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A STUDY ON ¢2-SYMMETRIC RINGS
H.M. Imdadul Hoque! and Helen K. Saikia

ABSTRACT. In this article our attempt is to study the ring theoretic properties of
t2-symmetric and strongly t?-symmetric rings of tripotent elements of a ring. Let
R be a ring and ¢ be a tripotent element of R, then R is said to be t?-symmetric
if abc = 0 implies acbt?> = 0 for all a,b,c € R. It has been proved that R is a t2-
symmetric ring if and only if #? is left semicentral and t? Rt? is a symmetric ring.
We also introduce the strongly ¢?-symmetric ring and establish various properties
of it.

1. INTRODUCTION

Throughout this article, all rings are associative with identity unless otherwise
stated. Let R be a ring, we denote Z(R) and N(R) the centre and the set of
all nilpotent elements of R respectively. Also M, (R) denotes the n x n upper
triangular matrix ring over R. For a ring R, an element ¢ is called tripotent if t* = ¢,
the set of all tripotent elements is denoted by 7'(R). Clearly, every idempotent is
tripotent but the converse is not true. For example let R = M,(R), then ¢t =

-1 0} . . : .
( 0 1) is a tripotent element in R but not idempotent.
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A ring is usually called reduced if it has no nilpotent elements other than zero.
Following Lambek [3]], a ring R is called symmetric if abc = 0 implies acb = 0
for all a,b,c € R. Later on, Anderson and Comillo [1], used the term Z(C; for
symmetric ring. The investigation of symmetric ring is also covered by G. Marks
[4]. Ouyang et al. [7], generalised the concept of symmetric rings and they defined
weak symmetric i.e., a ring R is said to be weak symmetric if abc € N(R) implies
acb € N(R) for all a, b, c € R. Another generalisation of symmetric rings is central
symmetric rings, that is, a ring R is said to be central symmetric [2] if abc = 0
implies bac € Z(R) for any a,b,c € R. Wei [8] introduces generalised weakly
symmetric rings which further expands the idea of symmetric rings. According to
Meng and Wei [5], a ring R is called (strongly) e-symmetric if abc = 0 implies
(aceb = 0) acbe = 0, for any a, b, c € R; e is an idempotent element of R and also
they recently studied some important properties of it (see [|6]).

In this paper, we extend and generalize the structure of e-symmetric rings de-
fined by F. Meng et al. [5] using the concept of non-zero tripotent elements of the
ring. The objective is to study and to define a new type of ring called #?-symmetric
ring using the concept of non-zero tripotent element in a ring. Also we introduce
a strong condition on this notion and we call it strongly ¢*>-symmetric ring. And
various properties of (strongly) ¢*-symmetric rings are estblished.

2. t?-SYMMETRIC AND STRONGLY #2-SYMMETRIC RINGS

In this section we introduce the t?*-symmetric and strongly ¢?>-symmetric rings
and study some of its basic properties. We begin with the following definitions.

Definition 2.1. Let R be a ring and t € T'(R). Then,
(1) R is said to be t*>-symmetric if abc = 0 implies acbt* = 0 for all a,b,c € R.

(2) R is called strongly t*>-symmetric if abc = 0 implies act*b = 0 for all a,b,c €
R.

From the above definition we have seen, whenever ¢ € T(R) then ¢*> must be
an idempotent in R but ¢ need not be an idempotent in R. Consider ¢t = —1 then
t € T(R), as (—1)® = —1 and since ((—1)?)? = (—1)?, therefore t* € E(R), where
E(R) is the set of idempotent elements of a ring R but ¢t ¢ F(R), as (—1)* # —1.
Thus ¢t = —1 € T(R) implies that t* = (—1)? € E(R) butt = —1 ¢ E(R).
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Example 1. Every symmetric ring is t*>-symmetric for any tripotent element t in R,
but the converse need not be true. Let us consider R = Ms(Zs3) where Zg = {—1,0,1}
is a reduced ring, since every reduced ring is also a symmetric ring by [1, Theorem

0
1.3], so Zg is a symmetric ring. For t = ( 0 0) € T(R). Let

a:<1 0)7 b:<0 1)) o C:<1 1)
0 0 0 0 0 0

are in R. Then abc = <8 8) implies that

we- () (0 C G- (0)

2
-1 0
This shows that R is a ( 0 0) -symmetric ring. But R is not a symmetric ring, as

() 6 6)- 6 o) ()

Example 2. Every strongly t?-symmetric ring is also a t*-symmetric ring for any
tripotent element t of the ring. But the converse need not be true by Example 1, since
in Example 1, we have

gt h [ N R G v}

2 2
-1 0 -1 0
Thus R is not a strongly ( 0 O) -symmetric ring, whereas R is a ( 0 O) -

symmetric ring.

Remark 2.1.

(1) From the Definition 2.1, it is clear that for t = —1,1; R is a symmetric ring
if and only if R is a strongly (—1)? = 1 or 12 = 1-symmetric ring if and only
if Risa (—1)* =1 or 12 = 1-symmetric ring , as both —1 and 1 are in T(R).

(2) Since every idempotent is also a tripotent but every tripotent need not be an
idempotent. So let e be an idempotent in R then e € T(R). Again ife € T(R)
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2

then e* is always an idempotent. Thus every e-symmetric ring [5] is also

a e’-symmetric. But every e’-symmetric ring need not be an e-symmetric,
2

0
because in Example 1, we have R is a 0 0 -symmetric ring but R is not

-1 0 -1 0
a -symmetric ring, as E(R).
( 0 0) sy g ( 0 o) ¢ E(R)

Now we begin with the following results.

Theorem 2.1. Let R be a ring and t € T(R). Then the following conditions are
equivalent.

(1) Ris a t*>-symmetric ring;
(2) t2Rt? is a symmetric ring and t? is left semicentral.

Proof.

(1) = (2). Suppose R is a t>-symmetric ring. Letx € Rand y = (1—t?)xt>+t%.
Then #?y = t*(1 — t*)xt* + t*t*> = t?, since t € T(R) this implies that t* € E(R),
therefore ¢?t* = ¢2. Similarly yt*> = y; y? = y; t?yt*> = t*> and (1 — y)yt? = 0. Since
R is a t?-symmetric ring, so (1 —y)t’yt? =0 = (1 —y)t* =0 = > = yt* = y.
Thusy = (1 — t*)zt? + 12 = (1 —t*)at? =0 = xt*> = >zt Hence t* is left
semicentral.

Secondly to show t?2Rt? is a symmetric ring. Let a, b, ¢ € t2Rt? such that abc = 0.
Since t*Rt? is a subring of R and R is a t*-symmetric ring, so we have acbt* = 0.
This implies that acb = 0, as bt*> = b. Thus t*> Rt is a symmetric ring.

(2) = (1). Suppose the condition (2) holds. Let a,b,c € R such that
abc = 0. Then t?at? t>bt?, t*ct> € t*Rt* and t*Rt? is a symmetric ring, we have
at?t?bt*t2ct? = 0 implies t2at*t*ct?t?ht? = 0. Thus t2at?bt?ct> = 0 implies
tat?ct®bt? = 0, as t*t*> = t2. Since t? is left semicentral, so we have t?at’ct?®bt> =
0 = at?ct?bt? =0 = act?t?> =0 = acbt? = 0. Thus abc = 0 = acht®> =
0. This shows that R is a t>-symmetric ring. O

Theorem 2.2. Let R be a ring such that t € T(R). Then the following conditions are
equivalent.

(1) R is a strongly t>-symmetric ring;

(2) t*Rt? is a symmetric ring and t* € Z(R).
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Proof.

(1) = (2). Suppose R is a strongly ¢*-symmetric ring. For each a € R,
consider z = 2 + t2a(1 — t2). Then t?zr = 212 + t*%a(1 — t?) = z, as t?t* = t2.
Similarly, zt* = 2. Also, (1 — z)t* = 0 and since R is a strongly t*>-reversible
ring, so we have zt*t*(1 —z) =0 = *(1—2) =0 = * = t*x = z. This
implies that t?a(1 — t?) = 0 = t?a = t?at® for each a € R. Since R is a strongly
t2-symmetric ring so, R is a t?>-symmetric ring. Thus by Theorem 2.1, we have t?
is left semicentral. So we have at? = t?at? for each a € R. Therefore t* € Z(R).
Again by Theorem 2.1, t> Rt is a symmetric ring.

(2) = (1). Suppose the condition (2) holds. Let a, b, c € R such that abc = 0.
Since t?Rt? is a reversible ring. Thus from the second part of Theorem 2.1 we
have, t2at’ct?bt> = 0. Again since t> € Z(R) so, t?a = at?, t*b = bt? and t*c = ct?
for each a, b, c € R. This implies that act?b = 0. Thus R is a strongly #>-symmetric
ring. U

As a consequence of Theorem 2.1 and Theorem 2.2, we have the following
Corollary 2.1.

Corollary 2.1. Let R be aring and t € T(R). Then R is a strongly t*-symmetric ring
if and only if R is a t*>-symmetric ring and t* € Z(R).

Proof. 1t directly follows from Theorem 2.1 and 2.2. O

Theorem 2.3. Let R be a ring and t € T'(R). Then following are equivalent.
(1) R is a symmetric ring;
(2) Ris a t*-symmetric and (1 — t*)-symmetric ring.

Proof.

(1) = (2). Itis obvious.

(2) = (1). Let the condition (2) holds. Let a, b, ¢ € R such that abc = 0. Then
ach(1 —t*) = 0, as R is a (1 — t?)-symmetric ring. This implies acb = acbt®. Again
R is a t>-symmetric ring, so we have acbt? = 0. It follows that achb = 0. Thus R is a
symmetric ring. 0

Theorem 2.4. Let R be a ring and t € T'(R). Then following are equivalent.
(1) R is a symmetric ring;
(2) R is a strongly t>-symmetric and (1 — t*)R(1 — t?) is a symmetric ring.
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Proof.

(1) = (2). Itis obvious.

(2) = (1). Let the condition (2) holds. Since ¢ € T(R) so, ¢* is an idempotent.
Again since R is a strongly ¢>-symmetric ring, then by Theorem 2.2, {* € Z(R)
and t?Rt? is a symmetric ring. Since 2 is a central idempotent, we have t* Rt? =
R/(1—t*)R(1—t*) and (1—t*)R(1—t*) = R/t?Rt*. This implies R/(1—t*)R(1—1?)
and R/t*Rt* are symmetric rings, as t* Rt? and (1—?) R(1—t?) are symmetric rings.
Thus R/((1—t*)R(1—t?)Nt>Rt?) symmetric ring. But ((1—t*)R(1—t*)Nt*Rt?) = 0,
hence R is a symmetric ring. U

Extending [6, Proposition 4.1], we have the following Theorem 2.5.

Theorem 2.5. Let R be a ring and t € T(R) and each r € R. Then we have the
following results:

2
—1
(1) My(R) is a < 0 g) -symmetric ring if and only if R is a symmetric ring,

where (‘1 T) € T(My(R)).

(2) My(R) is (é

where <é ) e T(My(R

a ) -symmetric ring if and only if R is a t*>-symmetric ring,
(3) My(R)isa ( ) -symmetric ring if and only if R is a t>-symmetric ring,

o O

where (O 0) € T(My(R)).

2
-1
Proof. (1) Suppose M,(R) is a 0 g -symmetric ring. Let a, b, ¢ € R such that

b
abc = 0. Then we have | 0 0 A . Since M,(R) is a
0 0 0 0 0 0 0 0
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2
-1
( . g) -symmetric ring, so we get,

a 0 c 0 b 0 -1 r ’ 0 0 acb —achr 00
0 0 00 0 0 0 0 0 0 0 0 00
Thus we get, acb = 0. This implies R is a symmetric ring.

Conversely let R is a symmetric ring and A = <%1 bl) ,B= (%2 bZ) and C =
C1 Co

0 C3
Since R is symmetric ring so we have ajazas; = 0 and c;c3c; = 0. Now

2
ACB -1 r _ [@mazaz —aazagr) 0 0 '
0 0 0 0 0 0

2
-1
Thus M, (R) is a ( 0 g) -symmetric ring.

b
(a3 3) € M;(R) such that ABC' = 0. This implies a;jasa3 = 0 and cicoc3 = 0.

2
t
(2). Since M5(R) is a (0 8) -symmetric ring so by part(1), we have

DG DEE -6 = ()60

Thus we get, acbt? = 0. This implies R is a t>-symmetric ring.
For converse part, since R is a t*>-symmetric ring, then by part (1) we have

2
ACB t 0 _ a1a3a2t2 0 _ 0 0 .
0 0 0 0 0 0
2

. t 0 L
Thus My(R) is a 0 0 -symmetric ring.

Similarly we can prove (3). O
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