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ABSTRACT. Whatever the sample size, the Galambos copula does not change. It
remains constant. This is quite singular. To demonstrate this, we’ll show that the
generalized Galambos copula is completely independent of sample size. Unlike
the copula of Gumbel, Ali-Michael and Haq, and certainly others, whose general-
ization depends on sample size, the Galambos copula is special. Unlike Gumbel’s,
Galambos’s generalized copula is not size-dependent.

1. INTRODUCTION

After publishing an initial article on the generalisation of Gumbel’s law and
Ali-Michael and Haq’s law, we found that other private laws had been adopted.
One of these is Galambos’s law. Given its importance, we thought we’d extend
our discussion to it. In this article, we shall show that unlike other copulas, such
as Gumbel’s and Ali-Michael and Haq’s, for which we have proposed generalised
forms, Galambos’s has a particular generalised form. It does not differ from the
initial copula.

So whatever the size of the sample chosen, the Galambos copula remains un-
changed. Indeed, it is in our quest to propose a generalised Galambos copula
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that we arrive at this fact, which must certainly have an appreciable statistical im-
pact, particularly in the choice of financial models likely to provide us with more
advantages.

With this new article, we intend to continue our drive to strengthen the notion
of copula, particularly by taking sample size into account. This has the advantage
of opening up a broad spectrum to the notion of copula.

From our point of view, in statistics, sample management is very important. It
allows us to project phenomena onto a wider dimension which, ultimately, bor-
ders on the notions of physics because it concerns the quantity of the thing, and
therefore the mass or weight of the thing. To ignore this would be a major failing
in Statistics. So to talk about samples is to talk about their size.

It is common to consider the size of a random variable. So often, in fact, we
talk about the size of the random variable. For example, we talk about univariate
variables and multivariate variables. Statistical formulae are often restricted to
these two situations. Rarely do we think of combining random variables to form
a block or a vector, based on samples of a certain size. They can be chosen to be
independent, identically distributed and to follow the same distribution. Similarly,
they can be chosen as dependent and lead to copulas. Looking at the problem in
this way, several combinations may be possible, leading to other structures with
more or less statistical advantages.

In our opinion, this is all the more important as the management of the data of
a random variable is just as important as that of the combination of random vari-
ables between them, which are more applications, unlike statistical data, which
are qualitative or quantitative entities.

We therefore believe that it is essential to take account of sample size both at
the level of the random variable alone and at the level of their combination.
However, the sample size must be sufficiently representative to produce convincing
results. This is where our proposed law, which takes sample size into account,
comes into its own.

In short, the multidimensional management of statistical data or random vari-
ables is a practice that aids good analysis and decision-making. The generalisation
of copulas is therefore one of the ways of analysing these data and putting them
together in order to study their dependence.
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Taking sample size into account can only be an added advantage

2. PRELIMINARIES

As a reminder, although I already mentioned it in the previous article, the notion
of copula took off in 1959, when the American Sklar, wanting to solve the difficulty
encountered by Maurice Fréchet, used it for the first time.

In reality, in probability theory, when the random variables X1, . . . , Xn are inde-
pendent, their joint distribution function is trivially calculated by simply multiply-
ing the different marginal distribution functions F1, . . . , Fn i.e. :

F (x1, . . . , xn) = F1(x1) . . . Fn(xn).

However, in practice, as random variables are not always independent, as is often
the case for financial risks where variables are linked to each other, researchers
have invented this new function which they have named: copula.

Sklar was the first to introduce it. He proposed this distribution function which,
in reality, is an entity linking the different margins of random variables in the
specific case where they are dependent on each other. Since then, copulas have
come a long way. They make it possible to objectively couple the marginal laws of
random variables and to study their dependence, thus playing a fundamental role
in the resolution of problems inherent in the dependence of random variables,
particularly those encountered in the fields of finance, hydrology, biology, etc.
Since the Galambos copula is discussed in this article, we’ll be placing special
emphasis on it.

In addition, since the Galambos copula, like the Archimedean copulas, are all
part of the family of extreme value copulas, and all form part of the Archimax
copulas, in order to better understand them, we will review them all.

3. COPULE ARCHIMAX

See [2, 4, 5].

Definition 3.1. A bivariate function is an Archimax copula if and only if it is of the
form:

pCρ(u, v) = ρ−1[(ρ(u) + ρ(v))A(
ρ(v)

ρ(u) + ρ(v)
)], ∀u, v ∈ [0, 1],
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with

1. A:[0, 1] → [1
2
, 1] such that max (0, 1− t) ≤ A(t) ≤ 1, ∀t ∈ [0, 1].

2. ρ : [0, 1] → [0,+∞[ is a convex, decreasing function which verifies ρ(1) = 0

with the following convention:

ρ(0) = 0, ρ(0) = lim
t→0+

ρ(t), and ρ−1(s) = 0, ∀s ≥ ρ(0).

Remark 3.1. Extreme value copulas and Archimedean copulas are all in the family
of Archimax copulas. In fact, if we put ρ(t) = ln(1

t
), the copula Cρ obtained is an

extreme value copula. Cρ(u, v) = exp[ln(uv)A( ln v
ln(uv)

)]. Moreover, if we put A(t) = 1,
we find the form of the Archimedean copulas. We have Cρ(u, v) = ρ−1(ρ(u) + ρ(v)).

Copule archimédienne

See [1, 2, 5, 6].

Definition 3.2. Any archimedean copula is characterized by dependence on a gener-
ating function such that: C(u1, . . . , ud) = (ρ−1)(ρ(u1) + · · ·+ ρ(up))) if

∑d
i=1 ρ(ui) ≤

ρ(0), and C(u1, . . . , ud) = 0, otherwise ρ−1 is the inverse of the generator ρ. Basically,
for a copula to be said to be Archimedean, it is necessary and sufficient that for d ≥ 0

and
∑d

i=1 ρ(ui) ≤ ρ(0), C(u1, . . . , ud) = ρ−1(ρ(u1) + · · · + ρ(ud)) and nowhere else.
Can the random variables u and v take on different values between 0 and 1.

Remark 3.2. Archimedean copulas are used in many applications because of their
ease of handling. Furthermore, for ρ to be a generator of an Archimedean copula, it
must be a continuous, convex and strictly decreasing function, in other words it must
be of class C2 so that ρ(1) = 0, ρ

′
(u) ≤ 0 and ρ

′′
(u) > 0.

Remark 3.3. There are actually several copulas of this type, but the best known
and most widely used are the Gumbel, Clayton and Frank copulas. In reality, what
differentiates them from one another is their generator.

3.1. Extreme value copulas.

Definition 3.3. Copulas of this type are those which verify the relationship: C(uk
1, u

k
2) =

Ck(u1, u2) for all k positive.

Remark 3.4. To construct a distribution of two-dimensional extreme values, all we
need to do is couple the margins derived from the theory.
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Corollary 3.1. Given X1, . . . , Xn, n random variables whose respective distribution
functions are: F1(x1), . . . , Fn(xn) and let H be the distribution function of the vector
(X1, . . . , Xn), there exists a function C such that:

C(u1, . . . , un) = H(F−1
1 (u1), . . . , F

−1
n (un)), ∀(u1, . . . , un) ∈ In.

Corollary 3.2. In the bivariate case, for F and G the marginal distribution functions
linked respectively to X and Y, and H the joint distribution of F and G, there exists a
copula C such that:

C(u, v) = H(F−1(u), G−1(v)), ∀u, v ∈ I2.

4. GALAMBOS COPULA

Definition 4.1. Let (X,Y) be a pair of random variables. The Galambos law is defined
as follows

C(u, v) = uv exp{(− lnu)−θ + (− ln v)−θ)−
1
θ ]}, ∀θ > 0.

The following proposition proposes an approach to construct the Galambos cop-
ula

Proposition 4.1. From the definition, we know that Galambos’s law is defined as
follows C(u, v) = uv exp{(− lnu)−θ + (− ln v)−θ)−

1
θ ]}, ∀θ > 0.

Proof. Let ( X,Y) be a pair of random variables whose joint function H is defined
by:

H(x, y) = exp−[(x+ y)− (x−θ + y−θ)−
1
θ ] ∀(x, y) ∈ [0,+∞[×[0,+∞[, θ > 0,

and has marginals: F1(x) = exp(−x) and F2(y) = exp(−y). Since

F1(x) = lim
y→+∞

H(x, y),

= lim exp−[(x+ y)− (x−θ + y−θ)−
1
θ ]⇝ lim exp−[(x+ y)− (y−θ)−

1
θ ]

= lim exp(−(x+ y − y)) = e−x

From before F2(y) = limx→+∞ H(x, y). Hence F2(y) = e−y. So, we have F−1
1 (u) =

− lnu and F−1
2 (v) = − ln v; ∀(u, v) ∈ I2. Using the corollary of Sklar’s theorem, we
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get:

C(u, v) = H(F−1
1 (u), F−1

2 (v)) = H(− lnu,− ln v), ∀(u, v) ∈ I2

= exp−[(− lnu− ln v)− ((− lnu)−θ + (− ln v)−θ)−
1
θ ]

= exp−[(− lnuv)− ((− lnu)−θ + (− ln v)−θ)−
1
θ ]

= exp−[(− lnuv)− ((− lnu)−θ + (− ln v)−θ]

= exp (lnuv) + ((− lnu)−θ + (− ln v)−θ)−
1
θ ].

From the fact that: exp(a+ b) = (exp a)(exp b) we get:

C(u, v) = exp (lnuv) exp ((− lnu)−θ + (− ln v)−θ)−
1
θ ].

From this we get:

C(u, v) = uv exp [(− lnu)−θ + (− ln v)−θ)−
1
θ ] ∀θ > 0.

This exp ression defines the Galambos copula. □

Proposition 4.2. Let (X,Y) be a random vector of [0,+∞[×[0,+∞[. Let Hθ,n be the
application defined by:

(x, y) → [
1

exp{−[(x+ y)− (x−θ + y−θ)−
1
θ ])}

]n, ∀(x, y) ∈ [0,+∞[×[0,+∞[.

Hence we have: Hθ,n(x, y) = [ 1

exp{−[(x+y)−(x−θ+y−θ)−
1
θ ]}

]n. This function fully satisfies

the conditions of a distribution function. The generalised Galambos copula is de-
fined in the same way as the unit copula, which is very special. Hence: Cn,θ(u, v) =

uv exp{[(lnu)−θ + (ln v)−θ)]−
1
θ }, ∀n ∈ N.

Proof. Let (X, Y ) be a random vector (or pair of random variables). Let Hθ,n be
the application defined by:

(x, y) → [
1

exp{−[(x+ y)− (x−θ + y−θ)−
1
θ ]}

]n, ∀(x, y) ∈ [0,+∞[×[0,+∞[.

Hence the distribution function: Hθ,n(x, y) = [ 1

exp{−[(x+y)−(x−θ+y−θ)−
1
θ ]}

]n. As de-

fined, H is absolutely continuous on R× R, which allows us to speak of a copula.
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The marginal functions are given by:

F1,n(x) = lim
y→+∞

Hθ,n(x, y)

= lim
y→+∞

[
1

exp{−[(x+ y)− (x−θ + y−θ)−
1
θ ]}

]n

= lim
y→+∞

[
1

exp{−[(x+ y)− (y−θ)−
1
θ ]}

]n

= lim
y→+∞

[
1

exp{−(x+ y − y)}
]n = enx

F2,n(x) = lim
x→+∞

Hθ,n(x, y)

= lim
x→+∞

[
1

exp{−[(x+ y)− (x−θ + y−θ)−
1
θ ]}

]n

= lim
x→+∞

[
1

exp{−[(x+ y)− (x−θ)−
1
θ ]}

]n

= lim
x→+∞

| 1

exp{−(y + x− x)}
]n = eny.

Assuming u = F1,n(x) and v = F2,n(y), the reciprocal functions are:F−1
1,n(u) and

F−1
2,n(v), F

−1
1,n(u) = lnu

1
n and F−1

2,n(v) = ln v
1
n .

From the corollary of Sklar’s theorem, we get:

Cn,θ(u, v) = Hn,θ(F
−1
1,n(u), F

−1
2,n(v))

= [
1

exp{−[(lnu
1
n + ln v

1
n )− [(lnu

1
n )−θ + (ln v

1
n )−θ]−

1
θ ]}

]n

= [
1

exp{−[(lnu
1
nv

1
n )− |( 1

n
)−θ(lnu)−θ + ( 1

n
)−θ(ln v)−θ]−

1
θ }

]n

= [
1

exp{−[ln(uv)
1
n − ( 1

n
)[((lnu)−θ + (ln v)−θ])]−

1
θ ]}

]n

= [
1

exp{ln(uv)− 1
n + [(lnu)−θ+(ln v)−θ]−

1
θ

n
}
]n.
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Since exp(a+ b) = exp(a) exp(b) we have:

[
1

exp ln(uv)−
1
n exp{ [(lnu)−θ+(ln v)−θ]−

1
θ ]

n
}
]n = [

(uv)
1
n

exp{[ [(lnu)−θ+(ln v)−θ]−
1
θ ]

n
}
]n

=
uv

[exp{( 1
n
)[((lnu)−θ + (ln v)−θ]

1
θ }]n

.

Since (em)n = enm then:
uv

exp{(n 1
n
)[(lnu)−θ + (ln v)−θ]

1
θ }

= uv exp{[(lnu)−θ + (ln v)−θ]−
1
θ }.

This defines our proposal for a generalised Galambos’s law which, as we can
see, does not depend on the size of the sample,

Cn,θ(u, v) = C(u, v) = uv exp{−[(lnu)−θ + (ln v)−θ]−
1
θ }.

□

4.1. Another generalised Galambos construction approach. Since this other
approach depends on extreme values, we make the following proposal in order to
make it a preliminary gateway.

Proposition 4.3. Let (X1, . . . , Xn) be a random vector whose random variables are
independent and identically distributed and follow the same F distribution. Let Fi be
the marginal distribution functions where F is the joint distribution function. If F is
a Galambos distribution then the copula induced by F, called the Galambos copula, is
also an extreme value copula.

Proof. We know that for Galambos’s law to be a law of extreme values, the nec-
essary and sufficient condition for any copula to be of extreme values is that it
is max-stable, i.e. that it satisfies the condition: C(uk

1, u
k
2) = Ck(u1, u2) for all k

positive. According to the above, the Galambos copula is defined by: C(u, v) =

uv exp{[(− lnu)−θ+(− ln v)−θ)−
1
θ ]},∀θ > 0, or C(u, v) = uv exp{−[(lnu)−θ+(ln v)−θ)−

1
θ ]},∀θ >

0. Also, for it to be an extreme value copula it is necessary and sufficient that:
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C(uk, vk) = Ck(u, v),

C(uk, vk) = ukvk exp{[(− lnuk)−θ + (− ln vk)−θ]−
1
θ }

= ukvk exp{[(−k lnu)−θ + (−k ln v)−θ]−
1
θ

= ukvk exp{(k−θ[(− lnu)−θ + (− ln v)−θ])−
1
θ }

= ukvk exp{k[(− lnu)−θ + (− ln v)−θ]−
1
θ }

= ukvk[exp{[(− lnu)−θ + (− lnu)−θ])−
1
θ }]k

= [uv exp{[(− lnu)−θ + (− ln v)−θ)−
1
θ ]}]k = Ck(u, v).

Hence the Galambos copula is indeed an extreme value copula. □

We propose an approach for constructing the generalized Galambos copula from
extreme values.

Proposition 4.4. ([1, 2]) Let (X1, . . . , Xn) and (Y1, . . . , Yn) be two random vectors
whose random variables are independent and identically distributed and follow the F
and G distributions respectively.

Let (X1, Y1), . . . , (Xn, Yn) be a sequence of pairs of (X,Y) made up of random vari-
ables which follow the Galambos distribution which we denote H(x, y).
H(x, y) is therefore the joint distribution function associated with the margins F and
G.

Let Hn(x, y) be the joint distribution function associated with the margins Fn(x)

and Gn(y), respectively the margins of (X1, ..Xn) and (Y1, . . . , Yn). Given the indepen-
dence of the random variables, we will have Hn(x, y) = [F (x)G(y)]n = [H(x, y)]n =

expn{−[(x+ y)− (x−θ + y−θ)−
1
θ
]}. According to the corollary of Sklar’s theorem, the

copula associated with Hn(x, y) will therefore be:

Cn(u, v) = Hn(F
−1
n (u), G−1

n (v)).

Let’s determine the margins Fn(x) and Gn(y), Fn(x) = limy→+∞ Hn(x, y) = e−nx, and
Gn(y) = limx→+∞ Hn(x, y) = e−ny. The quantiles will therefore be F−1

n (u) = lnu− 1
n
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and G−1
n (v) = ln v−

1
n ,

Cn,θ(u, v) = Hn(F
−1
n (u), G−1

n (v))

= expn{−[((lnu− 1
n ) + (ln v−

1
n ))− ((lnu− 1

n )−θ + (ln v−
1
n )−θ)−

1
θ
]

= expn{−((lnu− 1
n )− (ln v−

1
n )) + ((lnu− 1

n )−θ + (ln v−
1
n )−θ)−

1
θ
]}

= expn(−((lnu− 1
n )) · expn(−((ln v−

1
n ))

· expn{((lnu− 1
n )−θ + (ln v−

1
n )−θ)−

1
θ
]}

= uv · expn{([( 1
n
)−θ]−

1
θ ((lnu)−θ + (ln v)−θ)−

1
θ
]}

= uv · exp{((lnu)−θ + (ln v)−θ)−
1
θ
]} = Cθ(u, v).

5. CONCLUSION

Like the Fréchet-Hoeffding bounds W (u, v) = max(u + v − 1, 0) and M(u, v) =

min(u, v) which have the singularity of being the smallest and largest copulas re-
spectively. No copula can lie outside the field formed by these two copulas. We
have highlighted a singularity which gives the Galambos copula certain advan-
tages.

Intuitively, we think that the most important thing would be that it could repre-
sent a sort of centre of gravity for copulas. And this fact can have a major impact
on the choice of this model, because the weights are balanced and the financial
and other risks are reduced. So what could be more advantageous than choos-
ing this model in finance or in any other field where risk forecasting is more than
necessary.
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[2] G. MAZO: Construction et estimation de copules en grande dimension , université de Grenoble,
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