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EXPONENTIAL STABILITY RESULT FOR A POROUS PROBLEM WITH
FRACTIONAL TIME DELAYS

Chahrazed Messikh!, Nabila Bellal, and Soraya Labidi

ABSTRACT. In this work, we are concerned with a porous problem in a bounded
one-dimensional domain under Dirichlet boundary conditions with fractional time
delays and internal frictional dissipative terms. By a multiplier approach, an ex-
ponential stability result are obtained.

1. INTRODUCTION

The present paper is focused on the study of the stabilization of the porous
system with delay terms and frictional dampings

/

Pl@tt—kwm—ﬁwz—i-m@f’ﬁgo(t—s)+oqgot:0, reQ, t>0,
ot — bpue + 1 + M + @077 (t = 5) + agihy = 0, T €Q, >0
¢ (2,0) = o (z), ¥(z,0) =10 (z), =z

(P)S @i (2,0) = 1 (), ¢ (2,0) =21 (v), z €,
oi(x,t—s)=folt—s), xe€Q,te(0,s),

U (x,t—s)=go(t—s), x€Q, te(0,s),

¢ (0,8) =¥ (0,t) = (L,t) =9 (L,t), t>0
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where Q2 = (0, L), the variable ¢ and ¢ represent the displacement of a solid
elastic material and volume fraction, respectively. Here p, po, k, i1, and m are the
constitutive coefficients whose physical meaning is well known satisfying

p1>0, pp>0,b>0, k>0, u>0, m>0,and km > p*

The constant s > 0 is the time delay. The functions ¢y, ¢1, %9, %1, fo, go are the
initial data belongs to a suitable space. The notation 9/” stands the generalized
Caputo’s fractional derivative (see [5] ) given by

1 ¢ _
m/ (t—s5)" e Py (s) ds, O0<a<l, g>0.

O Pu(t) =

In the recent years, an increasing number of research have been discussed the
stabilization of porous systems with several dissipative mechanisms and several
results have been established. We recall a main result for this type of problem, it’s
shown that delays may destabilize a system that is uniformly asymptotically stable
in the absence of delay, see [|6] for more details.

It is important to emphasize here the particular case k£ = y = m, the new system
is known as the Timoshenko system where A. Adnane et.all [2] proved a uniformly
exponential stability result by using frequency domain approach.

In absence of the delay terms, R. Quintanilla [[16] considered the following
problem

(1.1)

pl@tt_k@xx_,uww:o, er? t>07
Py — bpur + o +mip + 1, =0, x € Q, t >0,

with some initial and boundary conditions. Employing Hurwitz theorem, he proved
that dissipative terms is not enough to obtain exponential stability when the speed
of propagation waves is different, otherwise if the speed of propagation of waves
is equal, T.A. Apalara [3] studied the same system proving that the system is expo-
nentially stable. By Adding the viscoelasticity term (v, ) at the first equation of
(1.1I), A. Magana and R. Quintanilla [[10] showed that the system is exponentially
stable.

Note that the system (P )with fractional time delays can be looked as a porous sys-
tem with memory terms acting only on time interval (0,¢ — s). Regarding porous
systems with memory term, B.Feng and T.A Apalara [7] considered problem (1.1
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with memory term, that is

(1.2) P1p1t — ke — po, =0, x € Q, t >0,
' ot — bpag + pipr + b + [ g(t — )by, ds =0, x € Q, t > 0.

By assuming minimal conditions on the relaxation function, the authors estab-
lished an optimal explicit and general energy decay results. For various other
damping mechanisms introduced and more results on porous system, we refer
reader to [1,14,8,9,(11-13,15,/17,/18] and the references therein.

Our goal in this paper is investigate the effect of presence of fractional time de-
lays and frictional dampings on the asymptotic behavior of solutions of the system
(P). We establish an exponential decay result under appropriate assumptions by
using the multiplier method.

The plan of this paper is as follows. In section 2, we present some assumption,
the augmented problem (P’) and lemmas needed for this study. Section 3 is de-
voted to the proof of well-posedness result by using the semi-group method. In
section 4, we prove decay result by using the multiplier method and appropriate
Lyapunov functional.

2. PRELIMINARIES

This section is concerned with the reformulation of the problem (P) into aug-
mented system. For that, we need the following claims.

Lemma 2.1. Let 1 be the function:
N =¢7, £eR 0<a<l
Then, the relationship between the "input" U and "output" O of the system

(¢ (2, 6,1) + (4 B) ¢ (2,6,t) = U (z,t)n(§) =0,
EeR, t>0, >0,

1) 6 (,£,0)=0

O (t) == (m) " sin (o) ¢ (,& )0 (€) d¢

\ —00

is given by
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where

I*Pu (t) := ! ) /Ot (t —s)*" e Py (s) ds.

T ()

Lemma 2.2. [2] if A € Dy = C\ |—o0, =] then

oo 772 (5) _ & a—1
/OO )\—I—B+€2d£_sin(a7r)(>\+ﬁ) '

We suppose that the constants a;, «;, satisfy the following assumption
(22) aiﬁafl < o fori = 1, 2.

Thought this work C' denotes a generic positive constant that may change line to
line.
Now, we introduce, as in [14], the new variables

(2.3) 21 (x, p,t) =y (x,t —sp), €, pe(0,1), teR,,
(2.4) 2o (x,p,t) =y (x,t —sp), €, pe(0,1), teR,.
Consequently, we have for i = 1,2
—1
(2.5) zip (z, p, t) = — Fin (x,p,t), z€Q, pe(0,1), teR,.
. 0 0 , .
Denoting z; = E'Zi’ Zip = a—pzi for i = 1,2. Then, by using (2.5)),(2.4) and lemma
the problem (P) is equivalent to
(2.6)
P11t — k@zr — iz + b1y xn + a1y = 0, (z,t) € @ X RY,
P2t — bee + ppe + M) + bapo x 1 + agyy = 0, (z,t) € A X R,
¢it+ (§2+B) (bz —Z (%Lﬂ”(f) :07 fori = 1727 (:U7§7t) €N xR x Rj:
szit (2, p,t) + zip (z,p,t) =0fori =1,2,(z,&,t) € Q2 x (0,1) x Rf
@ (L,t) =9 (0,t) =9 (L,t) =4 (0,t) =0, t € RY,
(P/) Z1<l',0,t):g0t($,t), (.ﬁ,t)EQXRj,
29 (2,0,t) = o (z,t), (x,t) € A xRS,
SO(:B7O) = Yo, Pt (.T,O) =p1, TE Qa
w(xao) = 77/)07 wt (.%',0) = 7/)17 MRS Qv

21 (fUaP»O) :fO (.1‘, _Sp)> (xvp) €O x (07 1)7
z2 (@, p,0) = go (z, —sp), (x,p) € 2 x (0,1),
d)i (.13,5,0) =0, fori = 1,2, (x>£) € XRja
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+oo
where ¢; xn = / ¢ (x,&,t)n (&) dE dz, and b; = (7) ' sin (ar) a;, for i = 1,2.
Now, let us introduce the energy associated to solution of (P’)

E(1)

1
== [MH%HQ + Ellgal® + pallvell* + bllvbe|” + 2#/ @ot dx 4+ ml[y]|®
2.7) 2 Q

2 2
bi +o0 ) . 2
+;§/Q/_oo |ps (2, &,8)|" dE d:c—i-;vis/g/o |z; (z, p, t)|° dp du,

where v; is a positive constant verifying

: ()
(2.8) Agb; < vy < oy — biAo, 1=1,2, with Ay = / dS

oo 20

Remark 2.1. Under hypothesis mk > 2, the energy E defined in (2.7) is positive.

Lemma 2.3. [2]] For z; € L* (Q) and £¢; € L? (Q x (—00, +00)) for i = 1,2 we have

[ant) [ n©6 w60 deds) < a0 [ Jastopo do
[ @ e

+oo .2
where Ay := / 5772 f)ﬁ d§.

Lemma 2.4. Assume that holds, then the energy functional defined by (2.7)
satisfies

dE(t) 2 , 2
2 b; L +o0 )
_ZEZ/ / (fg—i—ﬁ) i (2, &,8)|” d€ do <0,
i=1 0 —00
for a positive constant C and b; = (7?)_1 sin () a; with i = 1, 2.

Proof. Multiplying the first equation of (P’) by ¢, integration over (0, L), by inte-
gration by parts with boundary conditions to get



484 C. Messikh, N. Bellal, and S. Labidi

d
2+ S 1 [ et

(2.9
+bl/ o1 %1 @1 dz + an g2 = 0.
0

Multiplying the second equation of (P’) by ¢, integration over (0, L) , by integra-
tion by parts and boundary condition to find

L
[ R T Ry Xy
(2.10) °

+ b2/ B2 * 1 Yy dx + a||i||* = 0.
0

Then, summing (2.9) and (2.10), we obtain

d k p b m L
T { el + 5!\%\\2 + 52|!¢t\|2 + 5“%”2 + 3H¢H2 + u/ Vg dx}
(2.11) 0

L

L
+b1/ ¢1*ns0tdl“+52/ G2 %1 Pr dz + onl@el|* + azlve]|* = 0.
0 0

Multiplying the equation j of (P’) by b;¢; with (i,j) = (1, 3), respectively (i, j) =
(2,5) and integration over (0, L) x R, then we yield

bi/OL/_jqﬁit@ i dx+bi/0L/_:° (€ + ) |1 (,€, D de da

L “+o00
—bi/O zi<x,1,t>/_m 0(€) 6, (2,€.1) dE do =0,

which we give
d oo
%{ // | (€, 1)) dfdx}

(2.12) +b1// (€4 58) |6: (x. £ O de do
/zl x,1,t) / h n (&) ¢; (z,&,t) dé dz =0,
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with ¢ = 1, 2. Multiplying the equation number j of (P’) by 2v;z; with (i, j) = (1,4),
respectively (i, j) = (2,6) and integrating over (0, L) x (0,1), we get

d L 1 )
— < SU; zi (x, p,t)|" dp da:}
(2.13) dt{ /0 /0 2 ( )

i [ [z (@, LI — |z (2,0,0)7] da =0,
for i = 1,2. By summing (2.11)), (2.12) and (2.13) and using ¢, (z,t) = 2 («,0,1)

and ¢ (x,t) = 2z (x,0,t), we arrive at

dE(t) 2 L 2
7__Z<ai_”i>/o 12 (2,0, )2 dt
2 +o0

Son [ awon [ Ceenne i

+oo
—sz-/ | @sa) o i
00 2
+Zb/ 2 ( :lc,l,t)/_iO n (&) ¢ (z,&,1) dgdz_;%/;|zi(x»1>t)‘2 d.

Thanks to lemma [2.3|with (10) and putting

C' = min (v; — Agb;, a; —v; — b;Ag) >0, i =1,2,

1=1,2

hence we obtain
2
Z —vz—bAo/ |z (x,0,1)] 2 dx
. L
Z / |2 (@, 1,8)° dx
— 0
2 —+o0
// (€ + B) 16 (2, €, DI de da
L
< —OZ / e (0,0 + 2 (2, 1,0} do
i=1 70

2 bi L +o00 ) ,
_25/0 /_OO (& + B) |¢s (x,&,0)|" dE dx

<0.



486 C. Messikh, N. Bellal, and S. Labidi

3. WELL-POSSDNESS

In this section, we prove the existence and uniqueness of global solution
(P") by using the semi group theory. Let us set u = ¢, and v = ¢, and U
(p,u, 0, v, @1, Pa, 21, 22)T , then (P’) can be rewrite as follows:

3.1) Uy (t) = AU (1)
UO = (9007 ¥1, @50» ¢17 Oa 07 fO (—pS) » 9o <_p$))T ’

where the operator A is defined by

U
k «
p P1 p1
v
b iz m by Q9
_wxa: - — Qg — —’Il) - _¢2*77 - v
P2 P2 P2 P2 P2

—(&+B8) o1+ 21 (z, 1)1 (§)

— (& +B8) ba+ 2z (x, 1) 0 (§)

1
_gzlp (.Z‘, P)

1
_EZZp (l‘, p)

with
—+o00

P1xn = i (2, 6)n (£) d&, i=1,2,

and the domain

(UeH: (p,0) e (H*(Q)”, (u0) € (H} (),
zip € L2 (2 x (0,1)) fori=1,2,

D(A) =1 u=2z(-0), v=2(,0), ;

Ep; € L* (Q X (00, +0)), fori=1,2,

[ (£ 4 8) i — zi(z,1)n (&) € L* (Q x (=00, +00)), fori=1,2
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where the space is defined by
H o= (HE () x (L2 ()% x (L2 (2 x (00, +00)))* x (L? (€ x (0,1)))
equipped with the inner product

<U U>—p2/vvda:+b/wxwxd:c

™ f/w%dm/w%dx} s [ 46 do

+k Pz dr + p ul dx
(3.2) Jo 7" "Ja

“+oo

—I—;bi/g . oi (x,§) bi (z,€) d€ dx
2 1

for all U = (@711’1;7@7&1’&2721722) €M

Theorem 3.1. Assume that holds. Then, any U, € H the problem has
unique weak solution

UeC((0,00),H).
Moreoverif Uy € D (A), then we have

UeC([0,00),D(A)NC([0,00),H).

Proof. We prove that A is a maximal dissipative operator. For this, we first show
that A is dissipative. We remark from lemma [2.4]and (3.1)) that

B (t) = 2dtHU||2 (U, Uy = (AUU),, < 0,

Thus, A is dissipative.
In second step, we prove the surjectively of I — A. Indeed, let

F= <f17f27f37f47f57f67f77f8)T cH
looking for U € D (A) such that

(I-AU=F,
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this implies

( Y —u= fl (33)7
a1 k 1% bl
<Lk—)u——wm——%%+—%*U=ﬁ@%
P2 P1 P1 P1
Y —v=f3(v),
) P2 P2 P2 P2
(33) +p_2¢2*77 = f4 (x)7
2
(L+&+B)dr — 21 (x,1)n(§) = f5 (2,€),
(1+€2+ﬁ)¢2 — 22 (58,1)77(6) = fﬁ (maf)v

1
ata, = (z,p),

1
Z9 + gzgp = fs(z,p).

\

We suppose (,1) € (HL (Q))?, then the first and second equation in (3.3) give

(34) U=¢ — f17
v=1—fs.
On other hand, the solution of (3.3)); and (3.3))s with taking into consideration
that z; (z,0) =u = — f1, 20(x,0) = v =1 — f3 are given by
z1(x,p) =ePlp(x) = fi(2)]

(3.5) ’
+s e_”/ e fr (x,7) dr € L* (2 % (0,1)),
0

2 (@,p) =e [ (x) = fs(2)]
+se /OP e fg (x,7) dr € L*(22(0,1)).

Noting from (3.3))5 and (3.3)¢ that

_ fta)n(§)
1+&+5

(3.6)

(3.7) o1

o f6+22 (%1)77(9
(3.8) oo = RIS,
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Thanks to (3.7) and (3.8]), we deduce that

(£, Eo) € L* (2 X (—00, +00)).

Now, substituting (20) and (3.6) for p = 1 in (22) and (3.8) with (3.4)), then
relations(3.3))» 4 become

e s Qo k
(1+ b11+ 1>§0— Prx — M%
1 P

P1 P1 1
_ e’ a\, b/ ) )
(3.9) ljcz—i-(l—i- ﬁl b11+2(p£>) fi Py 1(/_00 1+§2+_ﬁ d§ ) fs
1 —S8 > 77 ST
([ 2 )
and
(1+ _szer%)?ﬂ——%ﬁ e+
2 2
— oy € b (e (§) )
(3.10) —;4+ (p2 ++£2 5222‘:;? J: s 1(f_oo 1+ e21 3 d¢ ) fs
2 —S$ Ui ST
_Ese (/_OO TTeas dﬁ)/o e* fs (x, 1) dr,
where

+o0 2
o n° (§) .
bm_bl/_oo —1+§2+Bd€’ fori=1,2.

Our goal now is to prove that the solutions (¢, ) of the system (3.9) and (3.10)
belongs to (H?(2))”. Indeed, let (p,¢) € (Hi(Q))*, Multiplying the equation

(3.9) and (3.10) by pi¢ and p.1) respectively, by integration by parts, then sum-
ming the resulting equations to arrive at

(3.11) M (¢, 93 0,9) = L(2:¢) ,
where the bilinear from M : H] (Q) x Hj (Q) — R is given by

M (%W @MZ) = (Pl +ap+ 6_3511) / pp dx + (PQ +as + 6_5522) / Y du
) Q

+k:/Qsox@xdwagwx&xdxwM(m+wz) da:} +m/ﬂwz/7dx,

and linear from L : H; () — R by



490 C. Messikh, N. Bellal, and S. Labidi

L (@, ¢) = (al +p1+ 6_5511) / Jip dx
Q

+ (2 4 p2 + € *byy) / fs¥ dx + py / f2p dx
Q

e e ([ T ts) [ pe
([ eg) [
_bise (/;mliTﬁdf)LAIBSTf7(x,T) dr dx
—bys e (/_j%dg)/g/oleﬂfg(x,ﬂ dr da,

with simple and straightforward calculation, it follows that M is coercive and con-
tinuous operator and L is continuous hence, virtue to the Lax-Milgram theorem,
the problem has a unique solution (p,v) € (H} (22))*. Due to the classical
elliptic regularity; it result that (o, ) € (H2 (2))?. Finally, it remains only to show
that

(& +8) ¢ — zi(z,1)n(§) € L* (2 x (—00,+00)) fori=1,2.

Returning to (3.3)5 and (3.3)s we have

(€2 +B)¢1 — 21 (x, ) n(§) = f5 — ¢ € L* (2 x (—00,+00)),
(£2+ﬁ) ¢2 — 29 (CC,l) (f) = f6 ¢2 € L2 (Q X (—OO,+OO)>
Hence, we conclude that U € D (A), so, the operator I — A is surjective. O

4. DECAY EXPONENTIAL

In this section, we prove the decay result using the multiplier method. For this
purpose, we need to some lemmas and functionals. The first, we introduce the
following functions

ki (1) == pl/sotso dw+pz/@/}¢t dx
Q Q

2 bz +o0
+i21§/§2/_00 (64 B) |M; (2, €, 1) dg da,

(4.1)
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where
t & [y on (€
M (2,€,1) :/0 $i (2,6,7) dr — g’i;/ﬂ fa(a,—ps) dp+ ijg”jﬁ)
with
i N x,—ps), i=1
fO ({L‘, pS) - { 9o ([E,—,OS), i=2
and

Denoting from now on

Lemma 4.1. (see [2]]) Let (p, ¢1, 21,1, ¢2, 22) be a regular solution of problem (P’) ,
then we have for i=1,2

400
/Q/_ (& +B) M; (x,6,1) ¢ (2,6, t) dE da
o
‘// o' (,) §i (2, &, ) n () dE da
QJ—c0
1 +o00
T i\, (2, 6,1) dE dpd
S/Q/OZ(IPt)/_OO n (&) ¢ (x,&,t) dE dp dx

- /Q /:o |6: (€, )|* dE da.

Lemma 4.2. (see [2]) Let (p, ¢1, 21,1, ¢o, 22) be a regular solution of problem (P’) ,
then we have for i=1,2

+00 ,
[ @ e aa
QJ-— )
S 382140// ‘ZZ' (I,p,t)‘Q dp dx
QJo
* T 5 aJ oo » S
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Lemma 4.3. Assume hold. The functional k, defined in satisfies

b 2
EH@DH

2 400
=3 [ e dedor C (e + )
i=1 —o°
2 1
w230 [ [latpnf dpds
i=1 QJO

2 bz +o00
fXT L@ e

where A = k — ’jn—Q and C,, is the Poincaré constant.

k b
K (1) <~ el = Sl -

Proof. Differentiating k; respect to ¢, using the first and second equation of (F’),
by integration by parts and we take the boundary conditions into account to yield

K (1) = K[ oa® — bl — 20 / by dr — ml[|?
+oo
b / 90( b (2, 6,8) 7 (€) dg) dz
Q 7—?—000
—52/920( G df) da

[e.e]

4.2)
—al/swt dw—%/lﬂ% dx
Q Q

+p1llee)* + ool
2 +00
#3000 [ [ (€ 8) Milw£.0) 61 (w6, 1) ded,
=1 YRS
by virtue of lemma [4.1], so (28) becomes

1
k(8 = =Meell” = bl ll® = —llup + |

- / P — / ipn da+ prllgall? + pall?
Q [9]
2 1 +oo
43) =Son [ [atwen [ weiegn dcdpds
=1 /270 -

(e 9]

2 +o00
2
o[ [l asae
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Now, we will estimate the terms of the right-hand side of (4.3)) as follows. Since
brAg < v; for i = 1,2, and integrating the inequality in lemma over (0,1)
respect to p to arrive at

2 1 +oo
=30 [ st [ n@6 e ddpds
i=1 —00
2 1
“4.4) < SQZ%// |zi (x, p, t)\2 dp dx
i=1 /9270

2 bz +oo
*Zzlz/ﬂ/_oo (&2 +B) |¢i (. &) dE da.

Using the Young’s and Poincaré inequalities to find

—ay / o1 dz — as / Pn de < a0 Cllpall? + 65Cn |5
Q Q

a10

ol 4 22 |2

and §, =
2C, o 2 2000,

A b
@5) —ai [ pprdn—as [ woede < Sl + S0l +C (ledl? + [l
Q Q

We choose §; =

consequently

Inserting (4.4) and (4.5) in (4.3), then using the Poincaré inequality it follows that

b
405

+i@//+°° (& + B) 161 (@, &0 de do+Cllnl* + Clluall?
i=14 QJ—c0 ' Y spt t
2 1
2 7 ) ) at 2d d
+S;U/Q/O|z<xp ) dp d
2 +o00
— bl 7 'Sy 2d d
> L] esor aa

1]

A b
K (1) < ~5lleel? = Zhsall -

Next, we introduce the following functional

2 1
(4.6) ko (1) :=s Z/ / e |z (z, p,t)|* dp d.
i=1 /270
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Lemma 4.4. the functional k; define in satisfies

2 1
@n O [ [ 0P dodet el + il
=1

Proof. We take derivative of k, respect to ¢ and using ([2.6))4 and (2.6))s, we arrive at
2 2
0= [la@onf a0 [ e latm Lol dpds
= Q = Q
21 ) 1
=) / / e |z (z, p,t)|* dp da.
i=1 /2 J0

We see that z; (z,0,t) = ¢! (z,t) and using the fact e** > e~* therefore, we obtain
4.7). O
Lemma 4.5. the functionals k, and ko defined in and satifies

k1 (t)| < CE(t) and ko (t) < CE (t)

for some positive constant C.

Proof. Using lemmal4.2and Young’s inequality we find easily that |k (¢)] < CE (t).
Since ¢~ *” < 1, then we obtain

2 1
kzg(t)SSZ// |z (z, p,)|° dp dz < CE(t).
i=1 Y2 J0

It is ready to state and prove the main result for this we introduce the perturbed
energy as follows.

L(t):=NE(t)+¢eky(t)+ ko (t) fore >0and N > 0.

Theorem 4.1. Assume holds and U, € H, then any solution of (P') satisfies
E(t)<dy e ™'Vt >0,

for some positive constants d; and d, independent of t.
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Proof. by using lemma and lemma we deduce that
L'(t) < = (NC—eC=1) HsDtH2 (NC —eC = 1) [[¢|?
m L e N s LA

—st//Mm (2,6, 0)° de da
—Zs S — w;se // |2 (z, p, )|° dp da.

i=1
At this point, we choose ¢ small enough such that e=* —v;s ¢ > 0 fori = 1, 2. Then,
Ce+1 ¢

c 2

picking N large enough so as NV > max ( ) This implies that there exist

constant d such that
L'(t) < —d E(t) ¥t > 0.

In the other hand, we remark virtue of lemma that L (¢) and F (t) are equiva-
lent for all ¢ > 0. So there exist d; > 0 such that

(4.8) L'(t) < —dyL(t) Vt >0,

therefore, by integration simple over (0,t), we deduce that
L(t) < L(0)e tvt>0.

Hence, we conclude that

E(t) < dye ™'Vt >0,
with dg > 0. L]
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