
ADV MATH
SCI JOURNAL

Advances in Mathematics: Scientific Journal 12 (2023), no.3, 465–477
ISSN: 1857-8365 (printed); 1857-8438 (electronic)
https://doi.org/10.37418/amsj.12.3.4

FORMAL DECISION MODELING FOR ROLE-BASED ACCESS CONTROL
POLICIES

Bouadjemi Abbdelkrim

ABSTRACT. Role-Based Access Control (RBAC) has been widely used in informa-
tion systems, including so-called critical systems. In business, workflows are used
to control the flow of processes. One of the major issues concerning these pro-
cesses is to be able to verify that a proposed process model strictly corresponds
to the specifications to which it is supposed to respond. Access control models
describe the frameworks that dictate permissions. The RBAC model is generally
static, i.e. the access control decisions are: grant or deny. Dynamic and flexible
access control is required. In order to increase the flexibility of access control, the
notion of decision has been proposed. Decisions execute the requirements to be
fulfilled.

The main of this article is to use the decision to produce a dynamic model. Our
model augments the dynamics of the RBAC model. It allows dynamically assign-
ing permissions. For illustration, Feather’s meeting management system is used.
Finally, first-order logic is used to analyze the validity of the proposed model.

1. INTRODUCTION

With the growth of information systems (IS), the design and modeling of func-
tional aspects without taking into account the security part exposes organizations

2020 Mathematics Subject Classification. 20F10, 03B10, 68M01, 68M04.
Key words and phrases. formal specification, first-order logic, decision, access control, RBAC, Se-
cureUML.
Submitted: 29.01.2023; Accepted: 14.02.2023; Published: 18.03.2023.

465

466 A. Bouadjemi

to risks. Faced with the risks incurred, it is necessary to identify what must be
protected, to quantify the corresponding issue, to formulate security objectives
and to identify and implement the provisions adapted to the right level of secu-
rity retained. This primarily involves defining and implementing an access control
policy.

Access control is an essential element of IS protection. Most organizations de-
fine roles for different organizational tasks. RBAC is the most suitable for these
organizations and the most used for the IS in terms of access control. In 1996,
Sandhu et al. in [1] proposed role-based access control.

Semi-formal IS approaches such as UML (Unified Modeling Language) and Se-
cureUML have shown their limits. They do not verify or validate the specified
properties and constraints. The ability to analyze semi-formal models and reason
about properties of a system early in the development process has received consid-
erable attention. Formal specification methods are used in software engineering
to reason about mathematical models. The interest is to prove or verify properties
on these models. Despite the overhead associated with analysis and design tasks
in formal specifications, the use of such methods is increasingly justified for soft-
ware that involves critical data or security conditions. One of the difficulties is to
formalize the information systems. This work proposes to improve the flexibility
of access control to allow the IS to adapt to different situations, i.e. a role that
does not have a given permission can request it in a given situation. unexpected
but under certain conditions. The proposed model makes it possible to authorize
a rejection decision. For illustrative purposes, we’ve used Feather’s meeting man-
agement system as an example [2]. Next, the model and example specifications
were modeled by first-order logic. It is used for specifying and verifying access
control policies.

In the rest of the article, Section 2 reviews the literature on the issue. Section
3 presents the RBAC model as well as the SecureUML metamodel. In section
4, we start by presenting Feather’s scheuling organization system, then show the
functional and security model. In section 5, the modeling approach is presented.
In Section 6, the sample access control decision illustrates this work. Finally, the
last section ends the article and presents some perspectives.

RBAC MODEL 467

2. RELATED WORK

Consideration of access control policies is a major concern. Among the types
of access control, the most widely used is RBAC. Chen and Sandhu [3] proposed
a formal language based on the first-order language to express constraints. In
[4], the authors formally specify a model called Smatch (Secure MAnagement of
swiTCH). In the model, the dynamic session is created by the user. Cotrini et al.
in [5] present FORBAC (First Order Role Based Access Control), an extension of
first order role based access control. The authors propose to transform the queries
to the question of Satisfiability Modulo Theories (SMT). In [6], authors proposed
Emergency RBAC (E-RBAC) whose purpose is to enhance flexibility, this approach
uses BTG policy and separation of duties (SOD) is included whose purpose is to
control user access in the event of an emergency. Alloy was used to implement the
model specifications and the medical scenario. In [7], the authors proposed Exc-
RBAC, the goal is to assign permissions dynamically by increasing the flexibility
of the RBAC model in order to handle exception situations. As an illustration,
Anderson’s clinical information system is used. Finally, Alloy is used to analyze
the validity of the proposed model. The idea in this article is the reassignment of
permissions to roles.

Chehida et al [8] who presented an approach combining UML and B for the
specification of RBAC policies. They modeled the rules of the rules which are then
translated into formal specifications thanks to B4Msecure. In [9], the authors
developed a tool to analyze RBAC security models. They used a transformation
approach in SecureUML2Prolog to transform SecureUML models into Prolog. In
[10], the authors proposed an approach for the formal development of a secure
filter that regulates access to the IS. They developed a tool to automate the fol-
lowing steps: the modeling of system aspects by class diagrams, SecureUML for
security rules and activity diagrams for dynamics. A set of rules used for the gen-
eration of a B specification. Finally, the B implementation is translated into the
AspectJ implementation.

Shaikh in [11] proposes two risk-based dynamic decision methods for access
control systems, they provided theoretical and simulation-based analysis and eval-
uation of the two schemes. They also analytically showed that the proposed meth-
ods not only allow exceptions under certain controlled conditions, but uniquely

468 A. Bouadjemi

limit legitimate access for authorized users. The approach proposed in this article
is based on the concept of decision, which allows to order an unauthorized access
of an authorization on the basis of the requirements.

3. THE RBAC MODEL AND THE METAMODEL SECUREUML

Roles are used as basis constructors in access control model by Sandhu et al.
in [1]. The basic model, the hierarchical model, the constraint model, and the
consolidated model are the four models for RBAC. Users, roles, operations, objects,
and sessions compose the five fundamental components of Core RBAC (American
National standard for Information Technology, 2004), with five relationships: user
assignment (UA), permission assignment (PA), user session (US), session roles
(SR), and permissions. The model is shown in Figure 1 below:

FIGURE 1. RBAC model

UML [12] is a standard graphical notation of the OMG (Object Management
Group) used for the analysis of requirements and the design of a system. The
concept of "profile" allows the extension of UML diagrams to specify a particular
aspect of a system. Several works have proposed useful profiles for the specifi-
cation of access control policies based on the RBAC model. Among these profiles
we can cite AuthUML [13] which offers extensions of the use case diagram and
UMLsec [14] which presents a profile to extend the activity diagram.

In our approach, we use the SecureUML profile [15] [16] which allows to repre-
sent a security policy based on the RBAC model in a static view. This diagram uses
permissions, represented by associative classes, to express access control rules. A
permission is linked to a class stereotyped by “Role” which represents the users
assigned to the role, and another class stereotyped by “Entity” which represents

RBAC MODEL 469

the target class of the permission. The permission thus specifies the access rights
of users to the entity it protects. It is defined by a set of attributes indicating the
types of authorized actions (reading, modification, etc.).

These attributes are defined by three properties: stereotypes to specify the type
of the resource to be protected, the name of the attribute which determines the
protected resource, and the type of the attribute to specify the action authorized
by the permission. It is possible to subject this permission to contextual conditions,
called authorization constraints.

4. MEETING SCHEDULING SYSTEM

Our approach is based on Feather’s example of scheduling meetings [2], this
example is as follows:
Initiator organizes a meeting; for this, he must invite participants, find a place
(local) and the moment (time) of the meeting. As the meeting must be secret, the
meeting management system must apply a security policy, i.e., the time and place
could be introduced and modified only by the Initiator, and could be consulted
only by the participants "Participant" (invited to the meeting).

For this, we have drawn up the following set of rules:

- All system users are allowed to create new meetings and read all meeting
entries.

- Only the Initiator of a meeting is authorized to modify the meeting data
and to cancel or delete the meeting.

- The Initiator is authorized to cancel all meetings.
- A Participant can also read this information.
- Initiator can create, read, delete and update invitations to these meetings.
- A participant can read and respond to invitations.
- A participant can create a proposal change for a meeting following an

invitation and update this change.
- Initiator can read and respond to a change associated with an invitation of

his meeting.

In this section, we present the UML models of a meeting management system.

470 A. Bouadjemi

4.1. Functional model. The functional model in Figure 2 describes the system
specifications without taking authorization constraints into account. It defines the
different requirements at the functional level:

- Initiator cannot create two meetings in one time.
- Only the initiator can create meeting invitations.
- A meeting is associated with a single initiator.

Initiator can be a participant in another meeting that takes place in another time.

FIGURE 2. functional model

4.2. Security Model. The security model defines an access control policy based
on the roles of the various users of the system and assigns the roles to the users.

In our case study, there are two roles: Initiator and Participant. To each of
these roles, we assign several permissions that activate operations acting on the
functional classes.

To simplify the model, we do not consider the dynamic separation of duties
(Initiator and Participant are conflicting).

A user who has the Initiator role:

- Has full read and write access to meeting info.

RBAC MODEL 471

- Is authorized to cancel all meetings.
- Has full read and write access to information related to invitations.

A user who has the Participant role:

- Can read this info.
- Can read and respond to invitations.
- Can create proposal changes for a meeting.

The SecureUML meta-model based on the RBAC model presents concepts such as
user, role and permission as well as the relationships between them.

FIGURE 3. SecureUML model of access control for meeting sched-
uler example

Figure 3 shows the RBAC pattern on the meeting scheduler example. In order to
complete the modeling, we will introduce the authorization constraints expressed
in OCL as follows:

472 A. Bouadjemi

IM.AC Caller=Self.creator.name
PM.AC Self.invitation.person� exists (Caller=name)
II.AC Self.meeting.creator.name=Caller
PI.AC Self.person.name=Caller

5. MODELING APPROACH

Our security policy is based on the notion of permission. This may be permitted
or prohibited. From there, we can define the security policy as follows.

A security policy defined on a set of actions is a property indicating for each
action whether it is authorized or not.

In our study, the following definition was given to the security policy: A system
corresponds to a security policy if any system event is linked to an authorized
action of the policy.

The constraint when must always guarantee is that the security policy must be
consistent, that is, it must be shown that the set of rules constituting the security
policy does not contain any conflicting requirements.

5.1. Modeling choice. At the end of the development, we must have a secure
system based on RBAC decisions. SecureUML formalizes access control decisions
that depend on two types of information:

- Static access control decisions that depend on static information, namely
the assignment of Users and Permissions to Roles, designated by the RBAC
configuration;

- Dynamic access control decisions that depend on dynamic information,
i.e., the satisfaction of permission constraints in the current state of the
system.

Using first-order logic, we can formulate static decisions as:

- RBAC configuration as CRBAC first order structure;
- Semantics of static access control decisions CRBAC |= ϕRBAC(u, a)(u, a).

Formulate dynamic decisions as:

- State system presented by first-order structure;
- Permission constraints as a first-order formula.

RBAC MODEL 473

To be able to formulate the semantics of individual access control decisions, one
must combine RBAC configuration and authorization constraints. SecureUML is
used to represent the system.

5.1.1. Static access control.
AC ⊆ users ∗ permissions

AC ∈ UA.PARelationdecomposition

AC ⊆ usersroles

We define the signature
∑

RBAC(SRBAC ≤ FRBACPRBAC) which defines the type of
structure specifying the RBAC configuration. We have:

- SRBAC Is a set of Lattices,
- ≤RBAC Is a partial order in SRBAC,
- FRBAC Is a lattice set of functions,
- PRBAC Is a lattice set of predicates.

5.1.2. Lattice definition. Let E be a set and R a binary relation on E, to show that
(E,R) is a Lattice, it is necessary that:

- (E,R) is an ordered set
- Then show that

SRBAC = Users, Subjects, Roles, Permissions,AtomicActions, Action{
users ≤RBAC subjects

AtomicsActions ≤R BACActions
≥RBAC : subject ∗ subject.UA : subjectsroles

≥roles≥= roles ∗ roles.PA : rolespermissions

≥Actions: Actions ∗ Actions.AA : PermissionsActions

We define the partial order ≤roles in the RoleHierarchy aggregation association
in Role, and we write that the subrole “subrole” (the role with additional privi-
leges) to the left of symbol. The partial order ≤Actions is defined by a reflexive
closure of the hierarchical composition association in actions, defined by the ag-
gregation ActionHierarchy.

A binary relation R on E is a relation of partial order if and only if:

- R is reflexive
- R is transitive
- R is antisymmetric

474 A. Bouadjemi

We write a1 ≥ a2, if a2 is the subordinate action of a1. Then, the formula
ϕRBAC(u, a) is:

ϕRBAC(u, a) = ∃s ∈ subject, r1, r2 ∈ role, p ∈ permission, a2 ∈ Action,

S ≥s ubjectu ∧ UA(s, r1) ∧ r1 ≥r oler2 ∧ PA(r2, p) ∧ AA(p, a2) ∧ a2 ≥A ctiona1.

We can factorize the formula according to the definition of access control:

AC
.
= PA.UA

ϕRBAC(u, a) = ϕusers(u, p) ∧ ϕAction(p, a)

Such as: ϕusers(u, p)
.
= ∃s ∈ subject, r1, r2 ∈ role

s ≥s ubjectu ∧ UA(s, r1) ∧ r1 ≥r oler2 ∧ a1 ≥A ctiona1

At the end, the static access control is defined as: User u must execute an action a
if CRBAC |= ϕRBAC(u, a)valid.

5.1.3. Dynamic access control. Static access control decisions related to models
and not to system behaviors, for this, we must incorporate these decisions with
dynamic decisions that act on the behavior of the system. Formally, we gave the
signature

∑
S T (SST, FST, PST) Such as:

SST Trellis for classes (each class)
FST Function for each attribute and for each method of the model
PST Predicates for relations between classes.

However, we require that: SST Contains the Users Trellis, and FST contains Caller
from the Users Trellis, and Selfc for each C class. Here we require that Selfc be in-
terpreted by the current access to the object. When the current access to the object
is from Trellis C, and Caller is interpreted by User who initiated this access. In this
context, the state of the system at a particular time defines

∑
S TstructureσST , the

constraints on the state of the system σST can be expressed as the logical formula
ϕST , or the satisfaction of the constraints is:σST |= ϕSTvalid.

5.2. Sample access control decision.
Atomic Actions ={Meeting: notify, cancel. Invitation: . . . }
Actions = {Atomic Action u {Meeting,cancel,. . . }}
UA ={(Alice, Initiator),(Bob, Participant)}
PA = {(Iniator,creat Meeting) . . . }

RBAC MODEL 475

AA ={(Invitation.Meeting, Meeting: notify),(Initiator.Invitation, Invitation:
. . .)}

S = {Meeting, Invitation, Person}
P = {Meeting Initiator, Meeting Participant}

The constant SelfMeeting of the Meeting Trellis indicates the current access to the
Meeting. In this scenario, we will assume that Alice wants to cancel a Meeting
initiated by Joe, the state of the system is a first order structure

σSTonΣST

Caller σST = Alice

Meeting σST = {MeetingJoe}
Person σST = {Alice, Joe}.
UserName σST = {(Alice; ”Alice”); (Joe, ”Joe”)}
Meeting Initiator σST = {MeetingJoe, Joe}
Self σST = MeetingJoe

The formula that must be satisfied by the structure σAC = (σRBAC, σST) to grant
access to Alice according to: ϕAC(u, a) = ϕuser(u, p) ∧ ϕAction(p, a) ∧ ϕST

P (u).
In the example, Alice has the Initiator Meeting permission to execute the action:
Meeting:cancel(), so this action has heavy consequences on Alice; for this, Alice
executes the Meeting:updat() action, because the Initiator role inherits from the
Participant role.

For this action, no other action is possible, so the formula ϕuser(Alice, p) ∧
ϕAction (p,Meeting:cancel) is true for this permission.

The constraint: Caller.name=Self.Participant.name on the Participant Meeting
permission is translated into the formula:

UserName(Caller) = PersonName(MeetingParticipant(SelfMeeting())

6. CONCLUSION

This article focuses on reassigning unauthorized permissions. This is done in or-
der to increase the dynamics of the RBAC model. The proposed model allows users
to enrich roles with additive permissions. The authorization requested by the user
must not cause a conflict between the roles. Our approach allows access decision-
making following the dynamics of the system. Then, a formal specification of the
model was proposed by first-order logic. In the end, the meeting management

476 A. Bouadjemi

system was proposed as an illustration with the validity check. The extension of
this work will be devoted to the proposal of a decision support system.

REFERENCES

[1] R.S. SANDHU, E.J. COYNE, H.L. FEINSTEIN, C.E. YOUMAN: Role-Based Access Control
Models, (1996), p.22.

[2] M.S. FEATHER, S. FICKAS, A. FINKELSTEIN, A. VAN LAMSWEERDE: Requirements and
Specification Exemplars, Automated Software Engineering, 4 (1997), 419–438.

[3] F. CHEN, R.S. SANDHU: Constraints for role-based access control, in Proceedings of the first
ACM Workshop on Role-based access control - RBAC ’95, Gaithersburg, Maryland, United
States, (1996), p.14.

[4] N. CUPPENS-BOULAHIA, F. CUPPENS, M. NUADI: Smatch Model: Extending RBAC Sessions
in Virtualization Environment, in Proceedings of the 2011 Sixth International Conference on
Availability, Reliability and Security, USA, (2011), 17-26.

[5] C. COTRINI, T. WEGHORN, D. BASIN, M. CLAVEL: Analyzing First-Order Role Based Access
Control, in 2015 IEEE 28th Computer Security Foundations Symposium, Verona, (2015),
3-17.

[6] F. NAZERIAN, H. MOTAMENI, H. NEMATZADEH: Emergency role-based access control (E-
RBAC) and analysis of model specifications with alloy, Journal of Information Security and
Applications, 45 (2019), 131-142.

[7] A. BOUADJEMI, M.K. ABDI: Towards An Extension Of RBAC Model, IJCDS, 10(1) (2021),
1145-1155.

[8] S. CHEHIDA, A. IDANI, Y. LEDRU, M.K. RAHMOUNI: Extensions du diagramme d’activité
pour la spécification de politiques RBAC, Ingénierie des systèmes d’information, 21(2) (2016),
11-37.

[9] M. H. ALALFI, J. R. CORDY, T. R. DEAN: Automated verification of role-based access control
security models recovered from dynamic web applications, in 2012 14th IEEE International
Symposium on Web Systems Evolution (WSE), (2012), 1-10.

[10] A. MAMMAR, T. M. NGUYEN, R. LALEAU: A formal approach to derive an aspect oriented
programming-based implementation of a secure access control filter, Information and Software
Technology, 92 (2017), 158-178.

[11] R. A. SHAIKH, K. ADI, L. LOGRIPPO: Dynamic risk-based decision mhods for access control
systems, Comput. Secur., 31(4) (2012), 447-464.

[12] OMG UNIFIED MODELING LANGUAGE SPECIFICATION – VERSION 1.5, 2003.
https://glossar.hs-augsburg.de (2022).

[13] K. ALGHATHBAR: Representing Access Control Policies in Use Cases, International Arab Journal
of Information Technology, 9(3) (2010), 268-275.

RBAC MODEL 477

[14] J. JÜRJENS P. SHABALIN: Automated Verification of UMLsec Models for Security Require-
ments, in The Unified Modeling Language. Modeling Languages and Applications, Berlin,
Heidelberg, 2004, 365-379.

[15] D. BASIN, J. DOSER, T. LODDERSTEDT: Model driven security: From UML models to access
control infrastructures, ACM Trans. Softw. Eng. Mhodol., 15(1) (2006), 39-91.

[16] D. BASIN, M. CLAVEL, J. DOSER, M. EGEA: Automated analysis of security-design models,
Information and Software Technology, 51(5) (2009), 815-831.

[17] A. BOUADJEMI, M. RAHMOUNI: Modélisation formelle pour la sécurité d’un système
d’information. 2012.

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF RELIZANE

ALGERIA.
Email address: abdelkrimbouadjemi@yahoo.fr

	1. Introduction
	2. Related work
	3. The RBAC model and the metamodel SecureUML
	4. Meeting scheduling system
	4.1. Functional model
	4.2. Security Model

	5. Modeling approach
	5.1. Modeling choice
	5.2. Sample access control decision

	6. Conclusion
	References

