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ON THE STEADY SOLUTIONS OF THE GENERAL FOUR VELOCITY
BROADWELL MODEL

Pahon Lakou Defoou, Koundji Koffi Leroys Sossou, and Amah d’Almeida’

ABSTRACT. Existence and boundedness is proved for the solutions of boundary
value problems resulting from the modelling of a flow in a rectangular box by the
four velocity Broadwell model. The influence of the orientation of the model in
relation to the sides of the rectangle on the form of the boundary value problem
is analysed. The uniqueness of the maxwellian solutions is proved. The non
uniqueness of the non maxwellian solutions is established by building different
exact non maxwellian solutions for the same macroscopic density.

1. INTRODUCTION

The paper is devoted to the proof of the existence and the boundedness of the
solutions to the boundary value problem for the general two-dimensional four
velocity discrete model in a bounded domain. The plane four velocity discrete
model of Broadwell is among the simplest discrete velocity models and it has
been used to study initial and boundary value problems in one dimension [1,4].
The first papers on the boundary value problem for the Broadwell model in two
dimensions established the existence and the boundedness of the solutions for
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bounded boundary conditions [3] and in addition found exact solutions [8] of the
following boundary value problem:

(0N ON!
gx’t T 81”? =
81;2 _ _%JyVlg _
(1.1 Ni(0,9') = ¢\ (¥)
Ny(a,y') = ¢5(y)
N3(2',0) = ¢iy(2")
| Vi(2',b) = ¢i(2")

Q' =25 (N3Ng — N{Nj) .
which models in an orthonormal reference (O, €1, €3) of the plane R?, the flow of
a gas in a rectangular box, when the velocities of the discrete velocity model are
Uy = Ceq, Uy = cey, U3 = —Us, uy = —uy and the origin O is chosen so that the edges
of the box are located on the lines 2’ = 0,2’ =a,y =0andy =0b,0 < b < a.
We denote as usual by N;(¢,z’,4/) the number density of particles of velocity u/;
in point M (¢, 2’,y') at time ¢'.

The velocities of the general four velocity planar discrete velocity model in the
basis (¢é7, €3) of the reference are in fact u} = c(cos, sinf), uy = c(—sinb, cosd),
uy = —up, uy = —uj, where 6 = angle(éj, u)) accounts of the orientation of the
discrete velocity model with respect to the reference. Hence the boundary value
problem has the form (1.1) if and only if 0 € {0, g} For 0 € ]0, g [, cosf and sinf

are non zero and the system of the steady kinetic equations of the discrete model
is:

( N/ N/
cc:os@i‘);g[;,1 —i—csin&%y/1 =Q’
N/ !
—csin@a ?—Fccos@a /2:—@'
(1.2) ox oy
' _ON} N} .
csm@ax/ —ccos@ay/ =—Q
N} N,
—ccos.9a 1 —csin@a 1 ().

( oz’ oy
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Obviously by solely comparing the kinetic equations of (1.1) and (1.2) we can
see that the boundary value problem for § = 0 and 6 = g is totally different from

the ones for § € }0, g [ The aim of this paper is to investigate the boundary value
problem for the two-dimensional four velocity discrete model in the case where
m T
velo.zv] 73l
€ (0 1 U 13 o
We emphasize the fact that for 6 € {O, T 5} the model is isotropic with respect

to the reference in contrast with the cases 6 ¢ {0, %, g} although the result of
such a fact is not discussed in the paper.

The paper is organized as follows. In section 2 we briefly describe the model
and present the main result of the paper which is proved in section 3. We build in
section 4 exact solutions and establish the non uniqueness of the non maxwellian
ones.

2. STATEMENT OF THE PROBLEM

2.1. The influence of the orientation of the model. We consider a gas flow de-
scribed by the general four velocity discrete model in a rectangular box of lenght
a and width b (0 < b < a). Arranging as usual the velocities of the model into
three groups corresponding to emerging, grazing and impinging particles in rela-
tion with each edge of the box [5], we derive, depending on the value of 6, the
following boundary conditions:

(2.1) Ni(0,¢) = ¢1(y); Na(a',0) = ¢5(2); Ny(a',0) = ¢o(2'); Nyla,y') = ¢4(v)
for0 <6< %,
(2.2)  Ni(2',0) = ¢1(2"); Ny(a,y') = ¢5(y); N3(0,y') = ¢5(y'); Ni(a',b) = ¢ly(2')

for%<9§g,and

Ni(0,9) = di(y);  Ni(a',0) = g5(a")
2.9) Ny(a,y') = ¢5(y);  Na(a',0) = ¢5(a')
N3(0,y') = ¢5(y);  Na(',b) = ¢r(2)
Ni(a,y') = di(y');  Ni(a',b) = ¢5(a')
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for 0 = /4.

The boundary value problems are the system (1.2) with respectively the bound-
ary conditions (2.1), (2.2) and (2.3). The boundary value problems (1.2)-(2.1)
and (1.2)-(2.2) are two point boundary value problems. The problem (1.2)-(2.3)
is an overdetermined two point boundary value problem in the sense that it has
more boundary conditions than unknowns. The orientation of the model with
respect the reference can thus lead to two different kinds of boundary value
problems. The existence of solutions of the boundary value problem is proved
for 6 € {O, g} in [8] and for § = % in [9]. The same task is done here for

RS }O, % [ U } %, g [ As the boundary value problems (1.2)-(2.1) and (1.2)-(2.2)
are identical apart from a permutation of the velocity indices, only a detailed ac-
count of the study of the existence of solutions of the problem (1.2)-(2.1) is given

in the sequel.

2.2. The non dimensional problem. The problem is put in dimensionless form.
The chosen reference values are: ¢ for the velocity, n, for the densities, a and b for
the length. We thus introduce the following non dimensional quantities:

N;=N]/ng, i =1,2,3,4, z=2a"/a, y=1y'/b,
e=b/a, Kn = (snga)™!, ¢j = ¢ /no,j=1,...,4.

The Knudsen number Kn provides information on the degree of rarefaction of the
flow while ¢ which is the channel aspect ratio provides information on the relative
length. For 6 < % the boundary value problem takes the form:

( ON; 1 0N,

COSQW + gsméa—y =Q
. a]\/v2 1 (9]\72 .
—SIHGE + gCOSOa—y = —Q
. ,ON3 1 ON3
(24) SIHQE — gCOan—y = —Q
ONy 1 . ONy
—0059% — gsméa—y =Q
Ni(0,y) = ¢1(y);  No(,0) = ¢a(w)
kN3(SU7 )= ¢a(z);  Na(l,y) = da(2)
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with
Q =2 (N2N3 — N1N4) /KTL

We prove in the sequel the following result:

Theorem 2.1. The problem (2.4) has continuous, derivable and bounded solution
if the boundary data ¢;, i = 1,...,4 and their first derivatives are continuous and
bounded.

2.3. The change of variables. The system (2.4) is a two point boundary value
problem. The N;, i = 1,2, 3,4 are positive number densities. To simplify the form
of (2.4), we make the following change of variables.

Z : (x,y) — (a1, as) such that oy = xcosf + cysinb , oy = —xsinf + ey cos 6.

2 is an isomorphism of [0, 1] x [0, 1] onto [0, cos € + esinf] x [—sin@, e cosf]. The
«j, j = 1,2 are the new variables and z, y are the old ones. The vertices A = (0,0),
B = (1,0), C = (1,1), D = (0,1) of the square in which the flow takes place are
transformed into A’ = (0,0), B’ = (cosf,—sinf), C' = (cosf + esinb,ecos —
sinf), D' = (esinf, e cosf) and the square ABCD is transformed into the square
A'B'C'D’ by the transformation .#. The local basis associated with the new co-
ordinate system at any point M is (M, iy, uy). The linesz = 0, z = 1, y = 0 and
y = 1 are respectively transformed into cos fa; — sin oy = 0, cos oy — sinfay = 1,
sinfa; + cosfBag = 0, sinfay 4+ cosfay = €. So in the new coordinate system the
velocities of the model are normal to the sides of the square and the boundary
value problem (2.4) takes the form:

(2.5) N1 (0, a2) = ¢1(02)
N (01,0) = ¢a(as)
Ns (a1, 1) = d3(on)
Ni(1,02) = ¢u(az)
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with

G —2(Fuly — Bi8.) /.

3. EXISTENCE OF SOLUTION OF PROBLEM (2.5)

We put J = [0, cos @ + esinf] x [—sind, e cos f] and denote respectively by ¢'(.J)
and ¢’;(J) the set of continuous functions defined on J and its subset of positive
functions. We defined the following norms:

If o = (a1,09) € Jand M = (M, ..., My) € €(J)*, then

o]l = Jon| + [az| , [[Miflo = sup M)l [|M ][y = sup [[Millo with A = {1,2,3,4}.
(¢S 1€

We denote | M| = (|M],..., |Mi)).

3.1. Positivity of the solutions.

Proposition 3.1. The solution (]Vl, . ]@) of the problem (2.5) when it exists, be-
longs to €, (J)™.

Proof. Let
Ni(ay, ) = exp / p(N)(ay, s)ds| Ny(aq, o)
LJo |
NQ(OQ,O[Q) = exp / p(ﬁ)(s,og)ds NQ(OQ,OQ)
/o |
Ng(Oél,CYQ) = exp / p(ﬁ)(s,@g)ds Ng(al,()@)
/1 |
Nyla, ay) = exp / p(ﬁ)(al,s)ds N4(a1,a2)
/1 ]
oo =2/Kn.
Then
ON L -~ - ~
8_1 = exp {/ p(N)(s, ag)ds} ooNaN3 + Ny [p(N) — 00N4]
gas! 0
ON ar -~ ~ ~
aa4 = —exp |:/ p(N)(S, Ozg)dS:| OoNgNg + N4 |:p(N) + O'[)Nli|
1 1
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oo = exp l /0 * (W) (o, s)ds} NN+ s [
ZZS ~ exp l /1 h p(ﬁ)(al,s)ds} 0NN+ Wy [p(N
Putting F(N) = Ny N,00 and G(N) = N,Ns0, we get
Ni(ar,az) = (51(a2)+ /0 " exp [ /0 Saoz”\’q(a,agda} el
X exp [ /0 h (W)~ o0 s a2)ds]
Noy(on,ap) = (52(a1)+/0a2exp [/Osagﬁg(al,a)da} F(
X exp [ /0 h [p(N) — 00y (o, )ds}
Na(on,0n) = (53(a1)+ /1 " exp | /1 aanNQ(al,a)da] F(
X exp [ /1 b (V) ~ 005 (an. )ds}
Nular,az) = (54(a2)+ /1 " exp /1 Sagﬁl(a,ag)da} el
X exp [ /1 b [(N) — 00| (s,az)dsl.

(N) — O'0N3
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i

(N) + UONQ} .

N)(s, a2)ds>

)
)
)

N)(ay, s)ds

N)(ay, s)ds

N)(s, an)ds

As 51 . i € A\ are positive then N, k € A are positive and so are Ny, k € A. Hence

if a solution of (2.5) exists then it is positive.

3.2. Definition of an auxiliary problem. We put p™ (]\Nf ) = N
N, + N; and consider for o > 0 the following problem:
( 8 1
dor +oNipt(N) =Q+oNipH(N) = QF
aN ~ ~ ~ ~
“+ oNgp (N) = —Q + oNop™ (N) = Q3
3.1) aj‘\‘[
6(1 +O'N3p ( ):Q+0N3p_(N) = Qg
6N
o + 0Nyt (N) = —Q + oNyp*(N) = @
\ (03]

O

+ Nyand p~(N) =
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]Xl (0,042) = %1(062)
]\[2 (Oé1, 0) = ?2(041)
N3 (Oél, ].) = ?3(0(1)

]\74 (Laa) = ¢u(aa).
The problem (3.1) is obtained from problem (2.5) by adding aﬁipi(ﬁ ) to the two

members of the kinetic equation for N;, i € A so the two systems of equations are
equivalent.

3.2.1. Existence of solutions of (3.1).

Proposition 3.2. The problem (3.1) has a solution which belongs to ¢, (J)* for
sufficiently large o.

Proof. Consider for M € €(J)* the following boundary value problem:
( ON,

87+0N1p+(|M|) = Q7(|M])
21
ON. ~
aT;Jrasz‘(\Ml) = Q3(|M])
o _
SNy (M) = Qg(M)
(3.2) ON.
8—4+0N4p+(\M|) = Q1(|M])
aq - ~
]Xl (07042) = ?1(042)
JXQ(OéhO) = ?2(041)
]X3(05171) = ?3(041)
\ Ni(l,0) = ¢u(az)).

Lemma 3.1. The problem (3.2) has for given M € ¢ (J)* an unique solution which
belongs to €, (J)* for sufficiently large o.

Proof. The problem (3.2) is a linear problem associated with the problem (3.1)
and it is solved by splitting it into the two following boundary value problems:
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ON- ~
o Nt (M) = Q1)
(33 Oy oNip (M) = Qf(M))
~a1 ~
N1 (0, a2) = ?1(0‘2)
| i (L.0o) )
[ ON.
S 7N (M) = Q30
(349 § 9% oy (M) = Q5(MI)
~ 2 ~
]X2 (a1, 0) = ?2(041)
L Ng (Oél,l) = ¢3(a1).

The unique solution of (3.2) is:

Ni(ar,a2) = 51(a§)9+(a17a2)
[ QUM s 00) (01 — 5, 02)ds
Nz(al,%) = 52(%)9(0417042)
[ Q3M ) 9)f (01,05 — )ds
(3.5) ~ ~Jo
Ni(ag,a9) = ¢3(Oé£f_(a1,052—1)
+ [ Q5(IM])(ar, s)f (o, a2 — s)ds
Ni(on, 09) = 54(éég)f+(a1 — 1, )
+ [ QUMD n) (o = s.0n)is
with

545
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For sufficiently large o, Q7 is positive Vi € A. Hence as % is positive Vi € A,
Ni(OéhOég) > 0, = ].,2, V(()él,OQ) € J and Ni(al,ag) > 0, = 3,4, \V/(Oél,OCQ) c Jif
and only if:

1
/ QR(M ), (o, 00— )ds < sup_ QE(M)

(3.6) 1
/ QM) (s, 0) FHen — s,an)ds < sup Q(IM])

(a1,02)€T

and it is sufficient that ¢; > SUD(a; an)es @5 (|M]) and b1 > SUD (4 00)es @7 (|M]) tO
have N € €, (J)*. O

Lemma 3.2. .7 is continuous and compact on ¢ (J)™.

Proof. We have (M) = N if and only if N is given by the relations (3.5) from
which we deduce:

Ni(ar,a0)| < [d1(a2)||gT(an, as)| + /m QT(IM])(s, a2) f (e — 5, 00)dls
0
No(ar,a0)| < |da(ar)| g™ (ar, an)| + / Q5 (|M|)(r, 8) f (a1, 0 — 8)ds
0
Ny(ar, a0)| < |ds(cn)| 1f (o, 0 — 1)| + / Q3 (|M|)(ar,8) f (a1, 0 — 8)ds
1

Pran =t + | [ QUMD (s, e — 5,00
1

N4(0417042) < 54(042

~—

In one hand using the Generalized Mean Value Theorem, as f* and f~ are strictly
positive functions, we can find ¢; € |0, a4, ¢ € ]0, 03[, ¢3 € Jag, 1, ¢4 € ]y, 1],
such that

a

/OalQi<|M|><s,a2>f+<a1—s,a2>ds = QUMY (er, ) / [ (a1 — s, a0)ds
| @sMhen s @nan=sis = QM @ne) [ 1 (@ 0n = s)ds
L;Q§(|M|)(aus)f‘(auaz—S)ds — Q3(M(arsco) /Q;f‘(auaz—s)ds
[ @G 0a) s s0n)s = QG (er,o) [ e 5, 00)as
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In the other hand in accordance with the Mean Value Theorem we can find d; €
10, 1], da € 10, o[, d3 € g, 1] and dy € ]ay, 1] such that

/Oa1 o —s,a0)ds = aiff(a; —dy,ay)

/0042 f(a,as —s)ds = aof (a1, — dy)

/a1 F(anacs)ds = (1—az) f~(an, a0 — dy)

/j Frlon—s,an)ds = (1—an) f(an — di, ).
Hence letting:

aas) = exp (o [ o001~ Las)is)
At = (o (M s - vy )

we get:
Ni(ar, )| < |i(a2)| +1Q7(IM])( 1, az)l
Na(on, a2)| < [da(n)| +1Q5(IM]) (0, c2)]
Ns(ar,a2)| < |s(an)||A™(an)] + Q5|1 M])(u, cs)]
N4(0417 az)| < 254(042) |AT (a2)] + QT (| M])(cs, )]

since |g* (v, ag)| > 1. From which we infer:

57 17000, < ([, J, [, Il

a| 4% [l,)+Ie@ (Dl

0o’ ‘
Thus .7 is continuous and bounded since ;b;, i € A AT and 7 are continuous and

bounded. Hence if M € ¢(J)* is bounded then N = .7 (M) is bounded.
Otherwise if N is the solution of the problem (3.2) then VM € € (J)*

( ON -
371 = Q7 (|M|) — o N1p* (| M])
=1
ON. -
870; = Q3(|M]|) — oN2p~ (|M])
ON. -
S = Q3(IM]) = oNsp~(|M])
X2
ON. -
374 = Q7(|M|) — o Nyp™ (| M]).
\ 1
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Thus
. -
ON ~
8—1 < |QT(IM])| + o | Nip™(|M])
(651
8N2 p T
oy | S Q5 (|M])| + o | Nap™ (| M])
(3.8) N
ON5 " ~
Do | S Q5 (|M])| + o | N3p~(|M])
%)
ON. -
874 < [QI(IM])| + o | Nap™(|M])] .
L 1
Thus for bounded M € €(J)* ON, ON; 0N and — Al are uniformly bounded
8&1 6@2 8042 (071
in J. Otherwise, from the kinetic equations of (3.2), we derive the conservation
equations
(0 ~ 0 ~ ~
aQQ(Ng N3)+@(N1 —N4) =0
(3.9) —(Ny+Ns) = 0
8362
—(N;+N,) = 0
8061( ! + 4)
From (3.9) we deduce the system
8_]% + a_j\?l — ()
8(1/2 8@1 n
(3.10) ~ <
% + % — 0
80@ 8041 e

We differentiate the equations (3.10) with respect to a, and get as the Ni, 1 €A
are differentiable functions of «; and «; the system:

N, PN, 0
da2  Oasday
3.11 ~2 27
( ) 0% N3 9’N, ~0

a3 + Oas0a
We integrate the Egs. (3.11) with respect to «; and get:
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ON A

87.51 — —/ o 2 (8 Ckg)d3+@1(062)
2 0

ON, A 82N

37&4 = — a2 - (s an)ds + O4(az).
2 1

Then we integrate with respect to oo and we have:
Nl(al, ag) = / /al (s,t)dsdt + /00@ O (t)dt + x1(aq)
Ni(on, ap) = / /a1 (s,t)dsdt + /0a2 O4(t)dt + xa(aq).
Using the boundary conditions we have the system:

Ni(0,0) = / 01(t) dt 4+ x1(0) = (o)

Ni(l,00) = / Ou(t)dt + xa(1) = Pa(az).

From which we get by differentiation ©; = Zgb» = 1,4. We thus have:
(8%
8]\71 . o 82N2 d¢1
@(al,ag) =/ (‘30@ ——(s,a9)ds + E(ag)
ON, B “ 92N dds
8TOzQ(m,ozg) = — 1 (?on —(s,a9)ds + E(ag)
Similarly we obtain:
aﬁz . “2 82]/\71 ¢2
a 1 (Oél, Oéz) = — ; —aozj (CYl, )dS + d_l(al)
ONs B 2 92N, dos
Twl(ah ) = — 1 a—a%(ala s)ds + qu(al)

Using the expressions (3.5) of N;, i € A we have
PNy - Pyt 0Q7 (1M])

T‘éj(al,%) = ¢1(a2) o %(041702)+ day (Oél,az)
2N, ~ *g~ 0Q3 (| M])
TO&%(QI’O@) = ¢2(@1)T~%(a1,@2) + QaT(Oq, as)

549
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9Ny ~ 02 aQ3(| M)
T.é(al,%) = ¢3(041)Tw%(041,062—1)+gT(041,042)
0Ny ~ ST 9Q7(|M|)
T‘/%(aha?) = ¢4(a1) 804% (041—17 )+g—a1(a1,ag).
As
o _or
80./1 N 80[2 N
we have
829+ 2 2
902 (a,0) = 0 pt (’M’)9+(0¢1>042)
a2g£ 2 _2 _
W(Oﬂa%) = o’p  (IM])g~ (o, az)
e )
W(al —lay) = o*p(|M])fF(on —1,0)
1
0% f~
0#;“34%042 —1) = o2 *(IM])f (e, 0 — 1).
2
Hence
92N -
'aa;<a1,a2> < |6u(az)| oA (IM]) (a1, a2)g" (e, 02)
1
a o
+ ‘ agi (Oél,O[Q)
92N. -
Slana)| < |dalan)| o (M) oz, az)g™ (e, )
2
a o
+ ‘ aQQ (Oél,O[Q)
(3.12) 2R o
8723(%042) < ‘¢3(041) 0'2/?_2(|MD(061,042)9_(0617042)
2
o007 (|M
# |2 0 g)
PN, - - X
TQ%(%’OQ) < ¢4(042) o p (|MD(061,042)9 (0617062)
009 (|M
+‘ Qggl D(Oél,O[Q)
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and
(9]?1 82.7% d¢1
- < |Z2=
Bory (a1, a0)| < Dol (a1, as)| + dag( az)
8]% 82N1 d¢2
= < |7 ki)
(3 13) 80&1 (a17 Oég) =X 80[% (ala OQ) + d(l/l (al)
) af\jg 82]A\74 d(g?m
s < |22
(9041 (alv Oé2> X 0@% (ala O{Q) + dCYl (al)
ON. 9*N. d
aﬁ.;(@hoéz) < 87%3 (a1, 00)| + d%f;(%) :
The inequalities (3.12) and (3.13) show that oM , 0Ny s ONy and % are
8061 80@ 8042 8061
bounded for bounded M € ¢ (J)* provided that doy| |doz| | dos and 94 are
dos | |daq |” |doy dovs
bounded. -
. 4 ON;
We thus prove that if M € €(J) i € A are uni-
8041 80@
formly bounded 1f % j =1,4 and dik k = 2,3 are bounded. Then it exists 8 > 0
and v > 0 such that Vz €A 1
N
0 <f in [0,cosf + esind]
8062
and B
ON: <7 in [—sinf,ecosb)].
80_/1

Given o' = (af,a3) € J and o? = (af,a3) € J. We deduce from the Mean Value
Theorem, that its exists a® = (af,a9) € [a!, a?] C J such that

Ni (041) - NZ (042) = d]vi (ao) (al — 042) , 1 €N
with
o', o] ={aeR/a=t(a' —a®) +a?, t€[0,1]}
and

~ ON; ON;
450 )= G @) e

(Oéo) hg Vh = (hl, hg) € RQ.
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Hence
Ni(a') = N; (?)] = |ahi (a°) (o' ~a?)
< oo -
with
_ dN, (aO)h)
dN; (« = sup ——————
H S -
ON; ON,
: hi + Nh
8&1 (& ) 80@ ( ) 2
= sup
Ihl<1 [a| =+ |ha
But
ON: ON;
i h i 0 h
aal(&)l 8042< )2
ON; ON;
< ) 0 7 0
NS 8041 (a ) |h1| + 80&2 (Oé ) ’h2|
0 0
ON, ON;
< ot 0 ? 0 h
< max(f,7)|A].
That is HdN H max(3, 7). Then ‘N - N, (az)‘ < max(8,7) |t — 2.
Lete > 0, it is sufficient that ||a! — o?|| < ° to have )Ni (a') — N; (?)| <
max(3, )
g, Vi€ A.

We prove that for all solution N of (3.2)

Ve>0,3n>0, ||

a2||<n:>‘]vi(ozl)—]%(a2) <e Val,a?eJ

The set of the solutions of (3.2) is thus equicontinuous so .7 is compact on every
bounded subset of €, (J)*. O

Lemma 3.3. Every solution of the equation N =\T (]\7 ), 0 < A < 1, is bounded.
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Proof. N is a solutions of N = \.7(N) if and only if

p ~

% +oNiptH(N) = AQ7(N)  (3.14) — (1)
Q@
% +oNop~ (N) = AQS(N)  (3.14) — (2)
a
% +oNsp~(N) = AQ5(N)  (3.14) — (3)
a
(3.14) ON,
ot oNipt(N) = AQ(N (3.14) — (4)
]Sfl 0,) = )\%1(042)
JXQ (Ozl,()) = /\?2(0‘1)
]\~73 (a1,1) = )\?3(041)
\ N4 (1,&2) == )\¢4(C¥2).

Making the sums (3.14)-(1)+(3.14)-(4) and (3.14)-(2)+(3.14)-(3), we obtain
for the determination of the partial macroscopic densities p™ and p~ the following
system of partial differential equations:

0 [/ﬁ(ﬁ )}

(3.15) ) [pf_)?]lv)]

8042

+(1-No [p+(N)]2 —0

~ 12
(1o [p—(N)} ~0.
The unique solution of system (3.15) is obviously
~ 1
(N _
PN az) = Noay + h(ay)

(3.16)
o B 1
p~(N) (o, a9) = (1—=XNoay+h(aq)

The problem (3.14) is a two point boundary value problem and only a part of the

data are given at each boundary. Hence we have ]Vl (0, a3) on the line oy = 0,
N, (1, ) on the line oy =1, N (a1, 0) on the line ay, = 0 and N?, (a1, 1) on the line

CYQZ]_.
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We thus introduce the positive functions of a,, A} and the positive functions of
de oy, A, , k= 0,1 such that

JSQ (0,a2) = )\SF(CW)JSG (0, az)
(3.17) ]iﬁ (1ag) = )\i:(OéQ)JXz,L (1, a2)
N3 (a1,0) = A (al)]YQ (a1,0)

Ny (a1, 1) = A (a2)Ns (o, 1).

The relations (3.17) which are by no means reflection laws and are obtained just
by comparing functions of the same variables at the boundaries of the domain J
allow to compute the values of p™ and p~— at the boundaries:

P+(]Y) (a2) = [1+ X (a2)] )\%1(042) = [1+ X (ay)] )\%4(042)
pm(N)(n) = [1+X5()] Apa(en) = [T+ A7 (e1)] Aps(a).

From which we infer:

1
ht(ag) = — +o(A—1)
[1+ )\3(0412)] Ag1(az)
h™(aq) = — +o(A—1).
[1 —+ )\6(0&1)} A¢2(a1>
Hence
( PE 1
pr(N) (e, az) = 1
(1 — )\)0’0&1 + n =~
(3.18) _ [ A5 (@2)] A (a2)
p~(N)(ay, az) = 1
(1= ANoas + —
L [1 -+ )\6 (Oél)] A¢2(O[1)
Thus for 0 < A < 1, p™ and p~ are continuous and bounded as (EZ ci=1,2and \F
and so are the number densities N; , i € A. O

Remark 3.1. For A = 1 the solutions (3.18) are not singular. Moreover they satisfy
the partial conservation equations

olpt (V)] ol (V)] .

80&1 80@

and consequently depend upon one variable.
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Finally we conclude to the existence of the solutions of problem (3.1) by using
the fixed point theorem of Schaefer [10]

Theorem 3.1. Let T be a continuous and compact mapping of a Banach X into itself,
such that the set
{r € X,z =MNT(x)}is bounded V), 0 < A < 1. Then T has a fixed point.

The N; ,i € A which are positive functions of «; and « exist, are continuous and
bounded. Thus the problem (2.4) possesses a solution N positive, continuous and
bounded. O

4. EXACT SOLUTIONS

The problem (2.5) admits two kinds of solutions: non maxwellian and maxwellian
solutions corresponding to non zero and vanishing collision terms. In this section
it is shown that the non maxwellian solutions are not unique in general in contrast
to the maxwellian ones which are as usual unique.

For A = 1, p* and p~ are known and we have:

pH(N)(az) = (N + Vi) (a2) and p (N)(ar) = (Np + Ns ) (en).

Then
@.1) Ni(ar,02) = p*(N)(as) = Ni(as, az)
. N3(ai,a9) = p~(N)(a1) — No(ag, ag)
and the system (2.5) becomes:
( ON, AR N N e A
T S I s
oN, - S 2 e 2 p_z p+2
oz ‘““[(Nl‘f) (n-5) e
(4.2) &4(0‘17042) = P+(]Y)(a2)—]Y1(&1,042)
Ny(ar,a0) = p~(N)(1) = Na(eu, az)
jyl (0,042) = (/31(042)
]XQ(OébO) = ?2(041)
]X?)(Oél,l) = ?/3(%)
\ N4(1,O¢2> - ¢4(O‘2>
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The boundary value problem for the numbers densities N; , i = 1,2 is thus:

((ON, 0N, AR N A S ey A
22 N-2Y) (w2l
day  Oas UO[( 17 2=y ) Ty

N = QI(N)
(4.3) ]y1 (0,0) = ¢1(2) N
Ni(Las) = @(042) — pa(a2)
N, (@1,0) = ¢afar) B
\ Ny(ay, 1) = p~(a1) — ds(a)
Letting
S p*(az) v p(a1)
F1(0617062) = N1(041;062) - and F2(0617062) = N2(041,Oé2) - 5
the system (4.3) takes the form:
(0F,  OF 2 pt? N
87041:_87&2 = 0 F12—F22+% = Q1(N)
F(0.0s) = dlas) - p+;“2’
(4.4 Fi(lap) = —54(042) + P (2a2)
Fi(n0) = dafar) - L0
\ Fy (1) = —¢s(an) + p‘(20z1)

The system (4.4) has a simpler form but its exact resolution is complicated. How-

ever it shows the dependence of the solutions in the partial mean densities p* and

permits to find exact solutions of the problem (4.3) in particular cases.

4.1. The maxwellian solutions. The maxwellian densities of the discrete velocity
model associated to the macroscopic variables p, U and V' are the strictly positive

number densities N;y, i = 1. .. 4 which satisfy the following system of equations:

.

p = N1M+N2M+N3M+N4M

4.5) pU = c|(cos HﬁlM - sz’nGngM + sin QﬁgM — COS €N4M
.5 - - - -
pV = c(sin@Nyp + cos ONopy — cos @ N3py — sin O Ny,

0 = NlMN4M_N2MN3M

\
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The unique positive solutions of (4.5) are:

~ p 1+ cos20(u? — v?) + 2uwv sin 20 + 2u cos O + 2v sin 4]

Ny = ) 1
N p[1 — cos20(u? — v?) — 2uw sin 20 + 2v cos § — 2u sin 6]
oM =
4
(4.6) 7 p[1 = cos 20(u? — v?) — 2uv sin 20 — 2v cos 0 + 2u sin 6]
M =
4
~ p[1+ cos20(u* — v?) + 2uwv sin 20 — 2u cos @ — 2v sin 0]
Nay =

4

Proposition 4.1. The maxwellian solutions of (4.3) are unique.

Proof. The collision terms of the system (4.3) vanish for a maxwellian solution.
We thus have:

( on _ 0F A
8041 N (9062 -9 Fl F2 + 4 =0
Fy (07042) = 51(042)— p+(2ra2)
@7 Filla) = —dufoo) + 202
F (041,0) = 52(041)— /)_(2041)
| B = da)+ 20
From which we deduce
( F :Fl(O@), F2:F2(061)
p+2 p_2
(4.8) o = B =a
prlaz) = ¢i(az) + ¢a(as)
\ p (1) = ¢2(ar) + ¢3(an)

The solutions of (4.8) are:
1 1
F1<042) = :i:é p+2(042) — 401, Fg(al) = :|:§ p72(@1) — 401
We thus have:

(1) For ¢; < 0, v/p*% — 4¢; > p* and some of the N are negative.

+ - -
(2) For ¢y =0, Fi(ag) = d (2a2) and Fy(oy) = # which leads to ¢ () =

pH(an), da(01) = p~(a1) and 65 = ¢4 = 0.
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Hence as the number densities are strictly positive the solution is not admissible
for ¢; < 0. We only have strictly positive number densities for ¢; > 0:

Nl(oéh%) = p+(2a2)+%\/m
Nz(ah%) = £ gal)—%\/m
Ny (0, a8) = ﬁg“)—% 7 lag) — oy,

Taking into account the boundary conditions, we get:

ptlaz) = %1(042) + %4(042)
(4.10) (1) = o) + ¢s(n)
¢ = ¢1(a2).¢a(az) = da(an).d3(on).
The validity of the third relation (4.10) imposes the dependence of the boundary
data in the form:

(54(042) = = a
(4.11) % (e = ﬁw
Y 52(041)‘

The Maxwellian solutions are thus:

]Yl(al,OéQ) = %1(042)
No(ag, ) = ¢afar)

(412) Ng(al, 042) = = a
_ ¢2£Oé1)
N4(041, az) = = ! .
¢1(2)
The solutions (4.12) are associated to the macroscopic variables:
p o= bitdt=+
1 P2
~ . AT . C1 C1
(4.13) pU = ¢ {cos O¢p1 — sin O + sin = — cos 97}
®2 o3}

pV = ¢ {Sin 951 + cos 9(52 ~ s —sing
05 ¢1
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U V
Letting u = = and v = - we deduce from the resolution of (4.13):

~  p[l+cos20(u? — v*) 4 2uv sin 20 + 2u cos f + 2v sin 0]

¢r =
4
=P [1 — cos 20(u?® — v?) — 2uwv sin 260 + 2v cos § — 2u sin 6]
2 pr—
4
p?[1 = 2(u? + v?) + (u? — v?)? cos? 20 + 4u*v? sin® 20 + 2uv(u? — v?) sin 46

cl =
16

So the densities (4.12) are the unique maxwellian solutions of the model associ-
ated to the macroscopic variables p, U and V' defined by (4.6). O

4.2. Non uniqueness of non maxwellian solutions. It is difficult to discuss of
the uniqueness of the solution in general as the kinetic equations of (4.4) depend
explicitly on the partial mean densities p*, the form of which determines the type
of the solutions. As a result, we investigate the possible existence of several so-
lutions for the same set of the partial densities p* and find that for linear and
constant partial mean densities p* there exist at least two different kinds of solu-
tions of the kinetic equations of (4.4).

4.2.1. The case of linear mean densities. We take advantage of the fact that the
partial mean densities are functions of one variable and the kinetic equations are
of Riccati type to put p~ (1) = coa; + ¢1 and p*(ay) = coaz + ¢o, ¢, 7 = 0,1,2
constants, and search the solutions in the forms prescribed below.

First kind of solutions. We seek solutions of the form:

Fila,00) = ——+2
(4.14) ) = ey T2

FQ(O{l, Oég) = —0Q —f- %(O[1>.
We find after computations:
(4.15) m(aq, ag) = Aexp {% [co (o — a2)2 +2(c1 — ) (g — 042)} } .

Second kind of solutions. Now we seek solutions of the form:

v S C)
(4.16) Fi(a1,aq) = m+7(a2)a Fy(ar, a) = p~(a)m(aq, o)

+ %(Oél).
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We find after computations:
c
(417) m(ozl, OZQ) = —0p |1 + — 4+ —01 + C1 (CQOZQ + CQ) .

The solutions (4.15) are transcendental while the solutions (4.17) are algebraic
so they are of different kinds and are not equal although they correspond to the
same partial mean densities.

4.2.2. The case of constant mean densities. The solution (4.17) do not exist for
co = 0 thus the solution for constant p is not simply a particular case of the linear
case.

A general solution for constant partial mean densities. Given p™ = pl, p~ = p, with
pr € R* constant and p; # p;, we seek the solutions in the form:

- k
Fi(on,a2) = %) (—
(4.18) s n Oéll, )
F. = X4+ —
2(0(1, &2) 2 + n(Oél, &2)
We find:
o o k‘2 - l2
(4.19) (o, az) = ¢y exp [(pal — g k) (f - fﬂ Tk
0 0

Vk,l € R, such that p; I — pk # 0.

Other particular solutions. The solutions (4.18), (4.19) exist Vp,, ps, k, | € R*

such that p; [ — pJk # 0. However other solutions exist for particular value of pZ.
. — Co Co

Fi t Vk, 1 € R, f = dp" =

orinstance i, ¢ € By, for p koo(k —1)2(k +1)? ancp log(k —1)%(k +1)?

we have the general solution

(4.20)
Co Cok’
F1 (Oél, 042) = +
2l0'0(]{52 — 12)2 Co (6] (03]
C1 exXp m <T — ?> Co — O'Okl(kQ — l2)2
& col
Fg(Oél, O{Q) = 0 + 0

2]€0'0(k2 — l2)2 Co (6] (03]
C1 exXp m (T — ?> Co — Uok}l(k‘Q — l2)2
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and the second solution

Fi(ag,a0) = il + Ch
PR Dlog (k2 —12)2 T ekl + oo (k2 — 12) (ark — awl)
(4.21) c 12
E .
a0 = o e Y R oo = ) (ank — ml)
When the partial mean densities are equal, p~ = p™ = py, we have also two

solutions at least. The general solution:

k
Fl(Oél,OéQ) = % + Po o) 1
C1 €xXp [Uo(k - Z)Po (T - —>]
)
F2(0417042) = Po + Po

2 ¢lexp [ao(k: — Do (T B ?)] |

and the solution:

F1 (Oél 052) = @ _ 0303 CQC% tanh (Cl + oy + 03042)

(4.22) 2 n G- B a@d-d)
FQ(Oél 052) = @ T CaC3 . C5C3 tanh (Cl + coov; + CgOég)

; 2 oo(cd—¢3) 70 (2 — &)

5. CONCLUSION

We show that the boundary value problem for the two dimensional Broadwell
%, g [ This
study extends and completes the work done in [8] and [9]. The orientation of the

four velocity discrete model has bounded solution for 6 € ]0, % [ U }

model with respect the coordinate axes is important in the statement of the math-
ematical problem and can determinate the type of the boundary value problem.
The solution is not unique in general and two kinds of solutions are brought to
the fore: maxwellian and non maxwellian solutions. As usual, the maxwellian so-
lutions associated to given macroscopic variables are unique. In contrast, the non
maxwellian ones are not unique in general and their form depend explicitly upon
the partial mean densities and one can build for the same set of the latters at least
two different exact analytic solutions. This is an illustration of the fact that for the
Broadwell model different microscopic states can lead to the same macroscopic
behavior for the total density.
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