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EXISTENCE OF SOLUTIONS OF THE TEN VELOCITY SPATIAL DISCRETE
MODEL OF GAS

Tinfili Natta! and Amah Séna d’Almeida

ABSTRACT. We use the fractional step approximation method to prove the exis-
tence and the uniqueness of solutions of an initial boundary value problem for a
spatial ten velocity discrete model in the study unsteady Couette flow.

1. INTRODUCTION

The development of industrial applications of gas flows in micro devices is rapid
in recent years [5]. In these small systems the flows are in slip or transitional
regimes and phenomena of rarefied gas flows such as velocity slip and tempera-
ture jump are observed [6,10]. Due to the limitation of experimental conditions,
the experiments are mainly limited to some simple structures [[10] and the stud-
ies of micro gas flows still mainly rely on theoretical and computational methods.
Therefore the investigation of gas dynamics problems such as Couette flows in
slip and transitional regimes can give insight in the understanding of these kinds
of flows. The study of these problems deserves the resolution of the Boltzmann
equation as the Navier Stokes ones are not valid in such flow regimes. The Boltz-
mann equation is complex and several simplified models have been proposed.
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The discrete velocity models whose velocity spaces are finite sets of vectors have
its main features [1,/7]]. In this paper the fractional step method is used to prove
the existence and uniqueness and to find an approximating procedure for the so-
lution of the ten spatial discrete velocity model C; [4] for the unsteady Couette
flow. The first numerical resolution of the unsteady Couette flow in the scope of
discrete kinetic theory [|8] was carried out by means of the fractional step method
with a four velocity planar discrete model. The fractional step method was used
by Temam []12] to establish the existence and uniqueness of an initial boundary
value problem for the two dimensional Carleman model [2] with zero dirichlet
conditions on the boundaries and by Sultangazin [11]] to obtain existence and
uniqueness of the solution for a discrete model in one dimension. The aim of this
paper is to extend the results to include the more physical boundary conditions of
diffuse reflection and to discrete models having different speeds which are con-
venient in the treatement of flows involving thermal processes. In section [2| the
discrete velocity model is presented and the mathematical problem is stated. The
uniqueness of the solution is proved in section 3|and in section [4|follows the proof
of the existence of an approximate solution and its convergence towards the exact
solution.

2. STATEMENT OF THE PROBLEM

The planar Couette problem of shear flow and heat transfer between parallel
infinite and moving plates is interesting since it helps to understand the behavior
of gas flow near a solid boundary. An exact solution of the steady problem for the
ten velocity model C is presented in [3,4]. For the four velocities plane model
of Broadwell, we have determined the exact analytic solution for the unsteady
Couette problem [9].

The origin O of the orthonormal system of coordinates (z',y/, z’) of the physical
space is chosen so that the plates are located at y = :l:% , h > 0. The velocities of
the model C; are u; = ¢(—1,1,1), 4y = ¢(1,1,1), 4y = ¢(—1,—1,1), uy = ¢(1,—-1,1),
Uyg_; = —U;, 1 € {1, 2, 3, 4}, and Wy = —1i;9 = ¢(0,1,0). The number density of
particles of velocity ; at the point M(2',y/,2’) and at the time ¢’ is denoted by
N;(t', 2y, 2"), i€ {1, 2, 3, 4, 9, 10}.
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The model has two different speeds and only linearly independent summational
invariants [3,/4]. For sake of simplicity and by analogy with classical studies of
the problem, we assume that the distribution of the velocities is symmetrical with
respect to the Oz’y’ plane and we shall look for a solution of the unsteady problem
under the assumption that the microscopic densities depend only on the time ¢’
and the spatial variable y’. The number of unknown densities is reduced to six:
the number densities N;(t',y'), i € {1, 2, 3, 4, 9, 10}. We choose the reference
values t, for the time, ¢ for the velocity, n, for the density and h for the transversal
lenght and introduce the nondimensional quantities:

y/ t/ h NZ

2.1 ==, t=—Kn= h St=— i = —.

( ) Yy B ; to n <3n0 ) Cto ) n no

The initial boundary value problem in dimensionless variables for the unknown

microscopic densities n;(t,y), i € {1, 2, 3, 4, 9, 10}, takes the form:

(. on n V243 [ ]
St% + %_yl = ( oKn ) (n2n3 - n1n4) + ﬁ (ngng — nlnl()) 2.2.1)
" n V243 A
St% + %—; = ( SR ) (n ng — ngng) + % (n ng — n?”lﬂ) 222)
. N V2+V3 A
St% — 68_; = ( Kn ) (n1n4 — 7’L27’L3) + % (nlnm — ngng) 223)
. " V243 A
St% — aa—; = % (TLQTLg — n1n4) + ﬁ (7127110 — 7’L47’Lg) 24)
St + 5 = z\ﬁn [(n1 +n2)n1o — (ng + n4)ng 2.215)
2.2) St — 65—;0 = 55 [(n3 + na)ng — (ny + n2)n19) 2.26)
' ni(0,y) = nei(y), i€{l, 2, 3, 4,9, 10} 2.2L7)
n; (t,=%) =n,A"(t), i€{l, 2, 9} 2.28)
n (t,+3) =nf AT(t), i€{3, 4, 10} 2.29)
2[n (t,—3) +na2 (t,—3) —na (¢ —%) —na (t,—3)]
+ng (t,—3) —no (t,—3) = 2210)
2 [y (t,+3) +no (£, +3) —na (¢, +§) —ny (t,+3)]
X +ng (t,+3) —nio (¢, 4+3) = (2.211)

where St is the Strouhal number and Kn the Knudsen number. The boundary
conditions (2.2/8) and (2.2]9) express the diffuse reflection of the gas particles
with arbitrary accommodation and the relations 10) and 11) the imper-
meability of the plates. The initial densities n?, i € {1, 2, 3, 4, 9, 10}, and the
accommodation coefficients A\* are continuous non negatives functions of y and

t respectively. The quantities n,, i € {1, 2, 9} and n;,, i € {3, 4, 10} are the

tw? tw?
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microscopic densities of the fictituous discret gas in maxwellian equilibrium with
the plates respectively aty = —1 and y = 1 they are non negative functions of ¢.
Let 2 = } T 2[ be an 1nterval of R and y a point of Q2. The Sobolev space

H'(Q) defined by H'(Q) = {u |ue L3(Q), & e L2(Q)}, is a Hilbert space for

' dy
the scalar product ((u,v)) = (u,v) + <§—Z, %> where ( = [qu(y)v(y)dy and

|lul| = v/(u, u) defines the norm in L?(Q).
The remainder of the paper is devoted to the proof of the following result:

Theorem 2.1. Let n’ = {n01,n02,nog,n04,n09,n010} such that nol(y) € Hl(Q) N

L>(Q) and ny;(y) > 0 a.e.. Then there exists a unique solution n = {ny, ny, ng, N4,
ng, nio} of the problem (2.2)) which satisfies:

(2.3)  ni(t,y) € L= ([0, T]; HY(Q) NLX([0, T] x Q) and n(t,y) >0 ae..

3. UNIQUENESS OF THE SOLUTION OF ([2.2))

Letn = (ny, ng, n3, Ny, ng, nio) and f = (f1, f2, fs, f1, fo, fi0) be two solutions

of the problem (2.2) and put g =n —f = (g1, ¢, gg, g4, 99, g10)- Then we have

. V2+v3
the problem (3.1)-(3.2), with o = ( oSt ?) and g = 2KnSt

;

aail + sltaagj = a(nong —ning — fofs + fifa) -

+8 (n3ng — ninio — fafo + f1fi0) 3-141)
%if—i-%%i;:Oz(nln4—n2n3—f1f4+f2f3) .

+B (nang — nanio — fafo + fafio) 3-112)
%itg_é%_g; a (ning —nong — fifa+ fofs) o

(3.1) +B (nin1o — nang — fifio + fafo) 3-113)

' Gt — &% = a(nang —mng — fofa + fifa)

ot St oy -

+B (nanio — nang — fafio + fafo) 3.114)
%o+ 5 %2 = 28((n1 + na)nag — (ns + na)ng L

—(f1 + f2) fio + (fs + fa) fol 25)
(r)g% - %% = 28 [(n3 + ng)ng — (n1 + n2)nio o

\ —(fs+ fo)fo + (fr + f2) frol 3.116)
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.

g:i(0,y) =0, i€{l, 2 3 4,9, 10} 3.21)
g (t,—3) =0, ie{l,2 9} 3.212)
gi (t.+3) =0, i€ {3, 4, 10} 5.213)
(3:2) 4 2[91( —%)+9( —3) — 03 (t.—3) — 94 (t. —3)] -
+99 (1, =3) = 910 (£, —3) =0 3.214)
2[g1 (t.43) + 02 (t,43) — 93 (£ +3) — 94 (1, +3)] -
\ +99 (t,4+3) — 910 (£, +3) =0 25)
As
ning — fifs = % [(n1 — fi)(na + fa) + (n1 + f1)(na — f4)]
nans = fofs = 5 [0 = £2) (s + f5) + (2 + fo) s = fo)]
nzng — f3fo = % [(n3 — f3)(ng + fo) + (n3 + f3)(no — fo)]
ninio — fifio = % [(n1 — f1)(n1o + fi0) + (n1 + f1)(n1o — fio)]
we can rewrite ([3.111) as follows:
(3.3)
2% + %%—gyl —a[(ng + fa)gr + (n + fi)ga + (n3 + f3)g2 + (n2 + f2)gs]

— Bl(nio+ fio)gr + (n1 + f1)gio + (ng + fo)gs + (ns + f3)go] -

By multiplying (3.3) by ¢; and integrating on (), we obtain:

1 [z g
H91H + St/12918—dy+04/ (4 + fa) gldy+ﬁ n10+f10)gfdy

M\»—‘

1
2 2

34 3
G4 = / [—a(ny + f1)gagr + a(ns + f3)g291 + a(ne + f2)9391

—B(n1 + f1)g1091 + B(ng + fa)gsg1 + B(ns + f3)geg:1] dy.

Since

/_ " 20i(t.y) 8913(2’ W gy = (91(t,9)7] 2

= [91(t, 1/2)P=[g1(t, =1/2)]° = [o(t,1/2)]"

0

1
2

N
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1
then we have 2 _2% gl%—gyldy > 0. So,

1
(3.5) % lgr|* < /_2 [—a(ny + f1)gagr + a(ns + f3)g2g1 + a(ng + f2)g301
—B(n1 + f1)g1091 + B(ng + fo)gsgr + B(ns + f3)gog1] dy.
If 11 is a positive number satisfying || f;|| < p and ||n;|| < u, then
|—a(ni + fi)gagr + a(ns + f3)g201 + a(n2 + f2)g301
—B(n1 + f1)gr091 + B(ng + fo)gsgr + B(ns + f3)gogi|
< 20|94l g1| + 20pl g2l 91| + 2algs||g1] + 2Bplgi0llg1] + 28ulgsllgr| + 284 gol|g:

NI

and
3
/ ) [—a(n + f1)gagr + a(ns + f3)g201 + a(ne + f2)g301
)
—B(n1 + f1)g1091 + B(no + fo)gsgr + B(ns + f3)g901] dy
< 2apu||gallllgr |l + 2apl| g2l g1 || + 20| g3][[] g1 |
+ 28pllgrollllg1l + 28ullgsllll g1l + 28x|gallllg1]]-
Hence,
d|| 12 < 20 (lg2 g2l + llgsllllgall + llgallllg:]l)
— «Q
(3.6) dt g1l = 119211191 g3l |91 g4|1191

+260 (lgsllllgall + llgollllgnll + llgaollllgall) -
Similarly we can show that:

(d
2
= g2l < 2ap ([[g1[lllgzll + llgsllgall + llgallllg2ll)

dt
+ 28 (|[gallll g2l + Nlgollll g2l + [lgrollllg21)
%Hgsﬂz < 2a (pul| g1 [Nl gsll + [lg2lllgsll + llgallllgs]l)
+28p ([lg1llllgsll + Nlgallllgsll + [lgrollllgsll)
%|l94|l2 < 2ap ([lgillllgall + llg2llllgall + llgslllgall)

+ 260 (g2l lgall + llgollllgall + llgaollllgall)
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¢ d
Fllooll” < 481 (llgrllllgoll + Ng2lllgoll + llgsllllgsll

+lgall llgall +2llgr0llligoll)

d
EHQlOH2 < 4Bp (|lg1llllgroll + llg2llllgroll + g3l g10]]

\ +{lgallllgroll + 2[lgollllgr0l) -
As 2lgell gl < llgell® + |lg:||?, we can deduce that:

d
in {2 (||91||2 + [lg2l1? + [lgs]1* + ||94||2) + Ilgoll* + ||910||2}

< 12p(a+ B) {llgll* + llg2l® + llgsll® + llgall®} + 2418 {11g0[1* + |l g10]1*}
< max {(a+ ), 48} x 61 {2 (g1 ]1* + lg2l” + llgsl* + Ilgall®) + llgoll* + lgroll® }
< 12u(a+ B) {2 (||laa]l* + Nlg=l” + llgsll* + lgall®) + llgoll* + lgroll® } -

Since ||g:(0)|| = 0, ¢ € {1, 2, 3, 4, 9, 10}, we conclude using Gronwall’s lemma
that

G.7) 2 (lgs* + Ng2 (I + lgs @I + lga(®) 1) + llga(OI* + llgro()[I* = 0,

0<t<Tandgi=g2=g3=9s=go=g1o =0, a.e..

4. EXISTENCE OF THE SOLUTION OF (2.2))

We shall build approximate solutions by means of the fractional step method to
establish the existence of the solution of the problem ((2.2)). Given M € N, we
shall define the families of positive elements n:n% of L>*(Q2),i€ A, j =1, 2and
0<m<M-—1,withA={1, 2 3,4, 9, 10}.

The time interval is splitted into M equal subintervals of length 7 = .. To start
we let n)(y) = ng;(y) and we denote n™(y) = n;(m7,y),i € A, 0 < m <M — 1,
Vy € Q. We assume that n) belongs to L>({2) and is positive V i € A. When the
functions n!", i € A, which approximate the solution at time ¢,, = m7 are known
(belonging to L>°(2) and positive), the approximating functions corresponding at
time ¢,,41 = (m + 1)7 are obtained in two steps. In the first step, the equation
is solved in the spatially homogenous case on the subinterval 7,,, = [t,,, L1 1]
with the initial condition n!". The solution of this initial value problem at ¢,,,; =
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m 1 . .
(m + 1)7 is denoted by n, "2 In the second step, (2.2) is solved in the free flow
1
case on the same subinterval with the initial condition nZnJr?. The solution of this
initial boundary value problem at t,,,; = (m + 1)7 is denoted by n" .

Proceeding recursively, we obtain the two sequences of the functions n}*, m =
1

1,2 ...,Mandn]"2,m=1,2, ..., M—1,i € A, defined in €.

1

1
We now give details of the computations of nzn+2 and n"*" in the first and

second steps respectively.

1 1
4.1. First step: determination of the densities n?“. The value n;n“ of the
microscopic densities at time ¢ = (m + 1)7 is the solution of the finite difference
approximation scheme:

mt3 m 1
(4.1) St T Q" e
T
The n!", i € A are known and the unique solution of equations (4.1) is given in
explicit form by:
(4.2) .
ny e = i N7 + BP (2nT" 4 2n3' + ng') (a(P + Q) + BR)
+a (n* +n3') P+26nT (P + Q) + B (ng' P+ ni"R)]
m+3 1 m m m m
ny "t = 2 g+ BQ (2n] + 205 +nf) (a(P + Q) + BR)
+a(nf" +n3') @ +26n3' (P + Q) + B (ng'Q + ny'R)]

Wi = [+ 5P (20§ + 20 4 ) (a(P+ Q) + BR)
+a (ng' +n]") P+ 26n3 (P + Q) + B (njyP + ny'R)]

mil 1
ny 7= < [0+ BQ (20 + 20} + 1) (a(P + Q) + AR)

A
+o(ng' +nf') @ + 260y (P + Q) + B (nfpQ + nj'R)]
amts g+ BR(2ny 4 205" +ng') - meg _ nig + AR (205" + 20" + np)
(Y 1+80@P+2Q+R) = 1+B02P+2Q+R)
with
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_ 7(v2+v3) _ /6
Q= KnSt ) B - 27|:(n5t7

(4.3) P=nP+ny,  Q=ny+ny,  R=ny+n,
A=(1+B2P+2Q+R))(1+a(P+Q)+BR).

Asn!" > 0 a.e. and n* € L>*(Q2) Vi € A, the expressions (4.2) show obviously
that:

(4.4) n;n% >( a.e. and nZnJr% cL®(Q)VieA.

Moreovet,
m+x m+2 m+2 m+2 m+2 m+2
2(711 I SEPE J 2) g 4t

(4.5)

=2 (R + 0 0+ ) + g,
which means that the number of particles is conserved locally during the collisions.

4.2. Second step: determination of the densities n}"""

the endpoint value of the solution of the free flow equations in the subinterval 7,,,

. We are interested in

so for t = (m + 1)7 we solve the system of equations:

m4l _ Mty m+1
(4.6) Sp - N oy, argy =0, i€A.

with the boundary conditions (2.2/8)-(2.2/11).
The system is a system of first order differential equations that can be

rewritten in the form:
m+1 1
dn] Enmﬂ _ inT.H?
dy TU; " TU;
The boundary value problem (4.7))-(2.2.8)-(2.2111) can be splitted into the two
following boundary value problems:

4.7)

, 1 €A

m-+1 m 1 .
(4.8) %+%nlf"“ =3 el 2, 9) (181)
(=) = A0 e {1, 2, 9} (4.82)

m—+1 m 1
gy | T St = Sl i€ (3,4, 10) @9
(192) -

nt(+1) = ni ATHD e {3, 4, 10} 2)

]
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where A+ = \*((m 4 1)7) are the values of the accommodation coefficients
at the time (m + 1)T aty = +1.

The problems ) and ( - are linked by the impermeability boundary con-
ditions (2.2/10) and -11) which are written at time ¢ = (m + 1)7 as:

2 [ (=) + g (=5) = ng " (=3) =i (=3)]
bl (-4) —nfp (1) <0

2 [ (+3) + 05 (3) — o8 (3) — ol (+3))]
+ng ™ (+3) =0l (+3) =0,

The resolution of (4.8)),(4.9) gives:

() = 3L Y, [n?@%(é‘) exp (%(8 — y))] ds

3 2 ?

+Cm*exp (—iy> ;1 €41, 2, 9},

nH () = =54 [3 [0 (s) exp (S (s — 1)) | ds
+C"*exp (—%y) , 1€ {3, 4, 10},

G

(4.10)

(4.11)

where the constant C;"*!, i € A, are given by:

; —

1
1 2 L m+l  mtlk St
C’i"“:A— / <2n1+2 + 2n, T2 +n9+2> (s) X exp (—(3—1)) ds
1|J=2 T

2

+/2 <2n3 2 + 2n, 2 +n10+2> (s) x exp (——s) ds] :
_ T

1
2

P mel m St
’ <2n1 Tz 20y *2 + ng 2 ) (s) X exp (—s) ds
T

1
2

—l—/2 (277,3 2 + 2n, s +nm+2> (s) X exp (—%(34— 1)) ds] ,

1
2

1 1 1 1
m+1 __ m—+1 m+1 m—+1 m+1 __ m+1 m+1 __ m—+1
Cy' = —Cf", OfFT = —C9", O = — O, Oyt = —C5',
L 12 34 19 310
- - + nt
. n n n
with 19 = n#’ 19 = anw, Q34 = n3Tw, 310 = fw and Al = 27—5l sinh ( )

10w

l e {1,2}, Where61—2+ —|——52 24 2 4

1,9 a3,4 a3, 10"
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It follows obviously from (4.4) that
(4.12) n"t >0 a.e. and n"t' € L™(Q)Vie A

4.3. Proof of the constancy of the accommodation coefficients. The a priori es-
timations we shall perform to prove the existence result depend on the boundary
conditions, the determination of which rely on the knowledge of the accommo-
dation coefficients. We prove here that they are constant for lack of their explicit
determination. This result ensures that K; which is used in the sequel is constant.

The boundary conditions of diffuse reflection impose at y = —%, A (t) = A~ (¢),
ie€{l,2 9tandaty = 3, A\f(t) = A*(t), i € {3, 4, 10}. Moreover the normal
components with respect to the plates of the velocities of the discrete model in
consideration have the same absolute value |v;| = |v;] with i € A and j € A.
Hence A~ (t) = n~(t) and A" (t) = n*(t) where n=(¢t) = n (¢, 1), n™(t) = n (¢, +3)
and n = 2(ny +ny + n3 +ny) + ng +nyo [3,4]]. Therefore A\* is constant if and only
if n* is constant.

We deduce from by adding up upon i € {1, 2, 9} and ¢ € {3, 4, 10}
respectively:

At 1 W Tt
2 + =0
T T T
and ) ) )
U A (W
2 + =0
T T T
Hence
m 1 mt L m 1
(4.13) 2 (nl "2 +2> Fng =2+ 0l + nl,
L L L
(4.14) 2 (n3 i +ny +2> —|—n10+2 = 2(n5" +ny") + ni.

The sum (@.13) + @.14), yields n™*> = n™, ¥ m.
Letting n_ = 2(ny + na) + ng and ny = 2(n3 + n4) + nyp we infer from equations
@.13) and (#.14) that n”" % = n™ and nT+§ = n'7'; thus in the interval [m7, (m +

1)7[ we have:
on""2 onm on’"2 on7

(4.15) — = =0 and

ot ot T TR
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On the one hand we obtain from by addition:

m+2
n™t — 2 0

(4.16) St——— + — (n™) =0,

(4.17) st M % (pmtl) o

On the other hand, the projection of the conservation equations of the mass and
the momentum on the y axis yields

s () ()

N[

and

0 [ m+l mal O [/ mal 1
Sta (n,+2 - n++2> + oy (n:r2 +n++2> = 0;

hence we deduce, taking into account (4.15)), that n""2 and n ++2 do not depend
on .
The integration of the equations (4.16) and (4.17) gives therefore

m

St m+L St 1
(4.18) n™t = )\ exp (—?y> +n™7 and n’f“ = Ay exp (?y> + n++2.

We get from the impermeability conditions (2.2110) and (2.2]11) written at ¢ =
(m + 1)7 the relations:

(4.19) (=) (=3) = (W =0 (+5) =0,

which are equivalent to the system:

1 1
A1 exp (+—E) — Ay exp (——§> =0,
2T 2T

.20
(4.20) 1St 1St
Aexp| —=— | —Mexp|+=— | =0.
2T 2T

1
m+3

The unique solution of the system (4.20)) is \; = A\, = 0, thatis n™™ =" 2 and
1
npt = nT+2, Vm. Hence we get by addition n™*! = n™*z, ¥m. Thus n™+! = p™,

vm and the total density is constant at every time step. As it is a continuous
function of the time it is constant on [0, T]. Consequently A\~ and A* are constants
on [0, T].
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4.4. A priori estimates (I).

Lemma 4.1. We have
i i i i
2 (e + 1 e+ 15+ 1)
Le=(9) Le=(9) Le=(9) Le=(9)
m—s—i m+1
Y s
P e T M) T
where Ky is a constant, 0 <m <M —1and j € {1, 2}.
Proof Let A% = ]nﬁ’”ﬁ o 0SMEMoLoieA el 2. We
L=(Q
have:
m+1 __ m—+1 .
A= | HLOO(Q)’ icA

o |2 e (26 n)] 6

vel-3. 31| TV /3
+C"exp (—%y) ‘ , 1€l 2, 9}

sup  |— /y {nz (s)exp (TUZ' (s — y))] ds

ye[,%’ % T/UZ'
+C™ exp (—TSTty) i€ {3, 4, 10}

i Y St St
(4.21) Ai o /_% — exp (m(s—w) ds

St
+ sup OM"lexp (— y), ie{l, 2, 9}
TV;

< S 1
A;nJr sup / St exp (TS;C (s — y)) ds
Yy

St
y), i€ {3, 4, 10}

IN

Y

N[
0N
e
ie;

N|=

yel-2, 3
+ sup OMexp <—
vel-3, 3l T
1
/\ZnJr2 + C"*exp (%%) ., 1e{l, 2, 9}
1
AR omtlexp (81) e {3, 4, 10}

7

We also have
2(n" +ny' +n5 +ny') +ng +nl

(4.22)
2T AT AT+ AT +H A0+ A ae,
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and from we can write
2 (Xf”% TSV N AZ”%) TSVOsNIPUAL
2T+ AT+ AT+ AT + A+ AL
Finally, using and (4.4), we obtain:

1 mal ma L ma1 mal ma L
)\m+1§2<)\71n+2 +/\2+2 +)\3+2 +)\4+2>+/\9+2 +)\10+2

(4.23)

+[2(C7H + O 4+ P OF ) + O 4 O exp (25)
S2(AT 4+ AT+ AP 4 AT) + AT+ AT+ (207, + 2ng,, + ng,,) AT

+ (2nd, + 2n3, + njy,) AT
< 2 (Jn81l e gy + 1181 ey + 1Sl ey + 1S )
+ 179 oo 0y + 1720l Lo 0
+ (205, + 205y, + gy, ) A + (203, + 20, + niy,,) AT = K,
where X" =2 (AT 4 AP 4 AP AT 4 AT+ AT
Thus, 2 (A7 + A7+ AP+ A7) + A7 + A5 < Ko, and the result fol-
lows. O

4.5. A priori estimates (II). We give here a priori estimates on the derivatives of
the nm+% 1€ A
% H .

: KnSt _
Lemma 4.2. If 7 is small enough <7’ < 2(Varva) T Vo) Ks 7'0) then the norms
m+l
d"iit - with j € {1, 2} and i € A, are increased by a constant ¥V 7 < 1y and V m.
Proof.

dnm+1

e On the one hand we differentiate (4.7) with respect to y, multiply by
and integrate on (2. We obtain:

a1 2
Aoy [ g (A (g {1,2,9}
dy - dy = dy 25t dy ’ T

1 2
dnH1? Al gt dny ™t (+1
o §< o U S (L i G 7 IR

I3
dy

7

(4.24)

dy = dy
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Using the inequality ||u||* + ||v||* > 2 (u,v) the system (4.24) gives

d m—+1 2 (j m+% 2 d m+1( 1 2
A (4 )) e g g
dy | dy St dy ’ I
(4.25)
dn || dn 2 ’ dn"*! (+3) 2
U < U ——~22 1 e {3, 4, 10}.
dy dy St dy
By taking y = +3 and y = —1 in (4.7), the system (4.25) becomes:
4.26
( ( ) 112 m+1 12 2
dnm dn‘ 2 St m+l 1 1
: < : —n, P (—=) —nm| - € {1,2,9
o152t () () et
dn/*t! ’ dner% ’

St [ il [/ 1 1\\?
< : (=) = (42 j 4,1
dy < dy + - (nl (+2) n; <+2>) i€ {3,4,10}
\

(2.2|9)that n; (t,

Since A\* and A\~ are constant (see section [4.3), we deduce from (2.2/8) and
A (t Y U
2

(2.2]
), i€ {1, 2, 9} and n; (t,+3), ¢ € {3, 4, 10} are constant
Thus, we use the system (4.2) and Lemma [4.1] to obtain

(

1,2
dn™ ) ||dn T St )
: < : = (20K2 +88K2) ,ie{l, 2, 3, 4
dy || dy +T(QO+BO)Z{ }
4.27)
dn™ ! ||? dnm+% i St
: < U = (28K2)",i € {9, 10}.
G| STl T @8KE) e {10}
\
Summing up each side of the inequalities (4.27)), we get
pml m+1 m+1 m+1 m+1 m+1 2
e e e e 7 I I e B
2 2
dnm+j dnm+7 dnm+2 dnm+2 dnm+2
4.28) =<|—a || Tl Tl o | Tl @ H ||~
dn™ 2 4(119+48v/2+33V/3) "
+ é{; + COES: TK;.
We notice that when 7 tends to 0 4(19+18v2133V3)

Kn)75t 7K tends to 0.
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e On the other hand, according to m we have fori = 1:

m+i m+i m+i m+i
Dn, 2 :a(n >Dny. 2+ Ny D —nl *Dny 2 —ny 2Dn1
m+3 +2 m+3 m+% m+3 m+3 +1 m

D is the operator diy, with K, the constant defined in Lemma

Since max {(a + (), «a, B, 26, 48} < 2(a+ ) = ¢, we can deduce that:

m 1 m 1 m 1
HDnlJr2 (a+ B) Ky (HDnl + —i—HDn 2
(4.29)
+ | on |+ [ +W)mf)+mmm
Using the inégality 2XY < X2 + Y2 for all X,Y € R, we have:
m+1 2 2 m+2 2 m+2 2
HDn1 2 (24(04—{—6) K§+2(a+ B) Ko) HDn . —i—HDn2 2
2
N R LRy

+ (1 +12(a + B) Ko) |IDnf|?.

We assume that 24 (« + 3) Ky < 1, that is to say 7 < Knst

= T0.
12(2(V2+v3)+v6) Ko
We establish inequalities analogous to (4.30) for i = 2,3,4,9,10 and by sum-

ming, we obtain the following inequality:

12 ma11]2 ma1112
HDnTrQ + HDn i + HDn T2

2
(431) _|_HDnm+2 + HDnmJFQ + HDner2

m m m m||2 m||2 m (|2
<y (IDn"I* + IDng** + [IDng'||* + [[Dn || + [Dng'|* + |Dnty %)

_ (1+12(a+p)Ko)
Where Y= m

Thus:
dnTJr% ’ dn;Hé ’ dng |
dy * dy * dy
(4.32) et 2 e |2
n dn, 2 n dng * n dny,
dy dy dy




EXISTENCE OF SOLUTIONS OF THE TEN VELOCITY SPATIAL DISCRETE MODEL OF GAS 515

“( TP 15)

_ KnSt+6(2(V2+v/3)+v6) Ko
When 7 tends to 0, 6 = RnSt—0(2(v2+3) +VB) 7K tends to 1.

dnf® 2
dy

dnj’

dny’ 2
dy

dngn
dy

nm
Hd it

From (4.28) and (4.32]), we conclude easily that the norms

and 7 € A, are increased V 7 < 75 and V m. O

4.6. A priori estimates (III). We consider the functions n_defined on [0, T with
values in H'(Q) N L>(Q) such that

(4.33) nl_(t) = nm+%,

fort € [mr, (m+1)7,0<m<M-1,i€ Aand j € {1, 2}.
Let 7;;, 1 € A, the applications of [0, T] — H(Q2) N L>°(9) linear over each
interval [m7, (m + 1)7] such that

(4.34) Ni-(m7) =n", 0<m< M.

According to Lemma (4.1 and (4.26) we have:

Lemma 4.3. The functions n)_ and 7;,, i € A and j € {1, 2}, remain in bounded
sets of L™ ([0, T]; HY(Q)) and Lo([0, T] x Q).

We shall establish the other a priori estimates for these functions. The equality

is written:

(4.35) ni (t,y) —ni(ty) +

7'1)18(
St dy

And according to Lemma we have:

2(t,y)) =0, i€A.

127 - niTHLOO([O, T]; L2(2))

(4.36) |

n < 7Ky, €A,

where K, is a positive constant independent of 7. Adding the equalities (4.1)) and
(4.6) we find:

mtl om TV 0
4.37) n; n; 4+ St 8

m—+1 l m—i—% . .
(n ) StQi =0, 1€A.
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This implies that

nmt—nm v, 0 1

Di T mil) _ —omts € A
(4.38) - + 3 3 (n"*h) StQZ 0, i€A.
Using the notations (4.33) and (4.34) we obtain:
0 v; 0 1
3 — (7 —Z(n2) - =Q! = € A.
(4.39) pr (1;r) + S (7)) g Qir 0, 1€

It follows from (4.39) and Lemma that dg‘—;, i € A, remain in the bounded

sets of L™ ([0, T]; L*(Q2)) when 7 tends to 0. By definition of the functions 7;, and
2

n;., we verify that

)g sup Hn?‘“—nm

(A
0<m<M-—1

(4.40) , e

~ 2
|77 — niTHLOO([O, T); L2(9)
With (4.37) and Lemma we conclude that

(4.41) <71Kj, €A,

Hﬁif - n?rHLoo([o, T}, L2(2))

where K3 is a positive constant independent of 7.

4.7. Transition to the limit and approximation theorem. According to Lemma
we can extract from the sequence 7 a subsequence (also denoted 7 for sim-
plicity) such that:

(4.42) nl —nl, je{l, 2},

in L> ([0, T|; H'(Q)) weak-star and in L>°([0, T] x Q) weak-star. From (4.36) we
necessarily have:

(4.43) nt = n? (noten;) , i€A.

(2 7

According to Lemma [4.1] and (4.36)), the family 7,,, Vi € A, is an equicontin-
uous bounded family in C ([0, T]; L?*(2)). We can therefore choose the sequence

extracted so that the sequence 7, V i € A, is convergent in C ([0, T]; L*(Q)).

According to (4.41)), (4.42) and (4.43) the limit of this sequence can only be n;.
Hence

(4.44) iy — n; in C ([0, T}; L*(Q)), Vi€ A.

Thanks to (4.42)) , (4.43) and (4.44) we can go to the limit and obtain the system
(2.2) as the limiting form of equations (4.39). The conditions (2.2/8)-(2.2/11) and
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are easily verified and it is shown that n = {ny, ns, n3, n4, ng, nio} satisfies
and (2.3). The existence in Theorem [2.1]is thus proved.

Note that since the solution of satisfying is unique, it is the entire
sequence 7 and not an extracted sequence which gives rise to the convergences

(4.42) and (4.44).
In addition to Theorem we have proved the following theorem:

Theorem 4.1 (Approximation theorem). The functions n}, n? and 7, Vi € A,

172

defined by (@.1)), (4.6), (4.33) and (4.34) converge when T tends to 0, to the function
n;, i € A, defined by Theorem 2.1} in C ([0, T]; L*(2)) stong, in L= ([0, T]; H*())
weak-star and in L*([0, T| x Q) weak-star.

5. CONCLUSION

We use the fractional step method to prove the existence and the uniqueness
of the solution of the initial boundary value problem associated to the system of
the kinetic equations of the ten velocity discrete spatial model C; in one spatial
dimension. We derive a numerical scheme to construct an approximate solution
and show its convergence to the exact one. The boundary conditions prescribed
are those of diffuse reflection. This work thus extend the results of Temam [12]
to a more complex model having more velocities and two modulis of velocity. The
fact that the model have two different modules of velocity and that we use the
boundary conditions of diffuse reflection allows to properly study flow problems
involving energetic processes.
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