ADV MATH SCI JOURNAL Advances in Mathematics: Scientific Journal **12** (2023), no.6, 577–584 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.12.6.1

A STUDY ON t^2 -SYMMETRIC RINGS

H.M. Imdadul Hoque¹ and Helen K. Saikia

ABSTRACT. In this article our attempt is to study the ring theoretic properties of t^2 -symmetric and strongly t^2 -symmetric rings of tripotent elements of a ring. Let R be a ring and t be a tripotent element of R, then R is said to be t^2 -symmetric if abc = 0 implies $acbt^2 = 0$ for all $a, b, c \in R$. It has been proved that R is a t^2 -symmetric ring if and only if t^2 is left semicentral and t^2Rt^2 is a symmetric ring. We also introduce the strongly t^2 -symmetric ring and establish various properties of it.

1. INTRODUCTION

Throughout this article, all rings are associative with identity unless otherwise stated. Let R be a ring, we denote Z(R) and N(R) the centre and the set of all nilpotent elements of R respectively. Also $M_n(R)$ denotes the $n \times n$ upper triangular matrix ring over R. For a ring R, an element t is called tripotent if $t^3 = t$, the set of all tripotent elements is denoted by T(R). Clearly, every idempotent is tripotent but the converse is not true. For example let $R = M_2(R)$, then $t = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ is a tripotent element in R but not idempotent.

¹corresponding author

²⁰²⁰ *Mathematics Subject Classification*. 16A30, 16A50, 16E50, 16D30. *Key words and phrases.* t^2 -Symmetric ring, Tripotent elements, Reduced ring.

Submitted: 04.05.2023; Accepted: 28.05.2023; Published: 01.06.2023.

A ring is usually called reduced if it has no nilpotent elements other than zero. Following Lambek [3], a ring R is called symmetric if abc = 0 implies acb = 0for all $a, b, c \in R$. Later on, Anderson and Comillo [1], used the term ZC_3 for symmetric ring. The investigation of symmetric ring is also covered by G. Marks [4]. Ouyang et al. [7], generalised the concept of symmetric rings and they defined weak symmetric i.e., a ring R is said to be weak symmetric if $abc \in N(R)$ implies $acb \in N(R)$ for all $a, b, c \in R$. Another generalisation of symmetric rings is central symmetric rings, that is, a ring R is said to be central symmetric [2] if abc = 0implies $bac \in Z(R)$ for any $a, b, c \in R$. Wei [8] introduces generalised weakly symmetric rings which further expands the idea of symmetric rings. According to Meng and Wei [5], a ring R is called (strongly) *e*-symmetric if abc = 0 implies (aceb = 0) acbe = 0, for any $a, b, c \in R$; *e* is an idempotent element of R and also they recently studied some important properties of it (see [6]).

In this paper, we extend and generalize the structure of *e*-symmetric rings defined by F. Meng et al. [5] using the concept of non-zero tripotent elements of the ring. The objective is to study and to define a new type of ring called t^2 -symmetric ring using the concept of non-zero tripotent element in a ring. Also we introduce a strong condition on this notion and we call it strongly t^2 -symmetric ring. And various properties of (strongly) t^2 -symmetric rings are estblished.

2. t^2 -Symmetric and Strongly t^2 -symmetric Rings

In this section we introduce the t^2 -symmetric and strongly t^2 -symmetric rings and study some of its basic properties. We begin with the following definitions.

Definition 2.1. Let R be a ring and $t \in T(R)$. Then,

- (1) R is said to be t^2 -symmetric if abc = 0 implies $acbt^2 = 0$ for all $a, b, c \in R$.
- (2) *R* is called strongly t^2 -symmetric if abc = 0 implies $act^2b = 0$ for all $a, b, c \in R$.

From the above definition we have seen, whenever $t \in T(R)$ then t^2 must be an idempotent in R but t need not be an idempotent in R. Consider t = -1 then $t \in T(R)$, as $(-1)^3 = -1$ and since $((-1)^2)^2 = (-1)^2$, therefore $t^2 \in E(R)$, where E(R) is the set of idempotent elements of a ring R but $t \notin E(R)$, as $(-1)^2 \neq -1$. Thus $t = -1 \in T(R)$ implies that $t^2 = (-1)^2 \in E(R)$ but $t = -1 \notin E(R)$.

Example 1. Every symmetric ring is t^2 -symmetric for any tripotent element t in R, but the converse need not be true. Let us consider $R = M_2(\mathbf{Z_3})$ where $\mathbf{Z_3} = \{-1, 0, 1\}$ is a reduced ring, since every reduced ring is also a symmetric ring by [1, Theorem $\begin{pmatrix} -1 & 0 \end{pmatrix}$

1.3], so \mathbb{Z}_3 is a symmetric ring. For $t = \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix} \in T(R)$. Let

$$a = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad b = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad and \quad c = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

are in *R*. Then $abc = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ implies that

$$acbt^{2} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}^{2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

This shows that R is a $\begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}^2$ -symmetric ring. But R is not a symmetric ring, as

$$acb = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Example 2. Every strongly t^2 -symmetric ring is also a t^2 -symmetric ring for any tripotent element t of the ring. But the converse need not be true by Example 1, since in Example 1, we have

$$act^{2}b = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}^{2} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Thus R is not a strongly $\begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}^{2}$ -symmetric ring, whereas R is a $\begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}^{2}$ -symmetric ring.

Remark 2.1.

- (1) From the Definition 2.1, it is clear that for t = -1, 1; R is a symmetric ring if and only if R is a strongly $(-1)^2 = 1$ or $1^2 = 1$ -symmetric ring if and only if R is a $(-1)^2 = 1$ or $1^2 = 1$ -symmetric ring , as both -1 and 1 are in T(R).
- (2) Since every idempotent is also a tripotent but every tripotent need not be an idempotent. So let e be an idempotent in R then $e \in T(R)$. Again if $e \in T(R)$

then e^2 is always an idempotent. Thus every e-symmetric ring [5] is also a e^2 -symmetric. But every e^2 -symmetric ring need not be an e-symmetric, because in Example 1, we have R is a $\begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}^2$ -symmetric ring but R is not a $\begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}$ -symmetric ring, as $\begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix} \notin E(R)$.

Now we begin with the following results.

Theorem 2.1. Let R be a ring and $t \in T(R)$. Then the following conditions are equivalent.

- (1) R is a t^2 -symmetric ring;
- (2) t^2Rt^2 is a symmetric ring and t^2 is left semicentral.

Proof.

(1) \implies (2). Suppose R is a t^2 -symmetric ring. Let $x \in R$ and $y = (1-t^2)xt^2+t^2$. Then $t^2y = t^2(1-t^2)xt^2 + t^2t^2 = t^2$, since $t \in T(R)$ this implies that $t^2 \in E(R)$, therefore $t^2t^2 = t^2$. Similarly $yt^2 = y$; $y^2 = y$; $t^2yt^2 = t^2$ and $(1-y)yt^2 = 0$. Since R is a t^2 -symmetric ring, so $(1-y)t^2yt^2 = 0 \implies (1-y)t^2 = 0 \implies t^2 = yt^2 = y$. Thus $y = (1-t^2)xt^2 + t^2 \implies (1-t^2)xt^2 = 0 \implies xt^2 = t^2xt^2$. Hence t^2 is left semicentral.

Secondly to show t^2Rt^2 is a symmetric ring. Let $a, b, c \in t^2Rt^2$ such that abc = 0. Since t^2Rt^2 is a subring of R and R is a t^2 -symmetric ring, so we have $acbt^2 = 0$. This implies that acb = 0, as $bt^2 = b$. Thus t^2Rt^2 is a symmetric ring.

(2) \implies (1). Suppose the condition (2) holds. Let $a, b, c \in R$ such that abc = 0. Then $t^2at^2, t^2bt^2, t^2ct^2 \in t^2Rt^2$ and t^2Rt^2 is a symmetric ring, we have $t^2at^2t^2bt^2t^2ct^2 = 0$ implies $t^2at^2t^2ct^2t^2bt^2 = 0$. Thus $t^2at^2bt^2ct^2 = 0$ implies $t^2at^2ct^2bt^2 = 0$. Thus $t^2at^2bt^2ct^2 = 0$ implies $t^2at^2ct^2bt^2 = 0$, as $t^2t^2 = t^2$. Since t^2 is left semicentral, so we have $t^2at^2ct^2bt^2 = 0$ $\implies at^2ct^2bt^2 = 0 \implies act^2bt^2 = 0 \implies acbt^2 = 0$. Thus $abc = 0 \implies acbt^2 = 0$. This shows that R is a t^2 -symmetric ring.

Theorem 2.2. Let R be a ring such that $t \in T(R)$. Then the following conditions are equivalent.

- (1) *R* is a strongly t^2 -symmetric ring;
- (2) t^2Rt^2 is a symmetric ring and $t^2 \in Z(R)$.

Proof.

(1) \implies (2). Suppose *R* is a strongly t^2 -symmetric ring. For each $a \in R$, consider $x = t^2 + t^2a(1-t^2)$. Then $t^2x = t^2t^2 + t^2t^2a(1-t^2) = x$, as $t^2t^2 = t^2$. Similarly, $xt^2 = t^2$. Also, $x(1-x)t^2 = 0$ and since *R* is a strongly t^2 -reversible ring, so we have $xt^2t^2(1-x) = 0 \implies t^2(1-x) = 0 \implies t^2 = t^2x = x$. This implies that $t^2a(1-t^2) = 0 \implies t^2a = t^2at^2$ for each $a \in R$. Since *R* is a strongly t^2 -symmetric ring so, *R* is a t^2 -symmetric ring. Thus by Theorem 2.1, we have t^2 is left semicentral. So we have $at^2 = t^2at^2$ for each $a \in R$. Therefore $t^2 \in Z(R)$. Again by Theorem 2.1, t^2Rt^2 is a symmetric ring.

(2) \implies (1). Suppose the condition (2) holds. Let $a, b, c \in R$ such that abc = 0. Since t^2Rt^2 is a reversible ring. Thus from the second part of Theorem 2.1 we have, $t^2at^2ct^2bt^2 = 0$. Again since $t^2 \in Z(R)$ so, $t^2a = at^2$, $t^2b = bt^2$ and $t^2c = ct^2$ for each $a, b, c \in R$. This implies that $act^2b = 0$. Thus R is a strongly t^2 -symmetric ring.

As a consequence of Theorem 2.1 and Theorem 2.2, we have the following Corollary 2.1.

Corollary 2.1. Let R be a ring and $t \in T(R)$. Then R is a strongly t^2 -symmetric ring if and only if R is a t^2 -symmetric ring and $t^2 \in Z(R)$.

Proof. It directly follows from Theorem 2.1 and 2.2.

Theorem 2.3. Let R be a ring and $t \in T(R)$. Then following are equivalent.

- (1) *R* is a symmetric ring;
- (2) *R* is a t^2 -symmetric and $(1 t^2)$ -symmetric ring.

Proof.

(1) \implies (2). It is obvious.

(2) \implies (1). Let the condition (2) holds. Let $a, b, c \in R$ such that abc = 0. Then $acb(1 - t^2) = 0$, as R is a $(1 - t^2)$ -symmetric ring. This implies $acb = acbt^2$. Again R is a t^2 -symmetric ring, so we have $acbt^2 = 0$. It follows that acb = 0. Thus R is a symmetric ring.

Theorem 2.4. Let R be a ring and $t \in T(R)$. Then following are equivalent.

- (1) R is a symmetric ring;
- (2) *R* is a strongly t^2 -symmetric and $(1 t^2)R(1 t^2)$ is a symmetric ring.

Proof.

 $(1) \implies (2)$. It is obvious.

(2) \implies (1). Let the condition (2) holds. Since $t \in T(R)$ so, t^2 is an idempotent. Again since R is a strongly t^2 -symmetric ring, then by Theorem 2.2, $t^2 \in Z(R)$ and t^2Rt^2 is a symmetric ring. Since t^2 is a central idempotent, we have $t^2Rt^2 \cong R/(1-t^2)R(1-t^2)$ and $(1-t^2)R(1-t^2) \cong R/t^2Rt^2$. This implies $R/(1-t^2)R(1-t^2)$ and R/t^2Rt^2 are symmetric rings, as t^2Rt^2 and $(1-t^2)R(1-t^2)$ are symmetric rings. Thus $R/((1-t^2)R(1-t^2) \cap t^2Rt^2)$ symmetric ring. But $((1-t^2)R(1-t^2) \cap t^2Rt^2) = 0$, hence R is a symmetric ring.

Extending [6, Proposition 4.1], we have the following Theorem 2.5.

Theorem 2.5. Let R be a ring and $t \in T(R)$ and each $r \in R$. Then we have the following results:

(1)
$$M_2(R)$$
 is a $\begin{pmatrix} -1 & r \\ 0 & 0 \end{pmatrix}^2$ -symmetric ring if and only if R is a symmetric ring,
where $\begin{pmatrix} -1 & r \\ 0 & 0 \end{pmatrix} \in T(M_2(R)).$
(2) $M_2(R)$ is a $\begin{pmatrix} t & 0 \\ 0 & 0 \end{pmatrix}^2$ -symmetric ring if and only if R is a t^2 -symmetric ring,
where $\begin{pmatrix} t & 0 \\ 0 & 0 \end{pmatrix} \in T(M_2(R)).$
(3) $M_2(R)$ is a $\begin{pmatrix} t & t \\ 0 & 0 \end{pmatrix}^2$ -symmetric ring if and only if R is a t^2 -symmetric ring,
where $\begin{pmatrix} t & t \\ 0 & 0 \end{pmatrix} \in T(M_2(R)).$

Proof. (1) Suppose $M_2(R)$ is a $\begin{pmatrix} -1 & r \\ 0 & 0 \end{pmatrix}^2$ -symmetric ring. Let $a, b, c \in R$ such that abc = 0. Then we have $\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} b & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} c & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. Since $M_2(R)$ is a

$$\begin{pmatrix} -1 & r \\ 0 & 0 \end{pmatrix}^2$$
-symmetric ring, so we get,
$$\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} c & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} b & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} -1 & r \\ 0 & 0 \end{pmatrix}^2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \implies \begin{pmatrix} acb & -acbr \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Thus we get, acb = 0. This implies R is a symmetric ring.

Conversely let *R* is a symmetric ring and $A = \begin{pmatrix} a_1 & b_1 \\ 0 & c_1 \end{pmatrix}$, $B = \begin{pmatrix} a_2 & b_2 \\ 0 & c_2 \end{pmatrix}$ and $C = \begin{pmatrix} a_3 & b_3 \end{pmatrix}$

 $\begin{pmatrix} a_3 & b_3 \\ 0 & c_3 \end{pmatrix} \in M_2(R)$ such that ABC = 0. This implies $a_1a_2a_3 = 0$ and $c_1c_2c_3 = 0$. Since R is symmetric ring so we have $a_1a_3a_2 = 0$ and $c_1c_3c_2 = 0$. Now

$$ACB\begin{pmatrix} -1 & r \\ 0 & 0 \end{pmatrix}^{2} = \begin{pmatrix} a_{1}a_{3}a_{2} & -a_{1}a_{3}a_{2}r \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Thus $M_2(R)$ is a $\begin{pmatrix} -1 & r \\ 0 & 0 \end{pmatrix}^2$ -symmetric ring. (2). Since $M_2(R)$ is a $\begin{pmatrix} t & 0 \\ 0 & 0 \end{pmatrix}^2$ -symmetric ring so by part(1), we have $\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} c & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} b & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} t & 0 \\ 0 & 0 \end{pmatrix}^2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \implies \begin{pmatrix} acbt^2 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} /$

Thus we get, $acbt^2 = 0$. This implies R is a t^2 -symmetric ring.

For converse part, since R is a t^2 -symmetric ring, then by part (1) we have

$$ACB \begin{pmatrix} t & 0 \\ 0 & 0 \end{pmatrix}^2 = \begin{pmatrix} a_1 a_3 a_2 t^2 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Thus $M_2(R)$ is a $\begin{pmatrix} t & 0 \\ 0 & 0 \end{pmatrix}^2$ -symmetric ring. Similarly we can prove (3).

H.M.I. Hoque and H.K. Saikia

References

- [1] D.D. ANDERSON, V. CAMILLO: Semigroups and rings whose zero products commute, Comm. Algebra 27(6) (1999), 2847–2852.
- [2] G. KAFKAS, B. UNGOR, S. HALICIOGLU, A. HARMANCI: *Generalized symmetric rings*, Algebra Discrete Math. **12** (2011), 78–84.
- [3] J. LAMBEK: On the representation of modules by sheaves of factor modules, Canad. Math. Bull. 14 (1971), 359–368.
- [4] G. MARKS: Reversible and symmetric rings, J. Pure Appl. Algebra 174 (2002), 311–318.
- [5] F. MENG, J. WEI: *e-Symmetric rings*, . Commun. Contemp. Math. **20** (2018), art. no. 1750039.
- [6] F. MENG, J. WEI: Some properties of e-symmetric rings, Turk. J. Math. 42 (2018), 2389–2399.
- [7] L. OUYANG, H. CHEN: On weak symmetric rings, Comm. Algebra 38 (2010), 697–713.
- [8] J.C. WEI: Generalized weakly symmetric rings, J. Pure Appl. Algebra 218 (2014), 1594–1603.

DEPARTMENT OF MATHEMATICS, GAUHATI UNIVERSITY. GUWAHATI-14, INDIA. *Email address*: imdadul298@gmail.com

DEPARTMENT OF MATHEMATICS, GAUHATI UNIVERSITY. GUWAHATI-14, INDIA. *Email address*: hsaikia@yahoo.com