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ON THE NUMBER OF VERTICES OF INTEGER CONVEX POLYTOPES

Ravelonirina Hanitriniaina Sammy Grégoire1 and Rakoto Jean Jolly

ABSTRACT. The aim of this paper is to propose a polynomial that we call ”char-
acteristic polynomial” of an integer convex polytope of dimension d (d ≥ 1). This
polynomial makes it possible to count the number of vertices of an integer con-
vex polytope without using the Schläfli symbol. We give after that the algebraic
characteristics of this polynomial.

1. INTRODUCTION

In the book XIII cf. [2] about his studies of elements, Euclid gives a description
and construction of Plato’s solids. Unlike Plato, he demonstrated that there are
five and only five regular polyhedra known as Plato’s polyhedra cf. [5, 6]. The
classification and the numerical constraints of these regular polyhedra give rise to
the famous formula of Euler: f − a− s = 2 where f, a, s denote respectively the
numbers of faces, edges and vertices of a spherical polyhedron cf. [2]. And from
the Schläfli symbol, we can calculate f, a and s such that f = 4n

2m+2n−mn
, a = mf

2
,

s = mf
n

[2] where (m,n) denotes the Schläfli symbols, varying according to regular
polyhedra (tetrahedron, cube, icosahedron, octahedron, dodecahedron). And in
our work, we proposed a characteristic polynomial, a polynomial resulting from
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the special polynomial cf. [7, 8]. This polynomial makes it possible to calculate
the number of vertices of an integer convex polytope of dimension d (d ≥ 1)
without using the symbol of Schläfli. The characteristic polynomials of regular
polyhedra are obtained for dimensions superior or equals to one (d ≥ 1). But
from the dimension d = 6 (d ≥ 6), the characteristic polynomials appear only if
the dimensions of the polytopes follow an arithmetic sequence of reason four and
of first term equals to six, defined by: dn = 4n+6, ∀n ∈ N. And the constant terms
of these polynomials define an arithmetic sequence of reason two and of first term
equals to four. Let us denote by cn, the constant terms of these characteristic
polynomials ; for d ≥ 6, we have: cn = 2n+ 4, for all n ∈ N. The most remarkable
characteristics of these polynomials give us a great interest in the particular study
of this third generation of Ehrhart’s polynomial.

2. PRELIMINARIES

2.1. Ehrhart’s polynomial. In the following development we denote by P the
convex polytope with integer vertices, d its dimension (d ≥ 1) and P ◦ the interior
of the polytope P .

Definition 2.1. [1] For each integer convex polytope with integer vertices P , we can
associate an Ehrhart’s polynomial fP which makes it possible to count the number of
integer coordinate points inside and on the edge of the polytope.

Theorem 2.1. [1] There exists a unique polynomial fP with real variable n of degree
d with rational coefficients such that:

(1) fP (n) = card(nP ∩ Zd) for all n ≥ 1;
(2) Moreover, we have fP (0) = 1;
(3) fP (−n) = (−1)dcard(nP ◦ ∩ Zd) for all n ≥ 1 (reciprocity law).

Proof. Cf. [3]. □

The coefficients of Ehrhart’s polynomials

Proposition 2.1. [1] Let fP be an Ehrhart polynomial such that:

fP (n) = cdn
d + cd−1n

d−1 + · · ·+ 1.
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Then we have:

cd = vold(P ) and cd−1 =
1

2

∑
F⊂P

vold−1(F ).

The sum relates to the (d− 1)−faces of P .

Proof. Cf. [1]. □

Examples 1. Cf. [7]

- d = 2: Let be a triangle with vertices (0, 0), (2, 0) and (0, 2). Then

fP (n) = card(nP ∩ Z2) =

(
n+ 2

2

)
=

1

2
n2 +

3

2
n+ 1,

where

(
n

k

)
denotes the combination of k elements chosen from among the n

elements (n ≥ k) .
- d = 3: Let be a tetrahedron with vertices (0, 0, 0), (0, 1, 1), (1, 0, 1) and,
(1, 1, 0). Then

fP (n) = card(nP ∩ Z3)

= δ0

(
n+ 3

3

)
+ δ1

(
n+ 2

3

)
+ δ2

(
n+ 1

3

)
+ δ3

(
n

3

)
.

with δ0 = δ2 = 1 and δ1 = δ3 = 0. Also, fP (n) = 1
3
n3 + n2 + 5

3
n + 1 and

fP (−n) = (−1)3card(nP ◦ ∩ Z3) = 1
3
n3 − n2 + 5

3
n− 1.

2.2. Family of Ehrhart’s polynomials [7, 8]. Let P be a convex polytope with
integer vertices, and d its dimension (d ≥ 1). The family of Ehrhart polynomials
of degree k and parameter m, variable n, denoted gm,d,k(n) is written cf. [4]:

gm,d,k(n) =
d∏

j=d−k+1

(n+ j) +
k−1∏
j=0

(n− j),

where d is the dimension of P , with:

- k = d
2
, if d is pair;

- k = ⌊d+1
2
⌋, if d is odd.
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The polynomial gm,d,k(n) can also be written in the form

gm,d,k(n) = (m+ 1)nk + . . .+ Jd

= akn
k + ak−1n

k−1 + . . .+ Jd,

with ak = m+ 1: the coefficient of the term of the highest degree and

Jd =
d∏

j=d−k+1

j = gm,d,k(0) =
k−1∏
i=0

ck,i = d(d− 1) . . . (d− k + 1)

the constant term of the family of these polynomials.

Examples 2. Cf. [7]

- m = 2, d = 2, k = 2.
Let be a polytope of dimension 3. The family of the associated polynomials is:

g2,3,2(n) = 3n2 + 3n+ 6.

- m = 9, d = 7, k = 4.
Let be a polytope of dimension 7. Then the corresponding family of Ehrhart
polynomials is

g9,7,4(n) = 10n4 + 32n3 + 278n2 + 584n+ 840.

2.3. Special polynomial [7,8].

Definition 2.2. Let us denote by pk(n) the polynomials resulting from the family
of Ehrhart polynomials of variables n, of degree k without a constant term whose
coefficients are the factors of the decomposition of the constant term Jd of gm,d,k(n)

into products of decreasing factors. We write

pk(n) = ck,0n
k + ck,1n

k−1 + . . .+ ck,k−1n =
k−1∑
i=0

ck,in
k−i.

Definition 2.3. We call a special polynomial noted ps, the polynomial which is
written:ps(n) = pk(n) + a0 where a0 ≡ Jd mod (d+ k).

Example 1. [7]

- d = 3, k = 2.
Let be a polytope P of dimension 3. The associated special polynomial is
ps(n) = 3n2 + 2n+ 1.
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- d = 7, k = 4.
Let be a polytope P of dimension 7, its special polynomial is ps(n) = 7n4 +

6n3 + 5n2 + 4n+ 1.

Remark 2.1.

- The degree of the family of Ehrhart polynomials and of the special polynomial
is inferior to the degree of Ehrhart’s polynomial for the same dimension.

- The family of Ehrhart’s polynomials and the special polynomial have the same
degree but coefficients that can be different for the same dimension.

3. CHARACTERISTIC POLYNOMIALS

3.1. Integer convex polytopes and characteristic polynomials.

Definition 3.1. A simplex of dimension i is the convex hull of (i+1) points in Rn not
located in an affine hyperplane, each of its faces of dimension (i− 1) is also a simplex
and has exactly i vertices.

Definition 3.2.

- A polytope in Rn is the convex hull of a finite number of points in Rn.
- A convex polytope is integer if the coordinates of its vertices are integers.

Example 2. The five regular convex polyhedra known as Plato’s polyhedra are: the
cube, the tetrahedron, the icosahedron, the octahedron and the dodecahedron.

3.2. Characteristic polynomials.

Definition 3.3. We call a polynomial characteristic of an integer convex polytope P

of dimension d, the polynomial denoted pc makes it possible to count the number of
vertices of this convex polytope, defined by:

- For 1 ≤ d ≤ 2, pc is of degree k , with k integer such that
- If d is pair, the degree of pc is k = d

2
and pc(n) = knk + k + 1 and k

divides 2k + 1.
- If d is odd, the degree of pc is k = ⌊d+1

2
⌋, and pc(n) is written by: pc(n) =

knk + k and k | 2k (k divides the sum of the coefficients of pc).
- For d ≥ 3, the degree of pc is k − 1, k integer such that
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- if d is odd,

pc(n) = k +
k−1∑
i=0

(k − i)nk−1−i, for all n, k ≥ 1

and k | k +
k−1∑
i=0

(k − i) (k divides the sum of the coefficients of pc);

- otherwise,

pc(n) = (k − 1) +
k−1∑
i=0

(k − i)nk−1−i, for all n, k ≥ 1

and k | (k − 1) +
k−1∑
i=0

(k − i) (k divides the sum of the coefficients of pc).

Example 3. Let be a convex polytope of dimension d (d ≥ 1)

- If P is a segment of extremities A and B. dimP = 1, that is to say: d = 1,
the degree of the characteristic polynomial pc is 2

2
= 1, pc(n) = n+ 1, 1 | 2.

- If P is a polygon (for example a regular triangle), d = 2 and k = 1, pc(n) =
n+ 2, and 1 | 3.

- If P is a polyhedron (cube, tetrahedron, octahedron, icosahedron, dodecahe-
dron), d = 3, k = 2, pc(n) = 2n+ 2, and 2 | 4.

3.3. Evaluation of pc for some values of n, for d = 3. To know the number
of vertices of some polyhedra, we evaluate the characteristic polynomial of the
polyhedron for some values of n. pc(n) = 2n + 2, polyhedron P of dimension
d = 3.

- If n = 1, pc(1) = 4, then P is a tetrahedron with 4 vertices.
- If n = 2, pc(2) = 6, then P is an octahedron (6 vertices).
- If n = 3, pc(3) = 8, then P is a hexahedron or cube which has 8 vertices.
- If n = 5, pc(5) = 12, then P is an icosahedron (12 vertices).
- If n = 9, pc(9) = 20, then P is a dodecahedron which has 20 vertices.

Remark 3.1. The degree of the characteristic polynomial is inferior to the degree of
the special polynomial for the same dimension d (d ≥ 3).
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Proposition 3.1. The dimensions of convex polytopes which allow to have character-
istic polynomials define an arithmetic sequence (dn)n∈N of reason 4 and first term 6

from dimension d (d ≥ 6), dn = 4n+ 6, ∀ n ≥ 0.

Proof. Easy, just use the induction reasoning. □

Proposition 3.2. Let P be a convex polytope of dimension d (d ≥ 1) with integer
vertices. The roots of the characteristic polynomials of P satisfy the Conjecture of
Beck and al., That is: ”All the roots αi of pc(n) satisfy the following relation: −d ≤
Re(αi) ≤ d− 1, for all i, where αi ∈ C and Re(αi) denote the real part of αi” cf. [4].

Proof. Any special polynomial of dimension d satisfies the Conjecture of Beck and
al. cf. [7]. However, the characteristic polynomials of a convex polytope with
integer vertices of dimension d are obtained from special polynomials. Thus, by
transitivity, the roots of the characteristic polynomials verify the Conjecture of
Beck and al. Which completes the proof. □

3.4. Properties of characteristic polynomials.

Proposition 3.3. Let P be a convex polytope with integer vertices of dimension d

(d ≥ 3) and pc the characteristic polynomial of P , of degree (k − 1).

i) The coefficient of the term with the highest degree of pc(n) is equal to k and
the highest degree is (k − 1).

ii) The constant term denoted cn of pc is equal to k + 1 and forms an arithmetic
sequence of reason 2 and of first term equals to 4, that is to say: cn = 2n+4,
for all n ∈ N and d ≥ 6, k ≥ 3.

iii) The coefficient of the term with the highest degree of pc divides the sum of the
coefficients.

Proof.
i) and iii). It is sufficient to use the definition of p.
ii) Let cn be the constant term of pc and a sequence (cn)n∈N with term equals to
cn = k + 1, d ≥ 6, k ≥ 3. Then

pc(n) = k +
k−1∑
i=0

(k − i)nk−1−i, for all n, k ≥ 1.
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- for i = k − 1,

cn = k + [k − (k − 2)]nk−1−(k−1)

= k + (k − k + 1)nk−1−k+1

cn = k + 1

- for

k = 3, d = 6, c0 = 3 + 1 = 4

k = 5, d = 10, c1 = 5 + 1 = 6

...
...

...

k = n, dn, cn = 2n+ 4.

By induction on n, we have : cn = 2n+ 4.

□

3.5. Sequence of characteristic polynomials. Let P be a convex polytope with
integer vertices, of dimension dn such that dn = 4n + 6 and kn = 2n + 3; for all
n ≥ 0, the coefficient of the term with the highest degree of pc.

Examples 3. dn = 4n+ 6, kn = 2n+ 3, for all n ∈ N.

- If n = 0,

p0 = k0 +

k0−1∑
i=0

(k0 − i)nk0−1−i, for all n ∈ N,

p0 = 3n2 + 2n+ 4.

- If n = 1 then p1 = 5n4 + 4n3 + 3n2 + 2n+ 6.
- . . . .
- And so on.

Proposition 3.4. For any sequence of characteristic polynomials (pn)n∈N:

i) the dominant coefficients form a sequence, denoted (kn)n∈N, arithmetic of
reason 2 and of first term equal to 3 and of general term kn such that:

kn = 2n+ 3, for all n ∈ N,
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ii) the constant terms define an arithmetic sequence denoted (cn)n∈N of reason 2

and of first term equals to 4:

cn = 2n+ 4.

iii) - the coefficients of the term of degree one to the term of the highest degree
of the sequence (pn)n∈N form an arithmetic progression of reason 1 and
of first term equals to 2.

- the degrees of the sequence of polynomials (pn)n∈N form an arithmetic
progression of reason 1 and of first term equals to kn + 1.

Proof. Immediate. □

Theorem 3.1. For any integer convex polytope P of dimension d (d ≥ 6), there
exists a sequence of characteristic polynomials (pn)n∈N satisfying i), ii) and iii) in the
previous Proposition.

Proof. Immediate in accordance with the Definition 3.3 and Proposition 3.4. □

Remark 3.2. Two integer convex polytopes P and P ′ of respective dimension d and
d′ with d < d′ can have the same number of vertices of different values of n.

Example 4. Let P and P ′ be two integer convex polytopes of respective dimensions
d = 3 and d′ = 10.

The characteristic polynomials are:

- for P of dimension 3 then pc(n) = 2n+ 2.
- pc(n) = 5n4 + 4n3 + 3n2 + 2n + 6. And for P ′ of dimension 10 so we have
pc(n) = 5n4 + 4n3 + 3n2 + 2n+ 6.

The number of vertices of P and P ′ for n = 9 and n = 1 respectively are: pc(9) =

20 vertices, P is then a dodecahedron and pc(1) = 20 vertices, P and P ′ have the
same number of vertices with different values of n.

4. CONCLUSION AND DISCUSSION

For a given integer convex polytope of dimension d where (d ≥ 1), there is a
relation between the different polynomials obtained from P .
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- For the Ehrhart polynomial fP (n): it is a polynomial whose degree is equal
to the dimension d of the integer convex polytope P .
The polynomial fP (n) makes it possible to count the number of integer
points inside and on the edge of the integer convex polytope P .

- For the family of Ehrhart polynomials gm,d,k(n), Higashitani, in Theorem
2.1 of paragraph 2, pages 620 cf. [4], constructs in a very clever way a
convex polytope with integer vertices of dimension d whose Ehrhart poly-
nomial fP (n) of degree d satisfies a polynomial of degree k such that:

gm,d,k(n) =
d∏

j=d−k+1

(n+ j) +m

k−1∏
j=0

(n− j),

where m ≥ 1, d ≥ 2 and k =
d

2
if d is pair, but k =

d+ 1

2
if d is odd.

The family of Ehrhart’s polynomials gm,d,k(n) allows Higashitani with his
numerical programs to find counterexamples to the conjecture of Beck and
al.

The degree of gm,d,k(n) is inferior to the degree of fP (n). We say that
gm,d,k(n) is a ”first generation” polynomial of Ehrhart’s polynomial fP .

- The special polynomial ps(n) cf. [7,8] is a polynomial resulting from gm,d,k(n)

of degree k, of variable n, built from the decomposition into product of de-
creasing factors of the constant term of the family of Ehrhart’s polynomials
gm,d,k(n).

Any special polynomial satisfies the conjecture of Beck and al. cf. [7]. It
is a ”second generation” polynomial of Ehrhart’s polynomial fP .

- For the characteristic polynomial pc(n), it is a polynomial of degree (k−1),
of variable n, obtained from the special polynomial ps. This polynomial
makes it possible to count the number of vertices of an integer convex
polytope P of dimension d (d ≥ 1).

It is a ”third generation” polynomial of fP .

Thus, our study leads, at the theoretical level, to the construction of a polynomial
model: the characteristic polynomial pc which should be programmed from an
algorithm. And the polynomials, as modeling tools of suitable modeling for the
linear system play an important role for their properties in numerically solving an
optimization or decision problem. Even today, the design and then the calculation
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of control laws for aeronautical or space systems (transport plane, war plane,
missiles, launchers, satellites, etc.) are often carried out by the techniques from
the linear world.

In perspective, we suggest that we can apply the characteristic polynomials in
the design of reliable telecommunication networks, for example in network topol-
ogy: the bus topology.
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