λ ∈ C(0, T, We), problem
PVλ has a unique solution {φλ , Dλ} , such that

(4.32) φλ ∈ C(0, T, We), Dλ ∈ C(0, T, We).

Moreover, if {φi , Di} is the solutions to problem PVλi, corresponding λ = λi ∈
C(0, T, We) for i = 1, 2, then

(4.33) ∥ φ1(t)− φ2(t) ∥We⩽ C ∥ u1(t)− u2(t) ∥V + ∥ λ1(t)− λ2(t) ∥We .

Proof. We define the operator F : W → W by

(4.34) (Fφ, ϕ)W = (B∇φ(t),∇ϕ)H − (ζε(uη(t),∇ϕ)W , ∀φ, ϕ ∈ We.

Let φ1, φ2 ∈ W. By (3.25), we find that

(4.35) (Fφ1 − Fφ2, ϕ1 − ϕ2)W ⩾ mB ∥ φ1 − φ2 ∥2We
∀φ, ϕ ∈ We.

On the other hand , using the assumption (3.22)-(3.25) we find

(Fφ1 − Fφ2, ϕ)W ⩽ Cζ ∥ φ1 − φ2 ∥2We
∥ ϕ ∥We ∀φ, ϕ ∈ We ,
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where Cζ is a positive constant which depends on ζ. Thus

(4.36) ∥ Fφ1 − Fφ2 ∥We⩽ Cζ ∥ φ1 − φ2 ∥We ,

and by (4.37)-(4.38) we obtain that F (t) is a monotone and Lipchitz continuous
operator on We and there exists a unique element φλ ∈ We such that

(4.37) F (t)φλ(t) = λ(t) ∀φλ ∈ We.

We obtain that φλ(t) is a solution of PVλ. Let λ1, λ2 ∈ C(0, T, We). From (3.22)-
(3.25) and (4.13) that

mB ∥ φ1 − φ2 ∥2We
⩽ C(∥ u1(t)− u2(t) ∥V + ∥ λ1(t)− λ2(t) ∥We) ∥ φ1 − φ2 ∥We ,

which implies

(4.38) ∥ φ1 − φ2 ∥2We
⩽ C(∥ u1(t)− u2(t) ∥V + ∥ λ1(t)− λ2(t) ∥We),

Where C is Cζ

mB
and for every λ ∈ C(0, T, We) and uη ∈ C1(0, T, V ), the in-

equality (4.34) implies that φλ ∈ C(0, T, We). Then for λ ∈ C(0, T, We) the
previousinequality and the regularity of qe imply that φλ ∈ C(0, T, We) . By (3.44)

and definition of the divergence operator that

(4.39) (DivDλ, ϕ )H = (qe, ϕ)H ∀ϕ ∈ H1(Ω),

which shows that Dλ ∈ C(0, T, We).

Finally, as of these results and by the properties of the operators G, ζ, M,P and
the function ψ ∈ [0, T ] , we consider the element

Λ(η, θ)(t) = (Λ1(η, χ, λ)(t), Λ2(η, χ, λ)(t), Λ3(η, χ, λ)(t))

∈ V × L2(W
′

th)×We

(4.40)

defined by

(4.41) (Λ1(η, χ, λ)(t) =

∫ t

0

G(t− s, ε(uη(s)))ds+ ζ∗∇φλ(t)−Mθχ, ∀t ∈ [0, T ] ,

(4.42) Λ2(η, χ, λ)(t) = ψ(Mθ,
.
u(t)) + jth(θ, w), ∀t ∈ [0, T ] ,

(4.43) Λ3(η, χ, λ)(t) = Pθλ + qe(t), ∀t ∈ [0, T ] .

□
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We have the following result.

Lemma 4.5. Let (4.1) is satisfied. Then for (η, χ, λ) ∈ C(0, T, V ) × L2(W
′

th) ×
We, the function Λ(η, χ, λ) : [0, T ] → V × L2(W

′

th) × We is a continuous, and
there is a unique element (η∗, χ∗, λ∗) ∈ C(0, T, V ) × L2(W

′

th) × We , such that
∥ Λ(η1, χ1, λ1)(t)− Λ(η2, χ2, λ2)(t) ∥2V×L2(W

′
th)×We

= (η∗, χ∗, λ∗).

Proof. Let (η, χ, λ) ∈ C(0, T, V )×L2(W
′

th)×We and t1, t2, s1, s2 ∈ [0, T ] . From
(3.20)-(3.24) and (3.26), we have

∥ Λ(η1, χ1, λ1)(t)− Λ(η2, χ2, λ2)(t) ∥V×L2(W
′
th)×We

⩽LG

∫ t

0

∥ u1(s)− u2(s) ∥V ds + Cζ ∥ φ1(t)− φ2(t) ∥W

+Lψ(LM ∥ θ1(t)− θ2(t) ∥L2(Ω) + ∥ .
u1 (s)−

.
u2(s) ∥V )

+ ∥ jth(θ1,w1 )− jth(θ2,w2 ) ∥L2( Γ3) +Cζ ∥
.
u1 (s)−

.
u2(s) ∥V

+LP ∥ θ1(t)− θ2(t) ∥L2(Ω) + ∥ qe1(t)− qe2(t) ∥W .

We use (3.39) and (4.13) from (3.22)-(3.25) and (3.26) we obtain

∥ qe1(t)− qe2(t) ∥W⩽ CB ∥ φ1(t)− φ2(t) ∥W
+Cζ ∥ u1(s)− u2(s) ∥V +LP ∥ θ1(t)− θ2(t) ∥L2(Ω) .

Inserting the last inequality in (4.45) and by (4.35)

∥ Λ(η1, χ1, λ1)(t)− Λ(η2, χ2, λ2)(t) ∥V×L2(W
′
th)×We

⩽LG

∫ t

0

∥ u1(s)− u2(s) ∥V ds+ (Cζ + CB) ∥ λ1(t)− λ2(t) ∥We

+(LψLM + 2LP + Cjth) ∥ θ1(t)− θ2(t) ∥L2(Ω)

+(Lψ + Cζ) ∥
.
u1 (s)−

.
u2(s) ∥V +(2Cζ + CB) ∥ u1(s)− u2(s) ∥V ,

(4.44)

we obtain by (4.26)

LG

∫ t

0

∥ u1(s)− u2(s) ∥V ds+ (Lψ + Cζ) ∥
.
u1 (s)−

.
u2(s) ∥V(4.45)

+(2Cζ + CB) ∥ u1(s)− u2(s) ∥V
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⩽ LG

∫ t

0

∫ s

0

∥ .
u1 (r)−

.
u2(r) ∥V drds

+(Lψ + 3Cζ + CB)

∫ t

0

∫ s

0

∥ .
u1 (r)−

.
u2(r) ∥

⩽ (LG + Lψ + 3Cζ + CB)

∫ t

0

∫ s

0

∥ .
u1 (r)−

.
u2(r) ∥V drds

⩽ C

∫ t

0

∫ s

0

∥ .
u1 (r)−

.
u2(r) ∥V drds,

we have ∫ t

0

∫ s

0

∥ .
u1 (r)−

.
u2(r) ∥V drds(4.46)

⩽ C

∫ t

0

∫ s

0

∥ u1(r)− u2(r) ∥V + ∥ η1(s)− η2(s) ∥V drds.

The inequality (4.29) becomes∫ t

0

∫ s

0

∥ .
u1 (r)−

.
u2(r) ∥V drds ⩽ C

∫ t

0

∫ s

0

∫ r

0

∥ .
u1 (z)−

.
u2(z) ∥V dzdrds

+ C

∫ t

0

∫ s

0

∥ η1(r)− η2(r) ∥V drds.

From Gronwall’s inequality∫ t

0

∫ s

0

∥ .
u1 (r)−

.
u2(r) ∥V drds ⩽ C

∫ t

0

∫ s

0

∥ η1(r)− η2(r) ∥V drds

⩽ C

∫ T

0

∥ η1(s)− η2(s) ∥V ds.

The equations (4.35)-(4.44)-(4.46) become

∥ Λ(η1, χ1, λ1)(t)− Λ(η2, χ2, λ2)(t) ∥2V×L2(W
′
th)×We

(4.47)

⩽ C
∫ T
0

∥ Λ(η1, χ1, λ1)(t)− Λ(η2, χ2, λ2)(t) ∥2V×L2(W
′
th)×We

.

Existence

Let (η∗, χ∗, λ∗) ∈ C(0, T, V ) × L2(W
′

th) × We, the fixed point of Λ defined by
(4.42)− (4.44) we denote
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u∗ = uη∗ , θ∗ = θχ∗ , φ∗ = φλ.

σ∗ = A(ε(
.
u∗)) + B(ε(u∗)) +

∫ t

0

G(t− s, ε(u∗(s)))ds+ ζ∗∇φ∗(t)−Mθ∗

D∗ = ζε(u∗)−B∇φ∗ − Pθ∗.

Let {u∗ , σ∗} , θ∗ and {φ∗, D∗} be the solution of the problems PVη∗ , PVχ∗ and
PVλ∗ respectively , the equalities Λ1 (η

∗, χ∗, λ∗) = η∗, Λ2 (η
∗, χ∗, λ∗) = χ∗ and Λ3

(η∗, χ∗, λ∗) = λ∗ combined with (4.42)-(4.44) show that (3.36)-(3.40) are satisfied.
The regularity (4.2)-(4.6) follow from Lemmas 4.3-4.4 and 4.5.

Uniqueness

The uniqueness of the solution is a consequence of the uniqueness of the fixed
point of the operator Λ defined by (4.42)-(4.44) and the unique solution of prob-
lemsPVη∗ , PVχ∗ and PVλ∗ which complete the proof. □

5. CONCLUSION

- We have presented a mathematical model which describes the quasi-static
process of contact between a piezoelectric body with long-term memory
and an obstacle.

- The problem was posed as a variational inequality for the displacements
and a variational equality for the electric potential.

- The existence of a unique weak solution for the problem was established
using arguments from the theory of evolutionary variational inequalities
and a fixed point theorem.

- This work opens the way to the study of other problems with other condi-
tions of conductive materials.
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