
ADV  MATH
SCI  JOURNAL

Advances in Mathematics: Scientific Journal 12 (2023), no.6, 585–601
ISSN: 1857-8365 (printed); 1857-8438 (electronic)
https://doi.org/10.37418/amsj.12.6.2

SUPPORT THEOREM FOR THE POSITIVE RANDOM EVOLUTION EQUATION
IN HÖLDER NORM

R.N.B Rakotoarisoa1, T.J. Rabeherimanana, and J.J.F. Randriamiarampanahy

ABSTRACT. Let’s consider the stochastic differential equation{
dXt = σ(Xt, Vt)dWt + b(Xt, Rt)dt

X0 = x > 0

In this paper, we establish the support theorem for this positive random evolution
equation type on Cα,0([0; 1];R). We use the linear interpolations of W for the
proof.

1. INTRODUCTION

We consider the familly of stochastic processes X = {Xt; 0 ≤ t ≤ 1}, with X is a
solution of the Itô’s differential equation

(1.1) Xt = x+

∫ t

0

σ(Xs, Vs)dWs +

∫ t

0

b(Xs, Rs)ds; x > 0,

where W is a one-dimensional standard Brownian motion on some filtered prob-
ability space (Ω,F ,Ft,P), R = {Rt, t ∈ [0; 1]} is a R−valued random variable
Ft−progressivly measurable and V = {Vt, t ∈ [0; 1]} is a random process such that
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its topological support is compact subset of Cα,0([0; 1];R), R and V satisfy some
integrability conditions and W is independent of R and V . The diffusion coeffi-
cient σ : R⊗R −→ R and the drift coefficient b : R⊗R −→ R satisfy the following
assumptions:

H: b is globally lipschitzian with respect to x and y, and bounded with b(0, 0) >

0 and σ is Hölder continuous with exponent γ ∈
[

1
2
; 1
]

in x, globally lips-
chitzian in z and σ(0, 0) = 0.

H: H’: σ is C2 in x, bounded together with its partial derivatives in order one
and two; and the derivatives in order two σ” is locally lipschitzian.

We know that under assumption H, the equation (1.1) admits an unique solution
Xε
t , furthermore Xε

t ≥ 0 see D. Revuz and M. Yor [10] Chapter IX, Theorem 3.5.
In recent years, for R ≡ 0 and V ≡ 0 then b(x, y) = b(x) and σ(x, z) = σ(x),

applications to finance have attracted the attention to the study of these models
that are based on diffusion processes whose state space is the positive half line. Let
b(x) = α(β − x) and σ(x) = ρxγ with some constants α > 0, β > 0 and γ ∈ [1

2
; 1];

(1.1) is a constant elasticity of variance (CEV) model and the special case γ = 1
2

is
the Cox-Ingersoll-Ross (CIR) model.

In particular, the CIR model is used in the Heston model in order to describe the
evolution of the volatility. Considering the driving noise of the volatility close to 0

is a first step in order to study the convergence of the stochastic volatility model
to the classical Black and Scholes one.

For the positive diffusion type, the general Freidlin-Wentzell large deviation is
studied by Baldi and Caramellino [3], but Y. Li and S. Zhang [6] have established
the moderate deviation and central limit theorem. In the other hand, R.N.B. Rako-
toarisoa and T.J. Rabeherimanana [9] have studied the moderate deviation with
the weak convergence method. In this paper, we will proove the support theorem
for the positive diffusion. For that, Stroock and Varadhan 1972 [11] have proved
the support of diffusion process and given application to the maximum principle
in finite dimensional state spaces and with finite dimensional Wiener processes.
But A. Millet and S. Zolé [8] have established a simple proof of the support the-
orem for the diffusion process. Several authors have tried to extend their results
for the same case but by different methods such as Ledoux and al [5] are studied
the large deviation principle and support theorem via rough path. Recently; J.
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Andriatahiana and al 2017 [1] have established the support theorem for random
evolution equation in Hölder norm and their extend this result in Besov-Orlicz
norm in 2020 [2].

Let α > 0 and denote Cα([0; 1];R) the set of α−Hölder continuous functions,
i.e., set of continuous functions f : [0; 1] −→ R such that

(1.2) ‖f‖α = sup
t
f(t) + sup

0<|t−s|<1

|f(t)− f(s)|
|t− s|α

<∞.

Then, ‖.‖α is called the α−Hölder norm.
Define the hölderian modulus of continuity of f by

ωα(f, δ) = sup
0≤|t−s|≤δ

|f(t)− f(s)|
|t− s|α

.

Let H denote the Cameron-Martin space and give h ∈ H, ψ ∈ suppR and χ ∈
suppV (support of the distribution of R and V ). Consider the following ordinary
differential equation

S(h, ψ, χ)t = x+

∫ t

0

σ(S(h, ψ, χ)s, χs)ḣsds

+

∫ t

0

[
b(S(h, ψ, χ)s, ψs)−

1

2
(5σ)σ(S(h, ψ, χ)s, χs)

]
ds,

(1.3)

where x > 0. Under assumption H and Lemma (3.11) of [3], (1.3) admits a
unique solution S(h, ψ) for t ∈ [0;T ], T > 0. moreover for every compact K ⊂ R+

and a > 0, there exists b > 0 such that S(h, ψ, χ) ≥ b for every x ∈ K and
|h| < a, that is S(h, ψ, χ) solution of the equation (1.3) stays away from 0. We will
caracterized then the support of the diffusion positive when Xt > C where C is an
constant positive.

We will give the proof of the characterization of the support of P ◦ X−1 as
the closure of {S(h, ψ, χ);h ∈ H, ψ ∈ suppR,χ ∈ suppV }. To proove this re-
sult, we use the approximation theorem of the stochastic system adapted linear
interpolation of ωn of ω and Millet result, see [8]. Thus, we check the conver-
gence in probability of ‖S(ωn, ψ, χ) −X(ω)‖α and ‖X(ω − ωn + h) − S(h, ψ, χ)‖α
to zero in L2. Since the low of transformation Tn of ω is absolutely continuous
with respect to P, the second convergence yields that the support P ◦X−1 contain
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{S(h, ψ, χ);h ∈ H, ψ ∈ suppR,χ ∈ suppV } but the first one implies the inverse in-
clusion in usual way.

The rest of this paper is organised as follow; the following section introduce
some preliminaries. In the last section, we will give our main result and charac-
terized the support for positive

2. GENERAL RESULTS AND APPROXIMATIONS

In this section, we state criteria of convergence in Holder norms and a general
theorem characterizing of the law of the Weiner functional wich is useful to our re-
sults. The following proposition is a consequence of the Garcia-Rodemich-Rumsey
lemma

Proposition 2.1.
(i) Let {Y n(t)} a sequence of R−valued processes such that
A1: For every p ∈ [1,∞) there exists C such that

sup
n

E
(
|Y n(t)− Y n(s)|2p

)
≤ C|t− s|p

for every s, t ∈ [0; 1]. Then, for every λ > 0 and β < p−1
2p

there exists C > 0 such that

(2.1) sup
n

P

(
sup

|s−t|<1,s 6=t

|Y n(t)− Y n(s)|
|t− s|β

> λ

)
≤ Cλ−2p.

(ii) Let (Y n(t))t∈[0;1] be a sequence of R−valued processes satisfying A1 with the fol-
lowing assumption A2:
A2: for any ε > 0

lim
n−→∞

P
(

sup
0≤i≤2n

|Y (i2−n)| > ε

)
= 0.

Then, for any α ∈ [0; 1/2], one has that

(2.2) lim
n

P(‖Y n‖α > ε) = 0.

The following proposition state sufficient conditions for inclusions on the sup-
port of the law of the measurable map F : Ω −→ E, where (E, ‖.‖) is a separable
Banach space. The proof is straightforward.
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Proposition 2.2. Let F : Ω −→ E be measurable. Let ζ1 : H −→ E be a measurable
map, and let Hn : Ω −→ H be a sequence of variables such that for any ε > 0,

(2.3) lim
n

(‖F (ω)− ζ1(Hn(ω))‖ > ε) = 0,

then

(2.4) supp(F ◦ P−1) ⊂ {ζ1(h);h ∈ H}.

Let ζ2 : H −→ E be a map and for fixed h let T hn : Ω −→ Ω be a sequence of
measurable transformations such that P ◦ (T hn )−1 � P, and for any ε > 0,

(2.5) lim
n

(
‖F (T hn (ω))− ζ2(h))‖ < ε

)
= 0,

then

(2.6) supp(F ◦ P−1) ⊃ {ζ2(h);h ∈ H}.

Given an integer n > 0; define Dn = {i2−n; 0 ≤ i ≤ 2n} the set of n-dyadic
points. For t ∈ [0; 1], k

2n
< t < k+1

2n
, set

(2.7) t̃n =
k

2n
and t̄n =

k − 1

2n
∨ 0

and let W n be the adapted linear interpolation of W defined by

(2.8) W n
t = Wt̄n + 2n(t− t̃n)(Wt̃n −Wt̄n).

We consider the map ζ1 = ζ2 = S(.), Hn(ω) = ωn, and T hn (ω) = ω − ωn + h.
Girsanov’s theorem implies that P ◦ (T hn )−1 is absolutely continuous with respect
to P. Let Xn(ω) = X(ω − ωn + h). Fix α < 1

2
and let β ∈]0; 1

2
[, X − x, X ◦ T nh − x,

S.(ω
n, ψ, χ) − x and S.(h, ψ, χ) − x a.s. belong to Cα([0; 1];R) and have initial

value 0, using Ciesielski [4], it is easy to see that they also belong to the separable
Banach space Hα

0 of Cα([0; 1];R) defined by:

Hα
0 = {f ∈ Cα([0; 1];R); f(0) = 0, |f(t)− f(s)| < ◦|t− s|α as |t− s| −→ 0}

Thus, by Proposition 2.2, the equality

P ◦X−1 = {S(h, ψ, χ);h ∈ H, ψ ∈ suppR,χ ∈ suppV }

will follow from the following convergence results for every ε > 0,

(2.9) lim
n

(‖X(ω)− S(ωn, ψ, χ)‖α > ε) = 0,
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(2.10) lim
n

(‖X(ω − ωn + h)− S(h, ψ, χ)‖α < ε) = 0.

Approximation of stochastic integrals of Riemann sums implies that Xn(ω) :=

X(ω − ωn + h) is solution of the following stochastic differential equation (SDE in
short)

Xn
t = x+

∫ t

0

σ(Xn
s , Vs)dWs +

∫ t

0

σ(Xn
s , Vs)ω̇

n
s ds

+

∫ t

0

σ(Xn
s , Vs)ḣsds+

∫ t

0

b(Xn
s , Rs)ds,

(2.11)

while S(ωn, ψ, χ) satisfies

S(ωn, ψ, χ)t = S(ωn, ψ, χ)0 +
∫ t

0
σ(S(ωn, ψ, χ)s, χs)ω̇

n
s ds

+
∫ t

0
[b(S(ωn, ψ, χ)s, ψs)− 1

2
(5σ)σ(S(ωn, ψ, χ)s, χs)]ds.(2.12)

Thus both processus Xn and S(ωn, ψ) are particular of a diffusion Y n
. solution of

the following SDE

(2.13)
Y n
t = x+

∫ t
0
F (Y n

s , Vs)dWs +
∫ t

0
G(Y n

s , Vs)ω̇
n
s ds+

∫ t
0
h(Y n

s , Vs)ḣsds

+
∫ t

0
I(Y n

s , Vs)ds+
∫ t

0
B(Y n

s , Rs)ds,

and

(2.14)
Ȳ n
t = x+

∫ t
0
F (Ȳ n

s , χs)dWs +
∫ t

0
G(Ȳ n

s , χs)ω̇
n
s ds+

∫ t
0
h(Ȳ n

s , χs)ḣsds

+
∫ t

0
I(Ȳ n

s , χs)ds+
∫ t

0
B(Ȳ n

s , φs)ds,

where the coefficients F,G,H, I and B satisfy the condition: H": F,G,H, I, B :

R ⊗ R −→ R globally lipschitzian functions and G is a class C2 with bounded
derivatives.

Given the functions F,G,H, I and B and let Z the solution of the following SDE

Zt = x+

∫ t

0

[F (Zs, Vs) +G(Zs;Vs)]dWs +

∫ t

0

H(Zs, Vs)ḣsds

+

∫ t

0

B(Zs, Rs)ds+

∫ t

0

5G(Zs, Vs)[F (Zs, Vs) +
1

2
G(Zs, Vs)]ds.

(2.15)

For α ∈ [0; 1/2[, (2.9) and (2.10) are particular case of the following convergence
for δ > 0

(2.16) lim
n

(‖Y n − Z‖α > δ) = 0,
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and

(2.17) lim
n

(‖Ȳ n − Z‖α > δ) = 0.

Indeed F = 0, G = σ, H = 0, I = −1
2
(5σ)σ, and B = b we obtain (2.9) while

(2.10) yields as F = σ, G = −σ, H = σ, I = 0 and B = b. It is well known as for
s, t ∈ [0; 1] and p ∈ [0;∞)

(2.18) E(|Zt − Zs|2p) ≤ C|t− s|p.

Thus, by Proposition 2.1, it suffices to chek that for any s, t ∈ [0; 1] and p ∈ [0;∞)

(2.19) sup
n

E
(
|Y n
t − Y n

s |2p
)
≤ C|t− s|p,

(2.20) sup
n

E
(
|Ȳ n
t − Ȳ n

s |2p
)
≤ C|t− s|p,

and

(2.21) lim
n

E
(

sup
0≤i≤2n

|Y n
i2−n − Zi2−n |2

)
= 0,

(2.22) lim
n

E
(

sup
0≤i≤2n

|Ȳ n
i2−n − Zi2−n|2

)
= 0.

3. MAIN RESULT AND DISCUSSION

We begin this section with our main result.

Theorem 3.1. Let σ and b be functions such that conditions H and H’ are in place,
and let X the solution of the equation (1.1).Then, for any α ∈ [0; 1/2[ the support of
the probability P ◦X−1 is the cloussure of the set {S(h, ψ);h ∈ H} such that S(h) is
given by equation (1.3)

Proof. According to the Proposition 2.2, it is sufficient to prove that estimations
(2.3) and (2.5) are trues. For that, the equation (2.3) is a consequence of (2.9)
but (2.10) yields the (2.5) one. Furthermore, since (2.9) and (2.10) are particular
case of (2.16) and (2.17), to complete the proof, by Proposition 2.1, it suffices to
check that (2.19), (2.20),(2.21) and (2.22) are fulfils. �
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Proposition 3.1. Let (X) be an random process and let φ ∈ suppX. Then, we have

(3.1) lim
n

E
(

sup
0≤i≤2n

|φi2−n −Xi2−n| = 0

)
.

Proof. We know that P (X ∈ suppX) = 1, there exist ϕ ∈ suppX such that ϕ =

X(t) for any t ∈ [0; 1]. Then, E(sup0≤i≤2n |φi2−n − ϕi2−n|2) −→ 0 as n large enough
complete the proof. By following result of [7] sup0≤i≤2n |φi2−n − ϕi2−n| −→ 0, the
desired proposition follows �

We use the following theorem which is a one version of the Azréla-Ascoli theo-
rem (see Mellouk [7])

Theorem 3.2. A set A ⊂ Cα,0([0; 1],R) has a compact closure in A ⊂ Cα([0; 1],R)if
and only if the following two conditions holds

sup
f∈A
‖f‖α <∞

and
lim
δ↓0

sup
f∈A

ωα(f, δ) = 0.

The following results are consequence of this theorem, since suppZ is a compact
suset of Cα,0([0; 1],R), we have

(3.2) lim
n

sup
t∈[0;1]

|χs − χs̄n| = 0

and by triangular inequalitytogether with the Proposition3.1, we obtain

(3.3) lim
n

sup
t∈[0;1]

|Vs − Vs̄n| = 0.

Proposition 3.2. Let F, G,H,I and B be the functions such that conditions H" is
satisfied and let (Y n

t ) (resp Ȳ n
t ) be the respective solutions of (2.13) (resp (2.14)).

Then, given p ∈ [0;∞), there exists an constant C suth that for s, t ∈ [0; 1] we have

sup
n

E
(
|Yt − Ys|2p

)
≤ C|t− s|p

and
sup
n

E
(
|Ȳt − Ȳs|2p

)
≤ C|t− s|p.
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Proof. We use the same argument for the proof of the two inequalities in this
proposition. Fix p ∈ [0;∞) and s, t ∈ R,then for every n ≥ 1

(3.4) E
(
|Yt − Ys|2p

)
≤ C(I1 + I2 + I3 + +I4I5)

with
I1 = E

(
|
∫ t
s
F (Y n

u , Vu)dWu|2p
)
,

I2 = E
(
|
∫ t
s
G(Y n

s , Vu)ω̇
n
s ds|2

p
)
,

I3 = E
(
|
∫ t
s
H(Y n

u , Vu)ḣudu|2p
)
,

I4 = E
(
|
∫ t
s
I(Y n

u , Vu)du|2p
)
,

I5 = E
(
|
∫ t
s
B(Y n

u , Ru)du|2p
)
.

Burkholder’s inequality on I1, from Schwartz and Hölde’s inequalities, we have

I1 + I3 + I4 + I5 ≤ C|t− s|p,

and for the I2, we can write that

I2 ≤ I1
2 (n) + I2

2 (n),

where
I1

2 (n) = E
(
|
∫ t
s
G(Y n

ūn , Vūn)ω̇nudu|2
p
)
,

I2
2 (n) = E

(
|
∫ t
s
[G(Y n

u , Vu)−G(Y n
ūn , Vūn)]ω̇nudu|2

p
)
.

Clearly, we have supn I
1
2 (n) ≤ C|t − s|p. By Hölder’s inequality for the conjugate

exponents a > 1 and b > 1, we have

I2
2 (n) ≤ |t− s|2p+1

∫ t
s

[
E
(
|G(Y n

u , Vu)−G(Y n
ūn , Vūn)|2pa

)] 1
a
[
E
(
|ω̇nu |2

pb
)] 1

b du

≤ C|t− s|2p+12np
∫ t
s

[
E
(
|Y n
u − Y n

ūn|
2pa + |Vu − Vūn|2pa

)] 1
a du.

By the equation (2.18),there exist an constant C such that supn E|Vu − Vūn|2p ≤
C2−np Thus, the proof is reduced to check that this estimate follows in the partic-
ular case s = ūn et t = u. These arguments imply that

sup
s

E
( ∣∣∣∣∫ s

s̄n

[
F (Y n

u , Vu)dWu +H(Y n
u , Vu)ḣu +B(Y n

u , Ru)du
]∣∣∣∣2p ) ≤ C2−np.

Therefore, we should checking that for every p ∈ [0;∞)

sup
s

E

[∣∣∣∣∫ s

s̄u

G(Y n
u , Vu)ω̇

n
udu

∣∣∣∣2p
]
≤ C2−np.
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Clearly

E
[∣∣∣∫ ss̄u G(Y n

u , Vu)ω̇
n
udu
∣∣∣2p] ≤ CE

((
2n
∫ s̃n
s̄n
|G(Y n

u , Vu)du|2p
)
|Wūn −Wūn−2−n∨0|2p

)
+CE

((
2n
∫ s
s̃n
|G(Y n

u , Vu)du|2p
)
|Wũn −Wūn|2p

)
≤ C

[
E (|Wūn −Wūn−2−n∨0|2p) + E (|Wũn −Wūn|2p)

]
. ≤ C2−np.

This inequality implies supn I
2
2 (n) ≤ C|t − s|p. The proof of the proposition is

complete. �

Proposition 3.3. Assume F, G,H,I and B the functions such that condition H" is
satisfied and that the solution (Y n

. ) of (2.13) satisfies (2.19). Let (Z.) be a solution
of (2.15). Then, we obtain

lim
n

E
(

sup
0≤i≤2n

|Y n
i2−n − Zi2−n|2

)
= 0.

Proposition 3.4. Assume F, G,H,I and B the functions such that condition H" is
satisfied and that the solution (Ȳ n

. ) of (2.13) satisfies (2.19). Let (Z.) be a solution
of (2.15). Then, we obtain

lim
n

E
(

sup
0≤i≤2n

|Ȳ n
i2−n − Zi2−n|2

)
= 0.

We need the following lemmas for the proof of the Proposition 3.3, we omit
their demonstrations wich can be found in [8].

Lemma 3.1. Suppose that (Y n
. ) is a sequence of processes such that (2.19) holds. Let

f be an globally Lipschitz function; then

(3.5) lim
n

E

 sup
0≤k≤2n

∣∣∣∣∣
∫ k2−n

0

f(Y n
s̄n) [ω̇ns ds− dWs]

∣∣∣∣∣
2
 = 0.

Lemma 3.2. Let (Jnt )t∈[0;1] be a sequence of measurable processes such that there
exists p ∈ [1;∞), C > 0 and an sequence α(n) such that

lim
n
α(n) = 0 and sup

t
E|Jnt |2p ≤ α(n)2−np.
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Then

(3.6) lim
n

E

 sup
0≤k≤2n

∣∣∣∣∣
∫ k2−n

0

|Jns ω̇ns |ds

∣∣∣∣∣
2
 = 0.

Proof of Proposition 3.3. Let n > 1 and let us take t = k2−n, then

Y n
t − Zt =

∫ t

0

[(F +G)(Y n
s̄n , Vs̄n)− (F +G)(Zs̄n , Vs̄n)]dWs +

∫ t

0

[H(Y n
s̄n , Vs̄n)

−H(Zs̄n , Vs̄n)]ḣsds+

∫ t

0

[I(Y n
s̄n , Vs̄n)− I(Zs̄n , Vs̄n)]ds

+

∫ t

0

([
B(Ys̄n , Rs) + ((5G)F +

1

2
(5G)G)(Y n

s̄n , Vs̄n)

]
−
[
B(Zs̄n , Rs) + ((5G)F +

1

2
(5G)G)(Zs̄n , Vs̄n)

])
ds+

6∑
j=1

Jnj (t),

where

Jn1 (t) =

∫ t

0

(
F (Y n

s , Vs)− F (Y n
s̄n , Vs̄n)− [F +G](Zs, Vs) + [F +G](Zs̄n ,s̄n )

)
dWs,

Jn2 (t) =

∫ t

0

(
H(Y n

s , Vs)−H(Y n
s̄n , Vs̄n)−H(Zs, Vs) +H(Zs̄n , Vs̄n)

)
ḣsds,

Jn3 (t) =

∫ t

0

(
I(Y n

s , Vs)− I(Y n
s̄n , Vs̄n)− I(Zs, Vs) + I(Zs̄n , Vs̄n)

)
ds,

Jn4 (t) =

∫ t

0

(
B(Y n

s , Rs)−B(Y n
s̄n , Rs)−

[
B(Zs, Rs) + (5G)F +

1

2
(5G)G

]
(Zs, Vs)

+B(Zs̄n , Rs)

[
(5G)F +

1

2
(5G)G

]
(Zs̄n , Vs̄n)

)
ds,

Jn5 (t) =

∫ t

0

G(Y n
s̄n , Vs̄n) [ω̇ns ds− dWs] ,

Jn6 (t) =

∫ t

0

[
G(Y n

s , Vs)−G(Y n
s̄n , Vs̄n)

]
ω̇ns ds−

∫ t

0

[
(5G)F +

1

2
(5G)G

]
(Y n

s̄n , Vs̄n)ds.

Gronwall lemma applied to the function ϕn defined by

ϕn(t) = E

(
sup
i2−n≤t

|Y n
i2−n − Zi2−n|2

)
,
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implies that

E
(

sup
0≤i≤2n

|Y n
i2−n − Zi2−n|2

)
≤ C

5∑
j=1

E
(

sup
0≤i≤2n

|Jnj (i2−n)|2
)
.

Burkholder’s inequality and Proposition 3.2 imply that E (supt |Jn1 (t)|2) ≤ C2−n,
since (2.15) is a particular case of (2.13). Scwartz’s inequality yields E (supt |Jn2 (t)|2) ≤
C‖h‖2

H2−n and E (supt |Jn3 (t)|2) ≤ C2−n. Since the functions (5G)F and (5G)G

are lipschitzians, the Proposition 3.2 implies that E (supt |Jn4 (t)|2) < ∞. Lemma
3.1 yields E

(
sup0≤k≤2n |Jn5 (k2−n)|2

)
= 0. Therefore, the proof is reduced to check

that

lim
n

E
(

sup
0≤k≤2n

∣∣∣∣∫ t

0

[
G(Y n

s , Vs)−G(Y n
s̄n , Vs̄n)

]
ω̇ns ds

−
∫ t

0

[
(5G)F +

1

2
(5G)G

]
(Y n

s̄n , Vs̄n)ds

∣∣∣∣2
)

= 0.

(3.7)

By Taylor’s formula, we have∣∣G(Y n
t , Vt)−G(Y n

t̄n
, Vt̄n)−5G(Y n

t̄n
)[Y n

t − Y n
t̄n

]
∣∣ < C|Y n

t − Y n
t̄n
|2

Let

Φn(s) =

∫ s

s̄n

[
F (Y n

u , Vu)− F (Y n
ūn , Vūn)

]
dWu +

∫ s

s̄n

[
G(Y n

u , Vu)−G(Y n
ūn , Vūn)

]
ω̇nudu

+

∫ s

s̄n

H(Y n
u , Vu)ḣudu+

∫ s

s̄n

B(Y n
u , Ru)du,

then

E
(

sup
1≤k≤2n

|Jn6 (t)|2
)
≤ C

6∑
j=1

Kn
j (t),

where

Kn
1 (t) = E

 sup
1≤k≤2n

∣∣∣∣∣
∫ k2−n

0

(
|Y n
s − Y n

s̄n|+ |Vs − Vs̄n|
)2 |ω̇ns |ds

∣∣∣∣∣
2
 ,

Kn
2 (t) = E

 sup
1≤k≤2n

∣∣∣∣∣
∫ k2−n

0

| 5G(Y n
s , Vs)Φn(s)||ω̇ns |ds

∣∣∣∣∣
2
 ,
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Kn
3 (t) = E

(
sup

1≤k≤2n

∣∣∣∣∣
∫ k2−n

0

(5G)F (Y n
s̄n , Vs̄n)

(∫ s̃n

s̄n

dWu

)
ω̇ns ds

−
∫ k2−n

0

(5G)F (Y n
s̄n , Vs̄n)ds

∣∣∣∣∣
2
 ,

Kn
4 (t) = E

 sup
1≤k≤2n

∣∣∣∣∣
∫ k2−n

0

(5G)F (Y n
s̄n , Vs̄n)

(∫ s

s̃n

dWu

)
ω̇ns ds

∣∣∣∣∣
2
 ,

Kn
5 (t) = E

 sup
1≤k≤2n

∣∣∣∣∣
∫ k2−n

0

(5G)G(Y n
s̄n , Vs̄n)

(∫ s̄n

s̃n

ω̇nudu

)
ω̇ns ds

∣∣∣∣∣
2
 ,

Kn
6 (t) = E

(
sup

1≤k≤2n

∣∣∣∣∣
∫ k2−n

0

(5G)G(Y n
s̄n , Vs̄n)

(∫ s

s̃n

ω̇nudu

)
ω̇ns ds

−1

2

∫ k2−n

0

(5G)G(Y n
s̄n , Vs̄n)ds

∣∣∣∣∣
2
 .

Proposition 3.2 and Lemma 3.2 imply that limnK
n
1 (t) = 0. Let K̂n(s) = 5G(Y n

s , Vs)Φ(s),
then Proposition 3.2 and Hölder’s inequality imply that if a > 1 and b > 1 are con-
jugate exponents and for any p ∈ [1;∞) and s ∈ [0; 1],

E
(
|K̂n(s)|2p

)
≤ [E (| 5G(Y n

s , Vs)|2pa)]
1
a
[
E|Φn(s)|2pb

] 1
b ≤ C

[
E|Φn(s)|2pb

] 1
b .

Therefore, in order to apply Lemma 3.2, it suffices to check that supn (E|Φn(s)|2p) ≤
α(n)2−np with limn α(n) = 0. Burkholdre’s and Hölder’s inequality and Proposition
3.2 yield

E (|Φn(s)|2p) ≤ CE
[∣∣∣∫ ss̄n (|Y n

s − Y n
s̄n|+ |Vs − Vs̄n|

)2
du
∣∣∣p

+2n
(∫ s̃n

s̄n

(
|Y n
s − Y n

s̄n|+ |Vs − Vs̄n|
)2p

du
)
|Ws̄n −Ws̄n−2−n∨0|2p

+2n
(∫ s

s̃n

(
|Y n
s − Y n

s̄n|+ |Vs − Vs̄n|
)2p

du
)
|Ws̃n −Ws̄n−|2p

+
(

supn

{(∫
I
|ḣu|2du

)p
;λ(I) ≤ 21−n

}
2−(n−1)(p−1) + 2−n(2p−1)

)
×
∫ s
s̄n

(1 + |Y n
u |2p)du

]
≤ C2−npα(n)
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where α(n) = 2−np + sup{(
∫
I
|ḣu|2du)p;λ(I) ≤ 21−n}, wich tends to zero when n

tends to∞. Thus Lemma 3.2 implies that limnK
n
2 = 0, and

Kn
3 = E

 sup
1≤k≤2n

∣∣∣∣∣∣
(k−2)∨0∑
i=0

(5G)F (Y n
(i−1)2−n∨0, V(i−1)2−n∨0)

[
(W(i−1)2−n −Wi2−n)2 − 2−n

]∣∣2)
≤

(2n−2)∑
i=0

E
(

(5G)F (Y n
(i−1)2−n∨0, V(i−1)2−n∨0)2

)
E
[
|W(i−1)2−n −Wi2−n|2

]
≤ C2n2−2n −→ 0 as n −→∞

then, limnK
n
3 = 0. A similar computation yields

Kn
6 = E

(
sup

2≤k≤2n

∣∣∣∣∣
k−2∑
i=0

(5G)G(Y n
i2−n , Vi2−n)

[[
22n

∫ (i+2)2−n

(i+1)2−n

∫ s

(i+1)2−n

du ds

] [
(W(i−1)2−n −Wi2−n)2 − 2−n−1

]]∣∣∣∣∣
2


≤ C2n2−2n →n→∞ 0

Finally, by Doob’s inequality and Proposition 3.2, we have

Kn
4 = E

(∣∣∣∫ 1

0
2n(s̃n + 2−n − s)(5G)F (Y n

s̃n , Vs̃n)[Ws̃n −Ws̄n ]dWs

∣∣∣2)
≤ C

∫ 1

0
E
(
|(5G)F (Y n

s̃n , Vs̃n)|2
)
E(|Ws̃n −Ws̄n|2)ds

≤ C2−n;

and for conjugate exponents a > 0 and b > 0

Kn
5 = E

(∣∣∣∫ 1

0
(5G)G(Y n

s̄n , Vs̄n)
(∫ s̃n

s̄n
ω̇ns ds

)
dws

∣∣∣2)
≤ C

∫ 1

0
E
(
|(5G)F (Y n

s̄n , Vs̄n)|2a
) 1

a E
(
|Ws̄n −W(s̄n−2−n)∨0|2b

) 1
b ds

≤ C2−n.

The proof of limn

(
sup1≤k≤2n K

n
5 (2−n)

)
= 0 is complete, and hence the desired

proposition follows. �

Proof of Proposition 3.4. For t = i2−n with 0 ≤ i ≤ 2n
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Ȳ n
t − Zt =

∫ t

0

[(F +G)(Ȳ n
s̄n , χs̄n)− (F +G)(Zs̄n , Vs̄n)]dWs +

∫ t

0

[H(Ȳ n
s̄n , χs̄n)

−H(Zs̄n , Vs̄n)]ḣsds+

∫ t

0

[I(Ȳ n
s̄n , χs̄n)− I(Zs̄n , Vs̄n)]ds

+

∫ t

0

([
B(Ȳs̄n , ψs) + ((5G)F +

1

2
(5G)G)(Ȳ n

s̄n , χs̄n)

]
−
[
B(Zs̄n , Rs) + ((5G)F +

1

2
(5G)G)(Zs̄n , Vs̄n)

])
ds

+
6∑
j=1

J̄nj (t),

where

J̄n1 (t) =

∫ t

0

(
F (Ȳ n

s , χs)− F (Ȳ n
s̄n , χs̄n)− [F +G](Zs, Vs) + [F +G](Zs̄n , Vs̄n)

)
dWs,

J̄n2 (t) =

∫ t

0

(
H(Ȳ n

s , χs)−H(Ȳ n
s̄n , χs̄n)−H(Zs, Vs) +H(Zs̄n , Vs̄n)

)
ḣsds,

J̄n3 (t) =

∫ t

0

(
I(Ȳ n

s , χs)− I(Ȳ n
s̄n , χs̄n)− I(Zs, Vs) + I(Zs̄n , Vs̄n)

)
ds,

J̄n4 (t) =

∫ t

0

(
B(Ȳ n

s , ψs)−B(Ȳ n
s̄n , ψs)−

[
B(Zs, Rs) + (5G)F +

1

2
(5G)G

]
(Zs, Vs)

+ B(Zs̄n , Rs)

[
(5G)F +

1

2
(5G)G

]
(Zs̄n , Vs̄n)

)
ds,

J̄n5 (t) =

∫ t

0

G(Ȳ n
s̄n , χs̄n) [ω̇ns ds− dWs] ,

J̄n6 (t) =

∫ t

0

[
G(Ȳ n

s , χs)−G(Ȳ n
s̄n , χs̄n)

]
ω̇ns ds−

∫ t

0

[
(5G)F +

1

2
(5G)G

]
(Ȳ n

s̄n , χs̄n)ds.

By Burkholder and Schwrtz inequalities, we have

|Ȳ n
t − Zt|2 ≤ C

[∫ t

0

(
|Ȳ n
s̄n − Zs̄n|

2 + |χs̄n − Vs̄n|2 + |ψs −Rs|2
)
ds+

6∑
k=1

K̄n
t

]
.

Proposition 3.1 and Gronwall inequality apply to α(t) = E
(
supi2−n≤t |Ȳ n

i2−n − Zi2−n|2
)

imply
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(3.8) E
(

sup
0≤i≤2n

|Ȳ n
i2−n − Zi2−n|

)
≤ C

6∑
k=1

E
(

sup
0≤i≤2n

|J̄nk (i2−n)|2
)
.

Furthermore, the rest of the demonstration is to prove that E(supi2−n J̄nj (t)) −→ 0

as n tend to∞ for j = 1 to 6. Thus, by Burkholder inequality, equations (3.2) and
(3.3), we have

(3.9) E(sup
t
|J̄n1 (t)|2) ≤ C2−n.

With the equations (3.2) and (3.3) and using the same argument of the proof of
the moments estimate Jnj (t) for j = 2 to 6, we obtain

(3.10)
6∑
j=2

J̄nj (t) ≤ C2−n.

The inequalities (3.8),(3.9) and (3.10) complete the proof as n tend to∞. �
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