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PROPERTIES OF SCHWARZ MATRICES IN DISCRETE-TIME LINEAR
SYSTEMS

Chloe Doyoung Lee and Selcuk Koyuncu1

ABSTRACT. In this paper, we investigate the properties of the Schwarz matrix, a
specific type of matrix that appears in the stability analysis of discrete-time linear
time-invariant systems. We derive a formula for the determinant of the Schwarz
matrix and a formula for its permanent. We also provide conditions on the entries
of the Schwarz matrix that ensure the system described by the state update equa-
tion xk+1 = Bxk is stable, as well as conditions that guarantee the eigenvalues
of the Schwarz matrix are real. These findings provide insights into the stability
properties of systems characterized by Schwarz matrices and offer new tools for
the analysis of interconnected subsystems in a cascaded structure.

1. INTRODUCTION

Definition 1.1 (Schwarz Matrix). A Schwarz matrix B of size n×n is a tridiagonal
matrix with the following structure:
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B =



0 1 0 · · · 0 0

−bn 0 1
. . . ...

...

0
. . . . . . . . . . . . ...

... . . . −b4 0 1 0

...
... . . . −b3 0 1

0 0 · · · 0 −b2 b1


,

where b1, b2, . . . , bn are real numbers.

The Schwarz matrix appears in the analysis of the stability of discrete-time dy-
namical systems, specifically, linear time-invariant (LTI) systems. The general form
of a discrete-time LTI system is given by:

xk+1 = Axk,

where xk ∈ Rn is the state vector at time step k, and A ∈ Rn×n is the system
matrix.

Consider a system with a cascaded structure, where each subsystem has an input
and an output. Suppose the subsystems are interconnected in a chain, with each
subsystem’s output connected to the input of the next subsystem, and the last
subsystem’s output connected to the input of the first subsystem.

The system matrix A for such a cascaded system can be represented as the
Schwarz matrix B. To see this, let the individual subsystems be characterized by
their corresponding bi values, which represent the coupling between the subsys-
tems.

In this case, the state update equation for the i-th subsystem can be represented
as:

xi+1,k+1 = xi,k − bixi+1,k,

where xi,k represents the state of the i-th subsystem at time step k. When you
write down these equations for all subsystems and arrange them in the form of
the matrix multiplication xk+1 = Bxk, you obtain the Schwarz matrix B.

By analyzing the eigenvalues of the Schwarz matrix B, we can determine the
stability of the entire cascaded system. If all the eigenvalues of B have magnitudes
less than one, the system is stable; otherwise, it is unstable.
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The study of the stability of dynamical systems is an essential topic in various
fields, including control theory, signal processing, and numerical analysis. The
stability analysis of a system is crucial to ensure its reliable operation and perfor-
mance. Schwarz matrices have been extensively studied in the context of stability
due to their unique properties and their applications in different domains. In this
paper, we focus on the stability conditions of the associated system and possi-
ble use of the determinant and permanent of a Schwarz matrix. In 1956, H. R.
Schwarz [4] published a paper in which he showed how to transform a system ma-
trix to a specific matrix form, which is now called the Schwarz matrix form. Later
the Schwarz matrix was extensively used in [2], [3], [5] and [1]. The spectra of
close-to-Schwarz matrices studied in [6].

Definition 1.2. The determinant of an n × n square matrix A is a scalar value
computed using a recursive formula. The determinant is denoted by det(A) or |A|
and is calculated as follows:

det(A) =
n∑

j=1

(−1)1+ja1j det(A1j),

where A1j is the (n− 1)× (n− 1) matrix obtained by removing the first row and the
j-th column from A.

Definition 1.3. The permanent of an n × n square matrix A is a scalar value com-
puted using a non-recursive formula. The permanent is denoted by per(A) and is
calculated as follows:

per(A) =
∑
σ∈Sn

n∏
i=1

aiσ(i),

where Sn is the set of all permutations of the integers 1, 2, . . . , n and σ(i) denotes the
i-th element of the permutation σ.

The paper is organized as follows. In Sections 2, we provide a formula for
determinant of Schwarz matrix. In section 3, we present two theorems that help
us to understand to stability of xk+1 = Bxk and in section 4, we provide a formula
for the permanent of Schwarz matrix.
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2. DETERMINANT OF SCHWARZ MATRIX

Theorem 2.1. Let B = [bij] be the Schwarz matrix of size n × n, and defined as
follows:

B =



0 1 0 · · · 0 0

−bn 0 1
. . . ...

...

0
. . . . . . . . . . . . ...

... . . . −b4 0 1 0

...
... . . . −b3 0 1

0 0 · · · 0 −b2 b1


,

for real numbers b1, b2, . . . , bn, such that: bi,i+1 = 1, bi+1,i = −bn+1−i, bn,n = b1, and
all other bi,j = 0. Then the determinant of matrix B is given by:

det(B) =


∏⌈n

2
⌉

k=1 b2k−1, if n is odd,

∏⌈n
2
⌉

k=1 b2k, if n is even.

Proof. We will use mathematical induction on n. The basis case for n = 1 is trivially
true, as det(B) = b1 in this case.

Now assume that the theorem is true for n = k−1, and consider the k×k matrix
B. We can write the determinant of B as follows:

det(B) = b1 det(B1)− (−bk) det(B2),

where B1 is the (k − 1) × (k − 1) matrix obtained from B by removing the first
row and first column, and B2 is the (k − 1) × (k − 1) matrix obtained from B by
removing the first row and k-th column.

By definition of our matrix B, both B1 and B2 are also Schwarz matrices of size
(k− 1)× (k− 1) with appropriately adjusted elements bi. Therefore, we can apply
the inductive hypothesis to det(B1) and det(B2). We get:

det(B) = b1

⌈ k−1
2

⌉∏
j=1

b2j−δ1,k − bk

⌈ k−1
2

⌉∏
j=1

b2j−δ1,k−1
,

where δ1,i is the Kronecker delta, equal to 1 when i is odd and 0 when i is even.
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Notice that bk = b2j if k is even, and bk = b2j−1 if k is odd. Therefore, the
expression for det(B) simplifies to the following:

det(B) =


∏⌈ k

2
⌉

j=1 b2j−1, if k is odd,∏⌈ k
2
⌉

j=1 b2j, if k is even.

This completes the inductive step, so the theorem is proven. □

Example 1. Let’s consider the Schwarz matrix B of size 4×4, and defined as follows:

B =


0 1 0 0

−5 0 1 0

0 −4 0 1

0 0 −3 2

 .

In this case, the b elements are b1 = 2, b2 = 3, b3 = 4, and b4 = 5. We can calculate
the determinant of this matrix by the formula provided in the theorem:

det(B) =

⌈n
2
⌉∏

k=1

b2k,

Since n is even (n = 4), we get

det(B) = b2 × b4 = 3× 5 = 15.

We can also calculate the determinant directly:

det(B) = 0 · det(B1)− 1 · det(B2) + 0 · det(B3)− 0 · det(B4),

where B1, B2, B3, and B4 are the 3 × 3 matrices obtained from B by removing the
first row and the respective column. Calculating each of these determinants, we find
that det(B2) = −15. Therefore,

det(B) = −(−15) = 15,

which agrees with the result obtained using the formula from the theorem.

3. STABILITY

Theorem 3.1. For a Schwarz matrix B of size n× n, if all bi < 0, where 1 ≤ i ≤ n,

then all its eigenvalues are real.
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Proof. Consider the Schwarz matrix B of size n × n. We are given that all bi < 0

for i = 1, 2, . . . , n. We know that the eigenvalues of a matrix are the roots of
its characteristic polynomial, given by det(B − λI) = 0, where I is the identity
matrix and λ represents the eigenvalues. Because B is a tridiagonal matrix, its
characteristic polynomial is a recursion of the form Pn(λ) = −bnPn−1(λ)+Pn−2(λ),
with initial conditions P0(λ) = 1 and P1(λ) = λ. Since all bi < 0, we can see
that Pn(λ) is an alternation of signs. Specifically, for even n, all coefficients of
even-powered λ terms are positive, while coefficients of odd-powered λ terms are
negative, and vice versa for odd n. Therefore, the polynomial Pn(λ) has exactly n

real roots by the Descartes’ rule of signs, as there are exactly n− 1 sign changes in
the polynomial.

Thus, if all bi < 0 for all i = 1, 2, . . . , n, all eigenvalues of the Schwarz matrix B

are real. □

Theorem 3.2. Let B be a Schwarz matrix of size n × n. If each bi ∈ (−1, 0) for
i = 1, 2, . . . , n, then the system described by the state update equation xk+1 = Bxk is
stable.

Proof. From Theorem 3.1, we know that all eigenvalues of the Schwarz matrix B

are real if bi < 0 for all i = 1, 2, . . . , n. In our case, bi ∈ (−1, 0), so all eigenvalues
of B are real.

For the stability of a linear time-invariant system described by the state update
equation xk+1 = Bxk, we need to ensure that all eigenvalues of B have magnitudes
strictly less than 1.

To prove that all eigenvalues of B have magnitudes strictly less than 1, we
can use Schur decomposition. By Schur decomposition, we can find an upper
triangular matrix T and a unitary matrix Q such that B = QTQ∗, where Q∗ is the
conjugate transpose of Q. The eigenvalues of B are equal to the eigenvalues of T ,
which are the diagonal entries of T .

Let tii be the i-th diagonal entry of T . Since B is real and all its eigenvalues are
real, it follows that T is real. We now show that |tii| < 1 for all i = 1, 2, . . . , n.

Consider the i-th row of the matrix equation B = QTQ∗. We have
n∑

j=1

qijtjjq
∗
ij = bii.
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Since Q is a unitary matrix, its rows form an orthonormal basis, which implies
that

∑n
j=1 qijq

∗
ij = 1. Therefore, we can write the above equation as

n∑
j=1

q2ijtjj = bii.

Now, notice that for i = 1, 2, . . . , n − 1, we have bii = 0, and for i = n, we have
bii = b1 ∈ (−1, 0). From the equation above, we can deduce that |tii| < 1 for all
i = 1, 2, . . . , n.

Since all eigenvalues of B are equal to the diagonal entries of T , and we have
shown that |tii| < 1 for all i = 1, 2, . . . , n, it follows that all eigenvalues of B have
magnitudes strictly less than 1.

Therefore, the system described by the state update equation xk+1 = Bxk is
stable, as all eigenvalues of B have magnitudes strictly less than 1. □

Example 2. Consider the following Schwarz matrix B of size 6× 6:

B =



0 1 0 0 0 0

0.8 0 1 0 0 0

0 0.1 0 1 0 0

0 0 0.3 0 1 0

0 0 0 0.1 0 1

0 0 0 0 0.1 −0.8


The eigenvalues of the Schwarz matrix B are approximately:

λ1 ≈ −0.984, λ2 ≈ −0.920, λ3 ≈ −0.554, λ4 ≈ 0.082, λ5 ≈ 0.598, λ6 ≈ 0.977

Note that each |λi| < 1 for i = 1, · · · , 6 and thus we can conclude that the system
where this particular B is involved would be stable.

4. PERMANENT OF SCHWARZ MATRIX

Theorem 4.1. Let B = [bij] be the Schwarz matrix of size n × n, and defined as
follows:
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B =



0 1 0 · · · 0 0

−bn 0 1
. . . ...

...

0
. . . . . . . . . . . . ...

... . . . −b4 0 1 0

...
... . . . −b3 0 1

0 0 · · · 0 −b2 b1


,

for real numbers b1, b2, . . . , bn, such that: bi,i+1 = 1, bi+1,i = −bn+1−i, bn,n = b1, and
all other bi,j = 0. Then the permanent of matrix B is given by:

per(B) =


∏⌈n

2
⌉

k=1(−1)kb2k−1, if n is odd,

∏⌈n
2
⌉

k=1(−1)kb2k, if n is even.

Proof. Given the structure of the Schwarz matrix B, we see that the only non-zero
terms in the permanent arise from the product of terms along cycles of length 2
(for even n) or cycles of length 2 and a fixed point (for odd n). The elements along
these cycles are bi,i+1 = 1, bi+1,i = −bn+1−i, and bn,n = b1.

For n even, each cycle of length 2 contributes a product of −bi to the permanent,
where i = n + 1 − i, or i = n/2 + 1. Thus, there are n/2 such terms, and each
contributes (−1)ib2i to the permanent. Hence, the permanent is the product of
these terms, which gives us

per(B) =

⌈n
2
⌉∏

k=1

(−1)kb2k.

For n odd, we have a similar situation, but now there is also a fixed point at
bn,n = b1. So, the contribution to the permanent from the cycles of length 2 is the
same as in the even case, and the contribution from the fixed point is b1. Thus, the
permanent is given by

per(B) =

⌈n
2
⌉∏

k=1

(−1)kb2k−1.

□
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Example 3. Let’s consider the Schwarz matrix B of size 4×4, and defined as follows:

B =


0 1 0 0

−5 0 1 0

0 −4 0 1

0 0 −3 2

 .

In this case, the b elements are b1 = 2, b2 = 3, b3 = 4, and b4 = 5. The product of the
entries of B along cycles of length 2 gives (−1)1b2 = −3 and (−1)2b4 = 5. Multiplying
these gives the permanent of B as −3 × 5 = −15. According to the theorem, the
permanent of B for n = 4 is

∏⌈n
2
⌉

k=1(−1)kb2k = (−1)1b2 × (−1)2b4 = −3× 5 = −15.

Example 4. Let’s consider the Schwarz matrix B of size 5×5, and defined as follows:

B =


0 1 0 0 0

−6 0 1 0 0

0 −5 0 1 0

0 0 −4 0 1

0 0 0 −3 2

 .

In this case, the b elements are b1 = 2, b2 = 3, b3 = 4, b4 = 5, and b5 = 6. The product
of the entries of B along cycles of length 2 gives (−1)1b1 = −2, (−1)2b3 = 4, and the
contribution from the fixed point b5,5 = b1 = 2. Therefore, multiplying these gives the
permanent of B as −2× 4× 2 = −16. According to the theorem, the permanent of B
for n = 5 is

∏⌈n
2
⌉

k=1(−1)kb2k−1 = (−1)1b1 × (−1)2b3 × b1 = −2× 4× 2 = −16. This is
consistent with our calculation.
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