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A STUDY ON t2-SYMMETRIC RINGS

H.M. Imdadul Hoque1 and Helen K. Saikia

ABSTRACT. In this article our attempt is to study the ring theoretic properties of
t2-symmetric and strongly t2-symmetric rings of tripotent elements of a ring. Let
R be a ring and t be a tripotent element of R, then R is said to be t2-symmetric
if abc = 0 implies acbt2 = 0 for all a, b, c ∈ R. It has been proved that R is a t2-
symmetric ring if and only if t2 is left semicentral and t2Rt2 is a symmetric ring.
We also introduce the strongly t2-symmetric ring and establish various properties
of it.

1. INTRODUCTION

Throughout this article, all rings are associative with identity unless otherwise
stated. Let R be a ring, we denote Z(R) and N(R) the centre and the set of
all nilpotent elements of R respectively. Also Mn(R) denotes the n × n upper
triangular matrix ring over R. For a ring R, an element t is called tripotent if t3 = t,
the set of all tripotent elements is denoted by T (R). Clearly, every idempotent is
tripotent but the converse is not true. For example let R = M2(R), then t =(
−1 0

0 1

)
is a tripotent element in R but not idempotent.
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A ring is usually called reduced if it has no nilpotent elements other than zero.
Following Lambek [3], a ring R is called symmetric if abc = 0 implies acb = 0

for all a, b, c ∈ R. Later on, Anderson and Comillo [1], used the term ZC3 for
symmetric ring. The investigation of symmetric ring is also covered by G. Marks
[4]. Ouyang et al. [7], generalised the concept of symmetric rings and they defined
weak symmetric i.e., a ring R is said to be weak symmetric if abc ∈ N(R) implies
acb ∈ N(R) for all a, b, c ∈ R. Another generalisation of symmetric rings is central
symmetric rings, that is, a ring R is said to be central symmetric [2] if abc = 0

implies bac ∈ Z(R) for any a, b, c ∈ R. Wei [8] introduces generalised weakly
symmetric rings which further expands the idea of symmetric rings. According to
Meng and Wei [5], a ring R is called (strongly) e-symmetric if abc = 0 implies
(aceb = 0) acbe = 0, for any a, b, c ∈ R; e is an idempotent element of R and also
they recently studied some important properties of it (see [6]).

In this paper, we extend and generalize the structure of e-symmetric rings de-
fined by F. Meng et al. [5] using the concept of non-zero tripotent elements of the
ring. The objective is to study and to define a new type of ring called t2-symmetric
ring using the concept of non-zero tripotent element in a ring. Also we introduce
a strong condition on this notion and we call it strongly t2-symmetric ring. And
various properties of (strongly) t2-symmetric rings are estblished.

2. t2-SYMMETRIC AND STRONGLY t2-SYMMETRIC RINGS

In this section we introduce the t2-symmetric and strongly t2-symmetric rings
and study some of its basic properties. We begin with the following definitions.

Definition 2.1. Let R be a ring and t ∈ T (R). Then,

(1) R is said to be t2-symmetric if abc = 0 implies acbt2 = 0 for all a, b, c ∈ R.
(2) R is called strongly t2-symmetric if abc = 0 implies act2b = 0 for all a, b, c ∈

R.

From the above definition we have seen, whenever t ∈ T (R) then t2 must be
an idempotent in R but t need not be an idempotent in R. Consider t = −1 then
t ∈ T (R), as (−1)3 = −1 and since ((−1)2)2 = (−1)2, therefore t2 ∈ E(R), where
E(R) is the set of idempotent elements of a ring R but t /∈ E(R), as (−1)2 ̸= −1.
Thus t = −1 ∈ T (R) implies that t2 = (−1)2 ∈ E(R) but t = −1 /∈ E(R).
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Example 1. Every symmetric ring is t2-symmetric for any tripotent element t in R,
but the converse need not be true. Let us consider R = M2(Z3) where Z3 = {−1, 0, 1}
is a reduced ring, since every reduced ring is also a symmetric ring by [1, Theorem

1.3], so Z3 is a symmetric ring. For t =

(
−1 0

0 0

)
∈ T (R). Let

a =

(
1 0

0 0

)
, b =

(
0 1

0 0

)
, and c =

(
1 1

0 0

)

are in R. Then abc =

(
0 0

0 0

)
implies that

acbt2 =

(
1 0

0 0

)(
1 1

0 0

)(
0 1

0 0

)(
−1 0

0 0

)2

=

(
0 0

0 0

)
.

This shows that R is a

(
−1 0

0 0

)2

-symmetric ring. But R is not a symmetric ring, as

acb =

(
1 0

0 0

)(
1 1

0 0

)(
0 1

0 0

)
=

(
0 1

0 0

)
̸=

(
0 0

0 0

)
.

Example 2. Every strongly t2-symmetric ring is also a t2-symmetric ring for any
tripotent element t of the ring. But the converse need not be true by Example 1, since
in Example 1, we have

act2b =

(
1 0

0 0

)(
1 1

0 0

)(
−1 0

0 0

)2(
0 1

0 0

)
=

(
0 1

0 0

)
̸=

(
0 0

0 0

)
.

Thus R is not a strongly

(
−1 0

0 0

)2

-symmetric ring, whereas R is a

(
−1 0

0 0

)2

-

symmetric ring.

Remark 2.1.

(1) From the Definition 2.1, it is clear that for t = −1, 1; R is a symmetric ring
if and only if R is a strongly (−1)2 = 1 or 12 = 1-symmetric ring if and only
if R is a (−1)2 = 1 or 12 = 1-symmetric ring , as both −1 and 1 are in T (R).

(2) Since every idempotent is also a tripotent but every tripotent need not be an
idempotent. So let e be an idempotent in R then e ∈ T (R). Again if e ∈ T (R)
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then e2 is always an idempotent. Thus every e-symmetric ring [5] is also
a e2-symmetric. But every e2-symmetric ring need not be an e-symmetric,

because in Example 1, we have R is a

(
−1 0

0 0

)2

-symmetric ring but R is not

a

(
−1 0

0 0

)
-symmetric ring, as

(
−1 0

0 0

)
/∈ E(R).

Now we begin with the following results.

Theorem 2.1. Let R be a ring and t ∈ T (R). Then the following conditions are
equivalent.

(1) R is a t2-symmetric ring;
(2) t2Rt2 is a symmetric ring and t2 is left semicentral.

Proof.
(1) =⇒ (2). Suppose R is a t2-symmetric ring. Let x ∈ R and y = (1−t2)xt2+t2.

Then t2y = t2(1 − t2)xt2 + t2t2 = t2, since t ∈ T (R) this implies that t2 ∈ E(R),
therefore t2t2 = t2. Similarly yt2 = y; y2 = y; t2yt2 = t2 and (1 − y)yt2 = 0. Since
R is a t2-symmetric ring, so (1− y)t2yt2 = 0 =⇒ (1− y)t2 = 0 =⇒ t2 = yt2 = y.
Thus y = (1 − t2)xt2 + t2 =⇒ (1 − t2)xt2 = 0 =⇒ xt2 = t2xt2. Hence t2 is left
semicentral.

Secondly to show t2Rt2 is a symmetric ring. Let a, b, c ∈ t2Rt2 such that abc = 0.
Since t2Rt2 is a subring of R and R is a t2-symmetric ring, so we have acbt2 = 0.
This implies that acb = 0, as bt2 = b. Thus t2Rt2 is a symmetric ring.
(2) =⇒ (1). Suppose the condition (2) holds. Let a, b, c ∈ R such that

abc = 0. Then t2at2, t2bt2, t2ct2 ∈ t2Rt2 and t2Rt2 is a symmetric ring, we have
t2at2t2bt2t2ct2 = 0 implies t2at2t2ct2t2bt2 = 0. Thus t2at2bt2ct2 = 0 implies
t2at2ct2bt2 = 0, as t2t2 = t2. Since t2 is left semicentral, so we have t2at2ct2bt2 =

0 =⇒ at2ct2bt2 = 0 =⇒ act2bt2 = 0 =⇒ acbt2 = 0. Thus abc = 0 =⇒ acbt2 =

0. This shows that R is a t2-symmetric ring. □

Theorem 2.2. Let R be a ring such that t ∈ T (R). Then the following conditions are
equivalent.

(1) R is a strongly t2-symmetric ring;
(2) t2Rt2 is a symmetric ring and t2 ∈ Z(R).
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Proof.
(1) =⇒ (2). Suppose R is a strongly t2-symmetric ring. For each a ∈ R,

consider x = t2 + t2a(1 − t2). Then t2x = t2t2 + t2t2a(1 − t2) = x, as t2t2 = t2.
Similarly, xt2 = t2. Also, x(1 − x)t2 = 0 and since R is a strongly t2-reversible
ring, so we have xt2t2(1 − x) = 0 =⇒ t2(1 − x) = 0 =⇒ t2 = t2x = x. This
implies that t2a(1− t2) = 0 =⇒ t2a = t2at2 for each a ∈ R. Since R is a strongly
t2-symmetric ring so, R is a t2-symmetric ring. Thus by Theorem 2.1, we have t2

is left semicentral. So we have at2 = t2at2 for each a ∈ R. Therefore t2 ∈ Z(R).
Again by Theorem 2.1, t2Rt2 is a symmetric ring.

(2) =⇒ (1). Suppose the condition (2) holds. Let a, b, c ∈ R such that abc = 0.
Since t2Rt2 is a reversible ring. Thus from the second part of Theorem 2.1 we
have, t2at2ct2bt2 = 0. Again since t2 ∈ Z(R) so, t2a = at2, t2b = bt2 and t2c = ct2

for each a, b, c ∈ R. This implies that act2b = 0. Thus R is a strongly t2-symmetric
ring. □

As a consequence of Theorem 2.1 and Theorem 2.2, we have the following
Corollary 2.1.

Corollary 2.1. Let R be a ring and t ∈ T (R). Then R is a strongly t2-symmetric ring
if and only if R is a t2-symmetric ring and t2 ∈ Z(R).

Proof. It directly follows from Theorem 2.1 and 2.2. □

Theorem 2.3. Let R be a ring and t ∈ T (R). Then following are equivalent.

(1) R is a symmetric ring;
(2) R is a t2-symmetric and (1− t2)-symmetric ring.

Proof.
(1) =⇒ (2). It is obvious.
(2) =⇒ (1). Let the condition (2) holds. Let a, b, c ∈ R such that abc = 0. Then

acb(1 − t2) = 0, as R is a (1 − t2)-symmetric ring. This implies acb = acbt2. Again
R is a t2-symmetric ring, so we have acbt2 = 0. It follows that acb = 0. Thus R is a
symmetric ring. □

Theorem 2.4. Let R be a ring and t ∈ T (R). Then following are equivalent.

(1) R is a symmetric ring;
(2) R is a strongly t2-symmetric and (1− t2)R(1− t2) is a symmetric ring.
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Proof.
(1) =⇒ (2). It is obvious.
(2) =⇒ (1). Let the condition (2) holds. Since t ∈ T (R) so, t2 is an idempotent.

Again since R is a strongly t2-symmetric ring, then by Theorem 2.2, t2 ∈ Z(R)

and t2Rt2 is a symmetric ring. Since t2 is a central idempotent, we have t2Rt2 ∼=
R/(1−t2)R(1−t2) and (1−t2)R(1−t2) ∼= R/t2Rt2. This implies R/(1−t2)R(1−t2)

and R/t2Rt2 are symmetric rings, as t2Rt2 and (1−t2)R(1−t2) are symmetric rings.
Thus R/((1−t2)R(1−t2)∩t2Rt2) symmetric ring. But ((1−t2)R(1−t2)∩t2Rt2) = 0,
hence R is a symmetric ring. □

Extending [6, Proposition 4.1], we have the following Theorem 2.5.

Theorem 2.5. Let R be a ring and t ∈ T (R) and each r ∈ R. Then we have the
following results:

(1) M2(R) is a

(
−1 r

0 0

)2

-symmetric ring if and only if R is a symmetric ring,

where

(
−1 r

0 0

)
∈ T (M2(R)).

(2) M2(R) is a

(
t 0

0 0

)2

-symmetric ring if and only if R is a t2-symmetric ring,

where

(
t 0

0 0

)
∈ T (M2(R)).

(3) M2(R) is a

(
t t

0 0

)2

-symmetric ring if and only if R is a t2-symmetric ring,

where

(
t t

0 0

)
∈ T (M2(R)).

Proof. (1) Suppose M2(R) is a

(
−1 r

0 0

)2

-symmetric ring. Let a, b, c ∈ R such that

abc = 0. Then we have

(
a 0

0 0

) (
b 0

0 0

) (
c 0

0 0

)
=

(
0 0

0 0

)
. Since M2(R) is a
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−1 r

0 0

)2

-symmetric ring, so we get,

(
a 0

0 0

)(
c 0

0 0

)(
b 0

0 0

)(
−1 r

0 0

)2

=

(
0 0

0 0

)
=⇒

(
acb −acbr

0 0

)
=

(
0 0

0 0

)
.

Thus we get, acb = 0. This implies R is a symmetric ring.

Conversely let R is a symmetric ring and A =

(
a1 b1

0 c1

)
, B =

(
a2 b2

0 c2

)
and C =(

a3 b3

0 c3

)
∈ M2(R) such that ABC = 0. This implies a1a2a3 = 0 and c1c2c3 = 0.

Since R is symmetric ring so we have a1a3a2 = 0 and c1c3c2 = 0. Now

ACB

(
−1 r

0 0

)2

=

(
a1a3a2 −a1a3a2r

0 0

)
=

(
0 0

0 0

)
.

Thus M2(R) is a

(
−1 r

0 0

)2

-symmetric ring.

(2). Since M2(R) is a

(
t 0

0 0

)2

-symmetric ring so by part(1), we have

(
a 0

0 0

)(
c 0

0 0

)(
b 0

0 0

)(
t 0

0 0

)2

=

(
0 0

0 0

)
=⇒

(
acbt2 0

0 0

)
=

(
0 0

0 0

)
/

Thus we get, acbt2 = 0. This implies R is a t2-symmetric ring.
For converse part, since R is a t2-symmetric ring, then by part (1) we have

ACB

(
t 0

0 0

)2

=

(
a1a3a2t

2 0

0 0

)
=

(
0 0

0 0

)
.

Thus M2(R) is a

(
t 0

0 0

)2

-symmetric ring.

Similarly we can prove (3). □
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