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NEW BRANCH AND BOUND METHOD OVER A BOXED SET OF RN

Gasmi Boutheina1 and Benacer Rachid

ABSTRACT. We present in this paper the new Branch and Bound method with
new quadratic approach over a boxed set (a rectangle) of Rn. We construct an
approximate convex quadratics functions of the objective function to fined a lower
bound of the global optimal value of the original non convex quadratic problem
(NQP) over each subset of this boxed set. We applied a partition and technical
reducing on the domain of (NQP) to accelerate the convergence of the proposed
algorithm. Finally,we study the convergence of the proposed algorithm and we
give a simple comparison between this method and another methods wish have
the same principle.

1. INTRODUCTION

We consider the following non convex quadratic problem:

(NQP)

{
min f(x) = 1

2
xTQx+ dTx

x ∈ S ∩ (Df )

where:
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S =
{
x ∈ Rn : L0

i ≤ xi ≤ U0
i : i = 1, n

}
(Df ) = {x ∈ Rn : Ax ≤ b;x ≥ 0}

Q : is a real (n× n) non positive symetric matrix

A : is a real (n× n) symetric matrix

dT = (d1, d2, . . . , dn) ∈ Rn

bT = (b1, b2, . . . , bm) ∈ Rm

In our life, every things, every problems is create as a mathematic problems [5],
we can also take the quotes of Gualili "The world is created at mathematical lan-
guage or mathematical problems", specially "quadratic one".

In this paper we present a new rectangle Branch and Bound approach for solving
non convex quadratic programming problems were we construct a lower approxi-
mate convex quadratic functions of the objective function f over a boxed set of Rn

[2].
This lower approximate function is given to determine a lower bound of the

global optimal value of the original problem (NQP) over each subrectangle.
The paper is organised as follows:
In section 1, we give a simple introduction of our studies; in which we give and

define the standard form of our problem.
In section 2, we presente a new equivalent forms of the objective function pro-

posed as un lower approximate linear functions of the quadratic form over each
rectangle [6]. We can also proposed as an upper approximate linears functions,
but we must respect the procedur of calculate the lower and the upper bound of
the original principal rectangle S which noted by Sk =

[
Lk, Uk

]
⊆ Rnin the k-step

[4].
In section 3, we define a new lower approximate quadratics functions of the non

convex function over a rectangle to calculate a lower bound on the global optimal
value of the original no convex problem (NQP) [7].

In section 4, we give a new simple rectangle partitioning method and describe
rectangle reducing tactics [3].
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In section 5, we present a new Branch and Reduce Algorithm in order to solve
the original non convex quadratic problem (NQP).

In section 6, we study the convergence of the proposed Algorithm and we give a
simple comparison between this method and other methods which have the same
principle [1].

Finally, a conclusion is draw in section 7.

2. THE EQUIVALENT FORMS OF f OVER THE RECTANGLES

In this section we construct and define the equivalent form of the non convex
quadratic function which proposed as a lower approximate linear functions over
Sk =

[
Lk, Uk

]
. This work is proposed to determine the lower bound of the global

optimal value of (NQP).
Let λmin and λmax be the min eigenvalue and the max eigenvalue of the matrix

Q respectivelly, and we show the number θ that θ ≥ |λmin|.
The equivalent linear form of f is given by:

f(x) =
(
x− LK

)T
(Q+ θI)

(
x− LK

)
+ dTx− θ

n∑
i=1

x2i

+ 2
(
LK
)T

(Q+ θI)x−
(
LK
)T

(Q+ θI)LK ,

by the use of the lower bound Lk, and is given by:

f(x) =
(
x− UK

)T
(Q+ θI)

(
x− UK

)
+ dTx− θ

n∑
i=1

x2i

+ 2
(
UK
)T

(Q+ θI)x−
(
UK
)T

(Q+ θI)UK ,

by the use of the upper bound Uk of the rectangle Sk.
In the other hand, we have the following definitions:

Definition 2.1. Let the function f : C ⊆ Rn −→ R and S◦ ⊆ C ⊆ Rn a rectangle,
the convex envelope of the function f is given by:

fi(xi) = δixi + ηi : i = 1, n

with:
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δi =
fi(U

◦
i )− fi(L

◦
i )

U◦
i − L◦

i

: i = 1, n;

ηi = fi(L
◦
i )− δiL

◦
i : i = 1, n.

So, by the use of this definition the convex envelope of the function h(x) = (−x2j)
over the interval Sk

j =
[
Lk
j , U

k
j

]
is given by the function:

h(x) = −(Uk
j + Lk

j )xi + Lk
jU

k
j ,

which is a linear function, then we get the best linear lower bound of h(x) =
n∑

j=1

(−x2j) given by:

φSk(x) =
n∑

j=1

(−(Uk
j + Lk

j )xi + Lk
jU

k
j ) = −(Uk + Lk)Tx+ (Lk)TUk.

3. LOWER APPROXIMATE FUNCTIONS AND ERROR CALCULATION

By definition, the initial rectangle S0 is given by:

S0 =
{
x ∈ Rn : L0

i ≤ xi ≤ U0
i : i = 1, n

}
.

We subdivide this rectangle into two sub-rectangles defined by:

S+1 =
{
x ∈ Rn : L0

s ≤ xs ≤ h0s : L
0
j ≤ xj ≤ U0

j : j = 1, n : j ̸= s
}
,

S+2 =
{
x ∈ Rn : h0s ≤ xs ≤ U0

s : L0
j ≤ xj ≤ U0

j : j = 1, n : j ̸= s
}
,

where, we calculate the point hs by a normal rectangular subdivision (ω−subdi-
vision).

3.1. The lower approximate linear function of f over the rectangle SK: The
best lower approximate linear function of f over the rectangle SK is given in the
following theorem:

Theorem 3.1. [3]: Let the function f : C ⊆ Rn −→ R and the rectangle S0 ⊆ Rn

where C ⊆ S0 ⊆ Rn, the lower approximate linear function of f is given by:
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LSK (x) = (aSK )T x+ bSK ,

USK (x) = (aSK )T x+ bSK ,

where:

aSK = d+ 2(Q+ θI)LK − θ(LK + UK),

bSK = −(LK)T (Q+ θI)LK + θ(LK)T (UK),

aSK = d+ 2(Q+ θI)UK − θ(LK + UK),

bSK = −(UK)T (Q+ θI)UK + θ(LK)T (UK).

3.2. The new lower approximate quadratic convex function of f over the rec-
tangle SK: We use the preceding lower approximate linear function of f over the
rectangle SK to define the new lower approximate quadratic convex function of f
over the same rectangle by:

Definition 3.1.

Lquad(x) := LSK (x)− 1

2
K
(
UK − x

) (
x− LK

)
,

and:
Uquad(x) := USK (x)− 1

2
K
(
UK − x

) (
x− LK

)
,

where:

- K is a positive real number given by the spectral radius of the matrix (Q+ θI) ,

θ ≥ |λmin| ,
- LSK (x) the best lower approximate linear function of f over the rectangle
SK .

3.3. The New Lower Approximate Linear Function of f over the Rectangle
SK . By the use of the preceding new lower approximate quadratic function of f
over the rectangle SK we can define the new lower approximate linear function
of f over the same rectangle by:

Definition 3.2.
L̃quad(x) := LSK (x)− 1

8
Kh2,
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and:
Ũquad(x) := USK (x)− 1

8
Kh2,

with:
h :=

∥∥UK − LK
∥∥ .

3.3.1. The relation between the convex quadratic approximation and the lin-
ear one. We have the following theorem:

Theorem 3.2. The tow following inequality are satisfied:

L̃quad(x) := LSK (x)− 1

8
Kh2 ≤ Lquad(x) ≤ f(x),

Ũquad(x) := USK (x)− 1

8
Kh2 ≤ Uquad(x) ≤ f(x),

for all x ∈ (Df ) ∩ SK and h :=
∥∥UK − LK

∥∥ and
∥∥∥∂2f(x)

∂x2

∥∥∥ ≤ K (the regularity
condition).

Proof. Let the function g1 : Rn −→ R defined by:

g1(x) = L̃quad(x)− Lquad(x)

= LSK (x)− 1

8
Kh2 − (LSK (x)− 1

2
K
(
UK − x

) (
x− LK

)
)

=
1

2
K(−x2 + (LK + UK)x− LKUK − 1

4

∥∥UK − LK
∥∥2).

Passing to the first derivation of g1,then, we get:

∂g1
∂x

(x) =
1

2
K(−2x+ (LK + UK)).

Thus:

(
∂g1
∂x

(x) = 0) ⇐⇒ (x =
(LK + UK)

2
).

The critical point of the function g1is the middle point of the edge
[
LK , UK

]
, in

the other hand, the function g1 is concave, immediately, it reaches here max at the
middle point x∗ = (LK+UK)

2
of
[
LK , UK

]
, then we have:

g1(x) ≤ max
{
g1(x) : x ∈ (Df ) ∩ SK

}
= g1(x

∗) = 0.

Then,
L̃quad(x)− Lquad(x) ≤ 0.
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In the other hand, we define the function g2 : Rn −→ R given by:

g2(x) = f(x)− Lquad(x)

= f(x)− (LSK (x)− 1

2
K
(
UK − x

) (
x− LK

)
).

Passing to the first derivation of g2, then, we get:

∂g2
∂x

(x) =
∂f

∂x
(x)− ∂LSK

∂x
(x) +

1

2
K

∂

∂x
(
(
UK − x

) (
x− LK

)
)

=
∂f

∂x
(x)− aSK +

1

2
K

∂

∂x
(−x2 + (UK + LK)x− LKUK

=
∂f

∂x
(x)− aSK +

1

2
K(−2x+ (UK + LK)).

Then, passing to the second derivation:

∂2g2
∂x2

(x) =
∂2f

∂x2
(x)−K.

We have the condition:

∂2f(x)

∂x2
≤ K (the regularity condition).

Then, we obtain:
∂2g2
∂x2

(x) ≤ 0.

Thus, the function g2 is concave over SK ,and by this we have:

g2(x) ≥ min
{
g2(x) : x ∈ SK

}
= min

{
g2(L

K), g2(U
K)
}
= 0.

Then:
(g2(x) = f(x)− Lquad(x) ≥ 0) =⇒ Lquad(x) ≤ f(x).

Finally, we get:
L̃quad(x) ≤ Lquad(x) ≤ f(x) : x ∈ SK .

The same thing when we use the upper bound Uquad(x) with the equivalent linear
form of the objective function f and we obtain:

Ũquad(x) ≤ Uquad(x) ≤ f(x) : x ∈ SK .

□
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3.4. Approximation errors: We can estimate the approximation error by the dis-
tance between the non convex objective function f and here lower approximation
functions.

3.4.1. The linear approximation error: Is presented by the distance between the
function f and here new lower approximate linear function L̃quad over the boxed
set SK , then we have the following proposition:

Proposition 3.1. Let the function f : C ⊆ Rn −→ R where C ⊆ S0 ⊆ Rn and
θ ≥ |λmin| for this the matrix (Q+ θI) be semi-positive, then we have:

max
x∈SK∩(Df)

{∣∣∣f(x)− L̃quad(x)
∣∣∣} ≤

(
ρ (Q+ θI) + θ +

1

8
K

)∥∥UK − LK
∥∥2 ,

max
x∈SK∩(Df)

{∣∣∣f(x)− Ũquad(x)
∣∣∣} ≤

(
ρ (Q+ θI) + θ +

1

8
K

)∥∥UK − LK
∥∥2 .

Proof. We have:

f(x)− L̃quad(x)

=
(
x− LK

)T
(Q+ θI)

(
x− LK

)
+ dTx− θ

n∑
i=1

x2i

+2
(
LK
)T

(Q+ θI)x−
(
LK
)T

(Q+ θI)LK − (LSK (x)− 1

8
Kh2)

=
(
x− LK

)T
(Q+ θI)

(
x− LK

)
+ dTx− θ

n∑
i=1

x2i

+2
(
LK
)T

(Q+ θI)x−
(
LK
)T

(Q+ θI)LK

−((d+ 2(Q+ θI)LK − (LK + UK))Tx+ (−(LK)T (Q+ θI)LK + (LK)TUK))

+
1

8
Kh2

=
(
x− LK

)T
(Q+ θI)

(
x− LK

)
+

1

8
Kh2 + θ((LK + UK)Tx− xTx− (LK)TUK).

In the other hand, we have:(
x− LK

)
(UK − x) = (LK + UK)Tx− xTx− (LK)TUK .
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Then we get:

f(x)− L̃quad(x) =
(
x− LK

)T
(Q+ θI)

(
x− LK

)
+

1

8
Kh2 + θ

(
x− LK

)
(UK − x).

So: ∥∥∥f(x)− L̃quad(x) : x ∈ SK ∩ (Df )
∥∥∥

= max
x∈SK∩(Df)

{∣∣∣f(x)− L̃quad(x)
∣∣∣}

=

∥∥∥∥(x− LK
)T

(Q+ θI)
(
x− LK

)
+

1

8
Kh2 + θ

(
x− LK

)
(UK − x)

∥∥∥∥
∞

≤
∥∥∥(x− LK

)T
(Q+ θI)

(
x− LK

)∥∥∥+ θ
∥∥(x− LK

)
(UK − x)

∥∥+ 1

8
Kh2

≤ (ρ (Q+ θI)
∥∥UK − LK

∥∥2) + θ
∥∥UK − LK

∥∥2 + 1

8
Kh2

≤ (ρ (Q+ θI) + θ +
1

8
K)h2 : h2 =

∥∥UK − LK
∥∥2 .

The same thing whene we use the upper bound Uquad(x) with the equivalent linear
form of the objective function f and we obtain:∥∥∥f(x)− Ũquad(x) : x ∈ SK ∩ (Df )

∥∥∥ ≤ (ρ (Q+ θI)+ θ+
1

8
K)h2 : h2 =

∥∥UK − LK
∥∥2 .

Then, the proof is complete. □

3.4.2. The quadratic approximation error: Is presented by the distance between
the function f and here lower approximate quadratic function L̃quad over the rec-
tangle SK , then we have the following proposition:

Proposition 3.2. let the function f : C ⊆ Rn −→ R where C ⊆ S ⊆ Rn and
θ ≥ |λmin| for this the matrix (Q+ θI) be semi-positive, then we have:

max
x∈SK∩(Df)

{|f(x)− Lquad(x)|} ≤
(
ρ (Q+ θI) + θ +

1

2
K

)∥∥UK − LK
∥∥2 ,

max
x∈SK∩(Df)

{|f(x)− Uquad(x)|} ≤
(
ρ (Q+ θI) + θ +

1

2
K

)∥∥UK − LK
∥∥2 .
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Proof. By the definition of the function Lquad(x) as well as the meaning of φSk(x),
we have:

f(x)− Lquad(x) = f(x)− LSK (x) +
1

2
K
(
UK − x

) (
x− LK

)
=

(
x− LK

)T
(Q+ θI)

(
x− LK

)
+ (

1

2
K + θ)(UK − x)(x− LK).

Then:

∥f(x)− Lquad(x)∥∞
= max

{
f(x)− Lquad(x) : x ∈ SK ∩ (Df )

}
≤

∥∥∥(x− LK
)T

(Q+ θI)
(
x− LK

)∥∥∥
∞
+

∥∥∥∥(12K + θ)(UK − x)(x− LK)

∥∥∥∥
∞

≤
(
ρ (Q+ θI) + θ +

1

2
K

)∥∥UK − LK
∥∥2 .

The same thing whene we use the lower bound Uquad(x) with the equivalent linear
form of the objective function f and we obtain:

∥f(x)− Uquad(x)∥∞ ≤
(
ρ (Q+ θI) + θ +

1

2
K

)∥∥UK − LK
∥∥2 .

So, the proof is complete. □

3.5. The quadratic approximate problem (QAP).

3.5.1. Construction of the interpolate problem (IP). It’s clear that:

f(x) ≥ max
{
Lquad(x), Uquad(x) : ∀x ∈ (Df ) ∩ SK

}
= γ(x).

This function present the best quadratic lower bound of f , similarly, we construct
the following interpolate problem by:

(LBP)

{
αh = max x̂

x̂ ∈ {Lquad(x), Uquad(x)} : ∀x ∈ (Df ) ∩ SK
.

And the convex quadratic problem define by:

(ACQP)

{
minαh

∀x ∈ (Xf ) ∩ SK
.

The question is: what’s the relation between the optimal values f(x̃), f(x∗) and
Lquad(x̃)?
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We have the following proposition:

Proposition 3.3. Let the function f : C ⊆ Rn −→ R and S0 ⊆ Rn where C ⊆ S ⊆
Rn, we have:

0 ≤ f(x̃)− f(x∗) ≤ (ρ(Q+ θI) + θ +
1

2
K)
∥∥UK − LK

∥∥2
Lquad(x̃) ≤ f ∗ ≤ f(x̃),

with f ∗ = f(x∗) is the global optimal value of the original problem (NQP) and x̃ be
the optimal solution of (ACQP).

Proof. From the previous proposition, we have:

f(x)− Lquad(x) ≤
(
ρ (Q+ θI) + θ +

1

2
K

)∥∥UK − LK
∥∥2 : x ∈ SK ∩ (Df ) .

And for x = x̃:

f(x̃)− Lquad(x̃) ≤
(
ρ (Q+ θI) + θ +

1

2
K

)∥∥UK − LK
∥∥2 .

Thus:

f(x̃)− f ∗ + f ∗ − Lquad(x̃) ≤
(
ρ (Q+ θI) + θ +

1

2
K

)∥∥UK − LK
∥∥2 .

And:

f(x̃)− f ∗ ≤
(
ρ (Q+ θI) + θ +

1

2
K

)∥∥UK − LK
∥∥2 + (Lquad(x̃)− f ∗).

As well as Lquad(x̃)− f ∗ ≤ 0, we have:

0 ≤ f(x̃)− f ∗ ≤
(
ρ (Q+ θI) + θ +

1

2
K

)∥∥UK − LK
∥∥2 .

In the other hand, we have:{
Lquad(x̃)− f ∗ ≤ 0

f(x̃)− f ∗ ≥ 0
=⇒ (Lquad(x̃) ≤ f ∗ ≤ f(x̃)).

□

3.5.2. Question: is the solution x̃ present the best lower bound of the global
optimal solution of (NQP)?.

We have the following proposition:
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Proposition 3.4. Let take the estimate function noted by:

E(x) := f(x)− Lquad(x).

For all x ∈ SK ∩ (Df ) , the next inequality is satisfied:

E(x̃) ≥ f(x̃)− f ∗.

Proof. We have:

f(x̃)− f ∗ = f(x̃)− Lquad(x̃) + Lquad(x̃)− f ∗

= E(x̃) + Lquad(x̃)− f ∗.

And, from the previeus proposition we have:

Lquad(x̃) ≤ f ∗ ≤ f(x̃).

So:
Lquad(x̃)− f ∗ ≤ 0.

Then:
f(x̃)− f ∗ ≤ E(x̃).

□

Lemma 3.1. If E(x̃) is a small value, then f(x̃) is an acceptable approximate value
of the global optimal value f ∗ = f(x∗) over the rectangle SK . Similarly, we can find
that the point x̃ is the global approximate solution of the global optimal solution x∗

of the original problem (NQP) over SK .

Proof. We have:
f(x̃)− f ∗ ≤ E(x̃).

So, let take that E(x̃) is a small value we get:

f(x̃)− f ∗ ≤ E(x̃) << ε with ε −→ 0.

Then:
∥f(x̃)− f ∗∥ << ε.

And:
lim
ε−→0

∥f(x̃)− f ∗∥ = 0.
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Immediately, we get that f(x̃) is an acceptable approximate value of the global
optimal value f ∗, then we obtain that the point x̃ is a global approximate solution
of the global optimal solution x∗ of the original problem (NQP) over the rectangle
SK . □

In the other hand, the rank of the non convex function f over the new rectangle
(sub-rectangle) SK is small then here rank over the initial rectangle S, by this, the
value E(x̃) will be very small.

4. THE TECHNICAL REDUCTION (TECHNICAL ELIMINATE):

We get to describe the rectangle partition by the following steps:

Step(0): Let SK =
{
xk ∈ Rn : LK

i ≤ xki ≤ UK
i : i = 1, n

}
with xk ∈ SK .

Step(1): We find the point hs given by:

hs = max
{
(xi − LK

i )
(
UK
i − xi

)
: i = 1, n

}
.

Step(2): If hs ̸= 0 then we divide the rectangle SK into two subrectangle on edge[
LK
s , U

K
s

]
by the point hs, else, we divide the rectangle SK into two subrectangle

on the longest edge
[
LK
s , U

K
s

]
by the middle point LK+UK

2
which is yet noted as hs.

Step(3): The rest rectangle is yet noted as SK .

Now, we describe the rectangle reducing tactics to accelerate the convergence of
the proposed global optimization algorithm (ARSR).

Remark 4.1.
1. All linear constraints of the problem (NQP) are given by:

n∑
j=1

aijxj ≤ bi : i = 1, n.

2. The rectangle SK be also recorded as constraint to be added to the problem (NQP).
3. The minimum and the maximum of each function:{

ψ(xi) = aisxs: i = 1, n

xi ∈
[
LK
s , U

K
s

] .
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Are obtaind at the extremes points of the same interval.

Linearity Based Range Reduction Algorithm:

This algorithm is given to reduce and delete the rectangle SK .

program (LBRRA)
Let I ′

k := {1, 2, 3, . . . , n} the set of the index, Pk := P
for 1 ≤ i ≤ n do

compute rUi :=
n∑

j=1

max
{
aijL

k
j , aijU

k
j

}
compute rLi :=

n∑
j=1

min
{
aijL

k
j , aijU

k
j

}
if rLi > bi then

stop. the problem (NQP) is infeasible over SK (there are no solution of
(NQP) over SK , because, SK is deleted From the subrectangle set produced

through partitioning of the rectangleS◦)
else

if rUi < bi then
the constraint is redundant.

I
′

k := I
′

k − {i}
Pk := Pk −

{
x ∈ Rn : (ai)

Tx ≤ bi
}

else
for 1 ≤ j ≤ n do

if aij > 0 then

Uk
j := min

{
Uk
j ,

bi−rLi+min{aijLk
j ,aijU

k
j }

aij

}
else

Lk
j := max

{
Lk
j ,

bi−rUi+max{aijLk
j ,aijU

k
j }

aij

}
end if

anddo
end if

end if
enddo

end program
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5. ALGORITHM (ARSR): BRANCH AND BOUND
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6. THE CONVERGENCE OF THE ALGORITHM (ARSR)

In this section, we study the convergence of the proposed algorithm (ARSR) and
we give a simple comparison between the linear approximate and the quadratic
one. In the other hand, we give some examples to expline the proposed algorithm.

The convergence of the proposed algorithm:

The proposed algorithm in section 5 is different from the one in ref [3] in lower-
bounding (quadratic approximation), and added to the rectangle-reducing strat-
egy. We will prove that the proposed algorithm be convergent.

Theorem 6.1. If the proposed algorithm terminates in finite steps, then a global
optimal solution of the problem (NQP) is obtained when the algorithm terminates.

Proof. Let the result out coming when the algorithm terminate be xk, then, imme-
diately we have ax=Bk when terminating at the- k-step, so xk is a global optimal
solution of the problem(NQP). □

Theorem 6.2. If the algorithm generates an infinite sequence
{
xk
}
k∈N∗, then every

accumulation piont x∗ of this sequence is a global optimal solution of the problem
(NQP)(i.e: the global optimal solution is not unique).

Proof. Let x∗ be an accumulation point of the sequence
{
xk
}
k∈N∗ and let{

xkp
}
k∈N∗,p∈N∗ be a subsequence of the sequence

{
xk
}
k∈N∗ converging to x∗. ob-

viously in the proposed algorithm, the lower sequence {ak}k∈N∗ is mono-increase
and the upper sequence {Bk}k∈N∗ is mono-decrease, and we have:

αk = lquad(x
k), Bk = f

(
xk
)
.

We can write:
αk = lquad(x

k) ≤ min
x∈Sk

f(x) ≤ Bk = f
(
xk
)
.

So, both {xk}k∈N∗ and {Bk}k∈N∗ are convergent and:

lim
k→∞

Bk = lim
q→∞

Bkq = lim
k→∞

f
(
xk
)
= lim

q→∞
f
(
xkq
)
= f (x∗) .
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Without loss of generality, we assume that xkq is the solution of the problem (LBP)
on Skq which satisfies Skq+1 ⊂ Skq , q ≥ 1, by the proprieties of the proposed rectan-
gle partition which is exhaust, i.e.:

lim
q→∞

Skq = x∗.

We have:

0 ≤ Bkq − αkq = f
(
xkq
)
− lquad(x

k
q) ≤

(
ρ (Q+ θI) + θ +

1

2
K

)∥∥UK
q − LK

q

∥∥2 .
Then:

lim
q→0

(f
(
xkq
)
− lquad(x

k
q)) = lim

q→0
(Bkq − αkq) = 0.

Thus, we have:

lim
q→0

(Bkq − αkq) = lim
q→0

(αkq −Bkq − (Bkq − αkq)) = 0.

So:
lim
k→0

αk = lim
q→0

αkq = lim
q→0

(Bkq − (Bkq − αkq)) = lim
q→0

Bkq ,

and:
lim
k→0

αk = lim
q→0

Bkq = lim
q→∞

f
(
xkq
)
= f (x∗) .

Therefore, the point x∗ is an global optimal solution of the problem (NQP). □

6.1. The type and rank of convergence: The proposed algorithm converge to
the approximate solution of the optimal global solution of (NQP) with a quadratic
vitesse over SK .

In this method, the rank of the non convex function f over the rectangle SK

will be lower then his rank over the initial one S◦, thus immediately give that the
value E(x̃) is very small.

By this result, the solution point x̃ is an global approximate solution to the global
optimal solution x∗over SK .

To accelerate the convergence of the proposed algorithm we used the technical
of partitioning and reducing where in every step we eliminate a rectangle and a
linear constraint, and this give us a rectangle smaller then the initial one and we
denoted it by SK .
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7. COMPARISON BETWEEN “BRANCH AND BOUND” AND “ METHOD (DCT)”

7.1. Method (DCT). In this section, we present a global method noted by “the
dual canonical transformation method (DCT)”, this method transforms a non con-
vex quadratic problem with linear constraints (NP-hard problem) to a algebraic
system easy to resolve. This system is obtained by the use of the canonical duality
notion wish we give the same KKT points of the two problems.

Let take the non convex quadratic optimization problem given by:{
min f(x) = 1

2
xTQx− dTx

Ax ≤ b; x ≥ 0
where

Q ∈ Rn×n indefinite matrix
A ∈ Rn×m arbitrary matrix

b, x vertex of Rn

The fundamental idea of this method is in the chose of the operator:

Λ(x) : Rn → Rm.

By this the objective function f be write as the following canonical form:

f(x) = Φ(x,Λ(x)).

Define over the set Rn × Rm to R in the condition that the function be canonic at
every one (point) x and y.

We need the following definitions:

Remark 7.1. The canonical function Φ(x,Λ(x)) can represent by:

Φ(x,Λ(x)) = W (y)− F (y) : y ∈ Rm.

This function is defined over Rm × Rn to R.

In the other hand, we use the dual Λ−canonical transformation to calculate the
conjugate function of F (y) given by:

F
Λ
(y∗) =

{
(Λ(x))Ty∗ − F (x) : ΛT

t (x)y
∗ −DF (x) = 0

}
,

with:
ΛT

t (x) = DΛ(x).

By the use of this notions, we can construct the associate dual function of f by:

fd(y∗) = F
Λ
(y∗)−W

∗
(y∗).
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7.1.1. Method (DCT) for the Non Convex Quadratic Problems: We must add
the regularity condition define by the choice of the parameter µ > 0 in order to
guarantee the existence of the global optimal solution, this condition is given by:

|x|2 ≤ 2µ.

Then, we have:

(PQP)

{
min f(x) = 1

2
xTQx− dTx

Ax ≤ b; x ≥ 0 ; |x|2 ≤ 2µ
.

We can transform the problem (PQP) as:{
min f(x) = 1

2
xTQx− dTx

Ax ≤ b; 1
2
|x|2 ≤ µ

,

with:

A =

(
A

−1 −1 −1 · · · −1

)
∈ R(n+1)×n and b =

(
b

0

)
∈ Rn+1.

Then, we applied the method (DCT) over the associate parametric problem
(PQP) in the place of the non convex quadratic problem (NQP) like follows:

Step(1): The form of the operator Λ(x)

For this type of problem the canonical geometric operator:

Λ(x) : Rn → Rm × R.

Is given by:

y = Λ(x) =

(
Ax,

1

2
|x|2
)

= (ε, ρ) ∈ Rm × R,

and, it’s presented as an Vertex-Value application. By this, the domain of (PQP)
will be define by:

DPQP = {y = (ε, ρ) ∈ Rm × R : ε ≤ b, ρ ≤ µ}

Step(2): The structure of the function W (y)

In this case, the function W (y) is given by the Indicative function of the domain
DPQP like follows:
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W : Rn → R

y 7→ W (y) =

{
0 if y ∈ DPQP

+∞ else
.

Then, it’s clear that the function W (y) is always convex from the propriety of the
indicative function. In the other hand, the function W (y) is proper and s-lower
continuous over the set DPQP .

By this we have:

Step(3): The structure of the function W
∗
(y∗)

W
∗
(y∗) = sup

y∈DPQP

{
⟨y, y∗⟩ −W (y)

}
= sup

ε≤b
sup
ρ≤µ

{
(ε, ρ)T (ε∗, ρ∗)−W (y) : y ∈ DPQP

}
= sup

ε≤b
sup
ρ≤µ

{
εT ε∗ + ρTρ∗ : y ∈ DPQP

}
=

{
εT ε∗ + ρTρ∗ if ε∗ ≥ 0, ρ∗ ≥ 0

+∞ else
.

Step(4): The structure of the function F
Λ
(y∗)

The function F (y) is a linear function, and we have:

f(x) = Φ(x,Λ(x)) = W (y)− F (y) : y ∈ Rm × R.

Then, we get:
f(x)−W (y) = −F (y) : y ∈ Rm × R,

and for y ∈ DPQP we have:
−f(x) = F (y).

Immediately, the Λ−canonical conjugate of the function F (y) is define by:

F
Λ
(y∗) = sup

y∈DPQP

{
yTy∗ − F (y) : ΛT

t (x)y
∗ −DF (x) = 0 : x ∈ DPQP

}
= sup

y∈DPQP

{
(Λ(x))Ty∗ − F (y) : ΛT

t (x)y
∗ −DF (x) = 0 : x ∈ DPQP

}
,

and, from the first step we have:

y = Λ(x) =

(
Ax,

1

2
|x|2
)

= (ε, ρ) ∈ Rm × R.
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Thus:

F
Λ
(y∗) = sup

y∈DPQP

{
(Λ(x))Ty∗ − F (Λ(x)) : ΛT

t (x)y
∗ −DF (x) = 0 : x ∈ DPQP

}
= sup

y∈DPQP

{
1

2
xT (Q+ ρ∗I)x− (d− AT ε∗)Tx

}
: x ∈ DPQP

=
−1

2
(d− AT ε∗)T (Q+ ρ∗I)−1(d− AT ε∗),

with x = (Q+ ρ∗I)−1(d− AT ε∗).

Step(5): The structure of the dual canonical function fd(y∗) :

From the forth step, we define the dual canonical function by:

fd(y∗) = F
Λ
(y∗)−W

∗
(y∗)

=
−1

2
(d− AT ε∗)T (Q+ ρ∗I)−1(d− AT ε∗)− εT ε∗ − ρTρ∗ : (ε∗, ρ∗) ∈ Rm × R.

Then, the parametric dual problem is given by:

(CPD)

{
max fd (ε∗, ρ∗)

ε∗ ≥ 0, ρ∗ ≥ 0, det(Q+ ρ∗I) ̸= 0
.

We can find an equivalence between the primal problem and the dual one, that’s
given by the following theorem:

Theorem 7.1. [1]:If y∗ = (ε∗, ρ∗) be a (K.K.T) point of the parametric dual problem
(CPD) then the vertex

x̃ = (Q+ ρ∗I)−1(d− AT ε∗)

is a (K.K.T) point of the parametric primal problem (PQP), and we have:

fd(y∗) = f(x̃).

Remark 7.2. Let take id be the number of the negative distincts eigenvalues of the
matrix Q then, the quadratic problem be non convex if id > 0.

7.2. Convergence Theorem of the Method (DCT):. We can suppose the ques-
tion ”what’s the relation between the optimal solutions of the parametric problem
(PQP), the primal problem (NQP) and the parametric dual problem (CPD)?

To give the answer we have this theorem:
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Theorem 7.2. [1]:Let Q a matrix with the index id > 0 and {λi}i=1,p: p ≤ n a
distincts eigenvalues in the order:

λ1 < λ2 < . . . < λid < 0 ≤ λid+1 < λid+2 < . . . < λp

and let (ε∗, ρ∗) be a K.K.T point of the parametric dual problem (CPD), and:

x̃ = (Q+ ρ∗I)−1(d− AT ε∗)

a K.K.T point of the prametric primal problem (PQP), then we have:

1. If ρ∗i > −λ1 > 0 then, the vertex (ε∗, ρ∗) is a maximum of fd(y∗) over D+
PQP

if and only if the vertex x̃ is a minimum of f(x) over Ds
PQP , and we write:

f(x̃i) = min
x∈Ds

PQP

f(x) = max
(ε∗,ρ∗)∈D+

PQP

fd(ε∗, ρ∗) = fd (ε∗, ρ∗)

2. If 0 ≤ ρ∗i < −λid then, the vertex (ε∗, ρ∗) is a maximum of fd(y∗) over D−
PQP

if and only if the vertex x̃ is a global maximum of f(x) over DPQP , and we
write:

f(x̃i) = max
x∈DPQP

f(x) = max
(ε∗,ρ∗)∈D−

PQP

fd(ε∗, ρ∗) = fd (ε∗, ρ∗)

3. If 0 < ρ∗i < −λid then, the vertex (ε∗, ρ∗) is a minimum of fd(y∗) over Di
PQP

if and only if the vertex x̃ is a global minimum of f(x) over DPQP , and we
write:

f(x̃i) = min
x∈DPQP

f(x) = min
(ε∗,ρ∗)∈Di

PQP

fd(ε∗, ρ∗) = fd (ε∗, ρ∗)

7.3. Examples.

7.3.1. Example 1. Let the non convex quadratic function define by:

f(x) = (x1 + 1)2 + (x2 + 1)2 − 5

2
(x1 + x2)− 3

(
x21 + x22

)
− 2.

So, we have:

Lquad(x) = (x21 + x22) +
3

2
(x1 + x2)− 2

L̃quad(x) =
1

2
(x1 + x2)− 2− 1

8
(3),
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with:

f(x) : broun whith black

Lquad(x) : red whith yellow

L̃quad(x) : darkgray whith navy

FIGURE 1. The graphic representation of the non convex quadratic
function f , the linear approximate function and the convex qua-
dratic lower bound function over the rectangle [−1, 0] ⊆ Rn.

It’s clear that the convex quadratic approximate function is between the objec-
tive function and the linear approximate one of the same function over he rectan-
gle S0 = [−1, 0] ⊆ Rn.

7.3.2. Example 2.: Let take the following quadratic programming problem:{
min f(x) = 1

2
ax2 − dx

|x| ≤ r
.

So, if a ≥ 0 then, the problem be convex and this case is simple to resolve, however,
if a < 0.

Let a = −6, d = 4 and r = 1.5, then:{
min f(x) = −3x2 − 4x

|x| ≤ 1.5
.
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FIGURE 2

Candidate(s) for extrema:
{

4
3

}
, at

{[
x = −2

3

]}
This function accept one and only extrema in the point x = −2

3
with the asso-

ciate value f(x) = 4
3

And, by the use of the dual canonical transformation, we can define the associate
dual forme of f by:

fd(ρ∗) =
−1

2
d(a+ ρ∗)−1d− µρ∗ =

−1

2
(16)(−6 + ρ∗)−1 − 1

2
(1.5)2ρ∗

= −(1.125ρ∗ + (
8

ρ∗ − 6
)).

In the other part, the dual canonical problem is given by:

(DCP)

{
max fd(ρ∗) = −(1.125ρ∗ + ( 8

ρ∗−6
))

ρ∗ ≥ 6
.
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f(x) : black

fd(ρ∗) : broun

Candidate(s) for extrema: {−0.75,−12. 75} , at {[ρ∗1 = 3. 333 3] , [ρ∗2 = 8. 666 7]}.
So, we have the following results:
functions extremas candidates for extremas

primal −0, 6666 1, 3333

dual
3, 3333

8, 6667

−0, 7500

−12, 7500

With:

x̃1 = (a+ ρ∗1)
−1d = −1, 4998,

x̃2 = (a+ ρ∗2)
−1d = 1, 5000.

Immediately, we have this table:
Dual extremas ρ∗i Primal solutions x̃i Dalues f(x̃i) Dual values

3, 3333 −1, 4998 −0, 7490 −0, 7500

8, 6667 1, 5000 −12, 7500 −12, 7500

In the other hand, we find the following results:

ρ∗1 = 3, 3333 < −a = 6,
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with:
f(x̃1) = min

x∈DPQP

f(x) = min
(ρ∗)∈Di

PQP

fd(ρ∗) = fd
(
ρ∗1
)
= −0, 75,

and:
ρ∗2 = 8, 6667 > −a = 6,

with:
f(x̃2) = min

x∈Ds
PQP

f(x) = max
(ρ∗)∈D+

PQP

fd(ρ∗) = fd
(
ρ∗2
)
= −12, 75.

So, by the use of the "Branch and Bound method" the convex approximate qua-
dratic form of f is given by:

Lquad(x) =
1

2
x2 +

7

4
x,

and the convex approximate quadratic problem associate to the non convex one is
given by: {

minLquad(x) =
1
2
x2 + 7

4
x

x ∈
[
0, 1

2

] ,

where we applied the reducing and eliminate technic over the initial rectangleS◦ :=[−1
2
, 1
2

]
, and we find that the rest rectangle is:S1 :=

[
0, 1

2

]
.

So, we have this graph:

FIGURE 3. The graphic representation of the primal function f , the
associate dual function fd and the convex quadratic approximate
function Lquad(x)
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f(x) : black

fd(ρ∗) : broun

(−12, 75) and (−0, 75) : lightred

Lquad(x) : lightblue

So, over the rectangle S1 :=
[
0, 1

2

]
we find that:

- (1
2
) is the minimum point of the function f and it is the maximum point

of the convex quadratic function Lquad and the minimum point of the as-
sociate dual function fd over the rectangle S1 :=

[
0, 1

2

]
.

- (0) is the maximum point of f and the minimum point of the convex qua-
dratic function Lquad and:f(0) = Lquad(0) < fd(0).

8. CONCLUSION

In this paper we present a new rectangle Branch and Bound approach for solv-
ing non convex quadratic programming problems were we propose a new lower
approximate convex quadratic functions of the objective quadratic function f over
an n−rectangle.

This lower approximate is given to determine a lower bound of the global opti-
mal value of the original problem (NQP) over each rectangle.
To accelerate the convergence of the proposed algorithm we used a simple two-
partition and reducing technic over the subrectangles SK in the k-step [3].

In the other hand, we present an other global method to resolve the problem
(NQP), this method is "the dual canonical transformation (DCT)". This method
transform a non convex quadratic problem to an Algebraic system.
It’s always converge to the global optimal solution over the realisable domain
which is a compact set of Rn.

The new algorithm B&B where we used the convex quadratic approximation of
the non convex quadratic function f over a rectangle SK =

[
LK , UK

]
⊆ Rn with

θ ≥ |λmin| and it is not empty, convex, close, and bounded (compact) of Rn is best
then the method (DCT) over the relative Interior of the realisable domain of the
function wich we optimized.
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We can use the Branch and Bound method (Separation and evaluation) where
we write the function f like a (DC) form (deference of tow convex functions) and
we approximate the concave part by a convex quadratic function by the use of the
lower bound or the upper bound of the realisable rectangle SK which have a very
small rank and it’s considered as a confianced region, and by this we assured the
existence of the optimal global solution of the original problem (NQP).

In the other hand, the "Branch and Bound method" obtain the approximate
optimal solution of the optimal global solution of the original problem (NPQ)
with a quadratic vitesse of convergence over the realisable set SK , but the (DCT)
method find the optimal global solution over the Sphere of this realisable set SK .
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