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BETA TRANSFORMATION OF THE LINDLEY POISSON DISTRIBUTION FOR
OVER-DISPERSED COUNT DATA

Chedly Gélin Louzayadio1, Michel Koukouatikissa Diafouka, and Rodnellin Onesime Malouata

ABSTRACT. A new distribution for over-dispersed count data is proposed, and its
properties are studied. This is a two-parameter distribution which is obtained by
introducing an additional parameter beta into the Poisson-Lindley distribution.
The goodness-of-fit of this distribution is compared with other distributions that
have been proposed to model overdispersion. Two illustrative examples are pre-
sented to show the flexibility of the model.

1. INTRODUCTION

Even though the Poisson distribution is considered as a reference for modelling
count data, the restriction to have the variance equal to the mean (equidispersion)
is often too constraining in practice. For many observed count data, it is common
for the sample variance to be greater or less than the sample mean, known as
overdispersion or underdispersion with respect to the Poisson distribution. There
is then a rich variety of alternative distributions that can be used to model the data
(see, [3,4,6,9,10]).

To account for dispersion, several authors have proposed a mixed Poisson dis-
tribution or an extension of the Poisson distribution. Sankaran [11] proposed the
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discrete Poisson-Lindley distribution by combining the Poisson distribution with
one provided by Lindley. This distribution has probability mass function

(1.1) P (X = k) =
θ2(θ + k + 2)

(θ + 1)k+3
, k = 0, 1, . . . ; θ > 0.

The author estimates its parameter and gives two examples of fitting this distribu-
tion to overdispersed data. He considers that this distribution can be used as an ap-
proximation to the negative binomial distribution (NBD). Mahmoudi [8] proposed
an extension of the Lindley-Poisson distribution by combining the Poisson distri-
bution with the generalized Lindley distribution. He calls it generalized Poisson-
Lindley distribution (GPLD) and estimates its parameters using the method of mo-
ments and maximum likelihood. He gives examples of fitting this distribution of
data and then compares it with other discrete distributions. Bhati [2] introduced
a new generalized Poisson-Lindley distribution (NGPLD) through combination of
the Poisson distribution with a two-parameter generalized Lindley distribution.
They studied its properties and shown that it is better performing than other com-
peting models through applications on real data sets. Aderoju [1] introduced a
New Generalized Poisson-Sujatha distribution (NGPSD). He constructs it from a
mixture of a Poisson distribution with a generalized two-parameter sujatha distri-
bution and studies its properties and goodness of fit by comparing it with other
distributions in statistical literature.

As one of the alternatives to the Poisson distribution, the authors in [5] proposed
a new specific transformation for discrete distributions, called the beta transfor-
mation. They define it as follows: Let X be a discrete random variable with prob-
ability mass function pk = P (X = k). Its beta transformation Y is also a discrete
random variable with probability mass function

pk = P (Y = k) =


1− p0
β

k = 0

pk−1 −
pk
β

k = 1, 2, . . .

where β satisfies the conditions β > 1 − p0 and β ≥ maxk≥1

(
pk
pk−1

)
. This is

another way to introduce an additional parameter into the distribution of a given
discrete random variable that can be used as a competitor for some common two-
parameter distributions.
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In this article, we propose the beta transformation of the Poisson-Lindley distri-
bution (BTPLD) as one of the alternatives to the Poisson distribution for modeling
count data. We show that our distribution provides enough flexibility for analyz-
ing different types of count data. The paper is organized as follows: Section 2,
we present some definitions and properties of BTPLD. In Section 3, we estimate
parameters of BTPLD. Finally, in Section 4, we compare BTPLD with the POISSON,
NB, NGPL, and NGPS distributions.

2. PROPOSED MODEL AND SOME PROPERTIES

2.1. Probability mass function. Let X be a Poisson-Lindley non-negative integer
random variable with parameter θ > 0 and probability mass function (pmf) given
by (1.1)

Definition 2.1. The beta transformation Y of X is a non-negative integer random
variable which probability mass function is given by

pk = P (Y = k)

=


θ2 + 3θ + 1

β(θ + 1)3
, k = 0

θ2(θ + k + 2)

β(θ + 1)k+1

(
β(θ + 1)(θ + k + 1)

θ + k + 2
− 1

)
, k = 1, 2, . . .

,
(2.1)

where the parameter β is presupposed that

β > 1− θ2(θ + 2)

(θ + 1)3
and β ≥ max

k≥1

(
θ + k + 2

(θ + 1)(θ + k + 1)

)
.

We refer to this as beta transformation of the Poisson-Lindley distribution, denote
BTPL(θ, β).

Remark 2.1. When β takes large values, the beta transformation Y will tend to
shifting one step to the right of the original non-negative integer random variable X.

Alternatively, the probability mass function (2.1) can be written as follows

pk = P (Y = k)

=

(
θ2 + 3θ + 1

β(θ + 1)3

)δ0(y) [θ2(θ + k + 2)

β(θ + 1)k+1

(
β(θ + 1)(θ + k + 1)

θ + k + 2
− 1

)]1−δ0(y)

,
(2.2)
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for all k ∈ N, where

δ0(y) =

{
1, y = 0,

0 otherwise.

is the indicator function at 0.

Proposition 2.1. The corresponding cumulative distribution function (c.d.f.) of Y is
given by

P (Y ≤ k) =
θ2 + 3θ + 1

β(θ + 1)3
+

θ
(
(θ + 1)[k] − 1

)
(θ + 1)[k] − 1

(
1− θ + 2

β(θ + 1)2

)
+

(
(θ + 1)[k] − θ[k]− 1

(θ + 1)[k]+1

)(
1− 1

β(θ + 1)

)
,(2.3)

where [k] is the integer part of k.

Proof.

P (Y ≤ k) =
θ2 + 3θ + 1

β(θ + 1)3
+

[k]∑
k=1

θ2(θ + k + 1)

(θ + 1)k+2
− 1

β

[k]∑
k=1

θ2(θ + k + 2)

(θ + 1)k+3

=
θ2 + 3θ + 1

β(θ + 1)3
+

θ2

θ + 1

[k]∑
k=1

1

(θ + 1)[k]
+

θ2

(θ + 1)2

[k]∑
k=1

k

(θ + 1)[k]

− 1

β

θ2(θ + 2)

(θ + 1)3

[k]∑
k=1

1

(θ + 1)[k]
+

θ2

(θ + 1)3

[k]∑
k=1

k

(θ + 1)[k]


=

θ2 + 3θ + 1

β(θ + 1)3
+

θ
(
(θ + 1)[k] − 1

)
(θ + 1)[k]

+
(θ + 1)[k] − θ[k]− 1

(θ + 1)[k]+1

− 1

β

(
θ(θ + 2)

(
(θ + 1)[k] − 1

)
(θ + 1)[k]+2

+
(θ + 1)[k] − θ[k]− 1

(θ + 1)[k]+2

)

=
θ2 + 3θ + 1

β(θ + 1)3
+

θ
(
(θ + 1)[k] − 1

)
(θ + 1)[k] − 1

(
1− θ + 2

β(θ + 1)2

)
+

(
(θ + 1)[k] − θ[k]− 1

(θ + 1)[k]+1

)(
1− 1

β(θ + 1)

)
.

□
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2.2. Probability and moment generating functions. A probability distribution’s
properties are directly related to its probability generating function (pgf) and mo-
ment generating function (mgf). From [5], the probability generating function of
BTPL(θ, β) is given by:

(2.4) GY (t) =
1

β
− (1− β)θ2

β(θ + 1)

(θ + 2− t)

(θ + 1− t)2
.

The mgf can be easily calculated from the pgf by means of the relationship GY (e
t) =

E(etY ) = MY (t).

2.3. Moments. Like the probability generating function, the mean and variance
of the BTPL(θ, β) distribution with are given by

E(Y ) = 1 + (1− β−1)
θ + 2

θ(θ + 1)

and

V (Y ) = (1− β−1)
θ3 + 4θ2 + 6θ + 2

θ2(θ + 1)2
+

2β−1(θ + 2)

θ(θ + 1)
+ (1− β−1)β−1 (θ

2 + 4θ + 6

θ2(θ + 1)
.

3. MAXIMUM LIKELIHOOD ESTIMATORS OF THE PARAMETERS

In this part the maximum likelihood estimators of BTPL(θ, β) are considered,
where both parameters are unknown. Let y1, y2, . . . , yn be a random sample of size
n from the BTPL distribution (2.2), the log-likelihood function is of the form

l(θ, β) =
n∑

i=1

δ0(yi) log

(
θ2 + 3θ + 1

β(θ + 1)3

)

+
n∑

i=1

(1− δ0(yi))

[
log

(
θ2 + 3θ + 1

β(θ + 1)yi+3

)
+ log

(
β(θ + 1)(θ + yi + 1)

θ + yi + 2

)
− 1

]

=
n∑

i=1

δ0(yi) log

(
θ2 + 3θ + 1

β(θ + 1)3

)

+
n∑

i=1

(1− δ0(yi)) [2 log θ − log β − (yi + 3) log(θ + 1)]

+
n∑

i=1

(1− δ0(yi)) log [β(θ + 1)(θ + yi + 1)− (θ + yi + 2)] .
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We obtain the score by deriving the corresponding log-likelihood function with
respect to the unknown parameters as

∂l

∂θ
=

θ2 − 4θ

(θ + 1)(θ2 + 3θ + 1)

n∑
i=1

δ0(yi) +
n∑

i=1

(1 + δ0(yi))

[
2

θ
− yi + 3

θ + 1

]

+
n∑

i=1

(1 + δ0(yi))

[
β(θ + yi + 1) + β(θ + 1)− 1

β(θ + 1)(θ + yi + 1)− (θ + yi + 2)

]
and

∂l

∂β
= − 1

β

n∑
i=1

δ0(yi)−
n∑

i=1

(1 + δ0(yi))

[
1

β
+

(θ + 1)(θ + yi + 1)

β(θ + 1)(θ + yi + 1)− (θ + yi + 2)

]
.

The maximum likelihood estimators of θ and β are obtained by solving numerically

the non-linear equations
∂l

∂θ
= 0 and

∂l

∂β
= 0. We compute these estimators using

the maxLik package for the r statistical environment (see [7] for more details).

4. APPLICATIONS AND GOODNESS OF FIT

TABLE 1. Accidents to 647 women working on high explosive shells
in 5 weeks. Comparaison of POISSON, NB, NGPL,NGPSD and BPLT
distributions .

No of
ac

Obs freq Poisson NB GPL NGPL NGPSD BTPL

0 447 406.3140 445.859 446.4497 441.5905 442.2160 446.9389
1 132 189.0254 134.9321 133.6980 140.1961 139.3588 131.4969
2 42 43.9692 43.9949 44.4401 44.5095 44.4633 46.1255
3 21 6.8185 14.6880 14.9290 14.1309 14.2553 15.3206
4 3 0.7930 4.9610 4.9992 4.4863 4.5694 4.9103
≥ 5 2 0.0799 2.5649 2.4841 2.0868 2.1372 2.2079
Total 647 647 647 647 647 647 647
MLE λ̂ = 0.465 r̂ = 0.8659 θ̂ = 2.2447 θ̂ = 2.1499 θ̂ = 2.6592 θ̂ = 2.7044

p̂ = 0.6505 β̂ = 0.7361 β̂ = 0.0001 β̂ = 0.3019 β̂ = 0.4678
LogLik -617.1843 -592.2671 -592.1282 -592.4798 -592.3929 -591.9387
χ2 103.14 3.7692 3.5189 4.5221 4.3158 3.2391
df 5 5 5 5 5 5
Pvalue 0 0.5831 0.6205 0.4769 0.5049 0.6632
AIC 1236.369 1188.534 1188.256 1188.96 1188.786 1187,877

In Table 1, we consider a real data set representing the number of accidents
suffered by 647 women working on explosive shells over a 5 week period. [11]
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used this data set to fit the Poisson-Lindley distribution (1.1). La Table 1 shows
the comparison of observed and expected frequencies for the POISSON, NB, NGPL,
NGPSD and BPLT distributions. The log likelihood, χ2, p-value and AIC values are
also shown in this table. It appears that this two-parameter distribution BTPL
provides a good fit.

5. CONCLUSION

In this paper, we have proposed a new counting probability distribution called
the beta transformation of the Poisson-Lindley distribution. The beta transforma-
tion is another way to add a parameter to a distribution. The incorporation of
additional parameters using the beta transformation can greatly improve the fre-
quency approximation of the model. An attempt was made to study the goodness
of fit of the BTPL distribution against count data on the number of accidents for
machine operators and it was observed that BTPL provides a better fit than the
other models namely Poisson, NB, GPL, NGPL and NGPSD.

REFERENCES

[1] S.A. ADEROJU: A New Generalized Poisson Mixed Distribution and Its Application, Applied
Mathematical Sciences, 14(5) (2020), 229-234.

[2] D. BHATI, D.V.S. SASTRY, P.Z, QADRI MAHA: A New Generalized Poisson-Lindley Distri-
bution: Applications and Properties, Austrian Journal of Statistics, 44 (2015), 35-51.

[3] N.L. JOHNSON, A.W. KEMP, S. KOTZ: A Univariate Discrete Distributions, third ed., Wiley,
Hoboken, New Jersey, 2005.

[4] D.J. DALEY, J.H. MAINDONALD:A unified view of models describing the avoidance of super-
parasitism, IMA Journal of Mathematics Applied in Biology and Medicine, 6 (1989), 161-178.

[5] B. DIMITROV, N. KOLEV: Beta transformation. beta type self-decomposition and related char-
acterizations, Brezilian Journal of Probability and Statistics, 14 (2000), 123-140.

[6] C.G. LOUZAYADIO, R.O. MALOUATA, M.D. KOUKOUATIKISSA: A weighted poisson distri-
bution for underdispersed count data, International Journal of Statistics and probability, 10(4)
(2021), 157-157.

[7] A. HENNINGSEN, O. TOOMET: A package for maximum likelihood estimation in r, Comput
Stat, 26(3) (2011), 443-458.

[8] E. MAMHOUDI, H. ZAKERZADEH: Generalized Poisson-Lindley Distribution, Communica-
tions in Statistics-Theory and Methods, 39(10) (2010), 1785-1798.

[9] B.J.T. MORGAN: Modelling polyspermy, Biometrics, 38 (1982), 85-98.



464 C.G. Louzayadio, M.K. Diafouka, and R.O. Malouata

[10] D. MIZERE: Contributions to the Modelling and Statistical Analysis of count data, (Ph.D.
thesis) University of Pau, France, 2006.

[11] M. SANKARAN: The discrete Poisson-Lindley distribution, Biometrics, 26 (1970), 145-149.

FACULTY OF ECONOMICS SCIENCES

MARIEN NGOUABI UNIVERSITY

AVENUE OF THE FIRST AFRICAN GAMES, BRAZZAVILLE,
CONGO.
Email address: gelinlouz@gmail.com

HIGHER TEACHERS TRAINING COLLEGE

MARIEN NGOUABI UNIVERSITY

AVENUE OF THE FIRST AFRICAN GAMES, BRAZZAVILLE,
CONGO.
Email address: michel.koukouatikissa@umng.cg

HIGHER TEACHERS TRAINING COLLEGE

MARIEN NGOUABI UNIVERSITY

AVENUE OF THE FIRST AFRICAN GAMES, BRAZZAVILLE,
CONGO.
Email address: onesimero@gmail.com


	1. Introduction
	2. Proposed model and Some properties
	2.1. Probability mass function
	2.2. Probability and moment generating functions
	2.3. Moments

	3. Maximum likelihood estimators of the parameters
	4. Applications and goodness of fit
	5. Conclusion
	References

