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A NEW HYBRIDIZATION FOR IMPROVING THE CONVERGENCE OF THE
MOMA-PLUS METHOD

Abdoulaye Compaoré1, Alexandre Som, and Kounhinir Somé

ABSTRACT. We propose in this article a hybridization of the algorithm of the
MOMA-Plus method and that of the Differential Evolution method. This hy-
bridization consists of defining a simplex around an efficient solution generated
by MOMA-plus and applying the Differential Evolution algorithm to find a better
solution than that obtained by MOMA-plus. The results interpreted through a per-
formance study of the solutions obtained on multiobjective optimization test prob-
lems show that this hybridization improves the convergence of the basic MOMA-
plus algorithm. Moreover, a better complexity than that of basic MOMA-plus is
obtained.

1. INTRODUCTION

Optimization is one of the main characteristics in decision-making at the col-
lective level globally and at the individual level in particular. It is a question of
finding the optimum of a function (often vectorial) and subject (or not) to con-
straints. Modeling an optimization problem leads to a multiple and conflicting
objective problem or a single objective problem. The first is mathematically ill-
posed due to the non-uniqueness of the solutions. This gives rise to the existence
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of compromise solutions called Pareto solutions. However, the search for Pareto
solutions is a very difficult task, hence the development of new, very powerful res-
olution techniques. They could be grouped into two large groups: exact methods
and metaheuristics [4, 6]. In this work we are only interested in metaheuristics,
more specifically, we are interested in the MOMA-plus metaheuristic developed by
K. SOME et al. [20] and the Differential Evolution metaheuristic developed by R.
Storn and K. Price [22].

The MOMA-plus method uses the technique of aggregation of objective func-
tions, then a penalty function in order to make a multi-objective optimization
problem with constraints into a single-objective optimization problem without
constraints. Then it uses an Alienor transformation technique to reduce the multi-
variate optimization problem to a single variable problem. Subsequently, MOMA-
plus was subsequently used in several works such as [9–14, 17, 18, 21]. However,
the use of the Alienor transformation made the problem multimodal and impacted
convergence as well as complexity. Hence the need to improve this convergence
and this complexity using hybridization with the Differential Evolution method.

Indeed, the Differential Evolution method is a metaheuristic which is similar
to the Pattern search and the genetic algorithm in the sense that it uses similar
operators such as selection, crossover and mutation for the search of the optimal
solution. These operators, like the genetic algorithm, use binary or real coding.
It is based on the vector mutation characterized by a disturbance of the selected
individuals. However, such algorithms make few or no assumptions about the
underlying optimization problem (just like MOMA-plus) and can quickly explore
very large design spaces. Also the Differential Evolution method is arguably one
of the most versatile and stable population-based search algorithms that exhibits
robustness to multimodal problems, as evidenced by the multiple works carried
out [1–3,7,8].

Also, the use of the Nelder-Mead algorithm only provides local optima, hence,
in our hybridization, the principle is that the solution found by the Nelder-Mead
algorithm, in the MOMA-plus method, will be used as a starting point for the
application of the Differential Evolution metaheuristic in order to search for a
near and better solution. Subsequently, an even larger search procedure will be
launched on the search space of the penalized function.
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To better expose our work, we go in Section 2, to present the preliminaries, in
Section 3, to present the theoretical results of our hybridization and to finish, in
Section 4, we will present the numerical results.

2. PRELIMINARIES

2.1. Basics of Multiobjective Optimization.
Consider the following problem:

(2.1)

min f1(x1, . . . , xn)

min f2(x1, . . . , xn)
...
min fp(x1, . . . , xn)

s.t :


g1(x1, . . . , xn) ≤ 0,
...
gm(x1, . . . , xn) ≤ 0,

xi ∈ R, i = 1, 2, . . . , n.

For the resolution of a problem of the type (2.1), the use of an aggregation function
allowing to transform a multiobjective optimization problem in a general way
into a single-objective optimization problem. In the context of this work, it is
Tchebycheff function denoted Tch and defined from R×Rp ×Rp to R by

(2.2) Tch(f(x1, . . . , xn), λ, z) = max
j=1,...,p

{λj|fj(x1, . . . , xn)− zj|}

which is used. In the relation (2.2), z = (z1, z2, . . . , zp) denotes the ideal point of

(2.1) and the λj ∈ [0, 1] are weighting weights such that
m∑
j=1

λj = 1.

2.2. MOMA-plus algorithm.
The principle of the MOMA-plus [20] method is to reduce a multi-objective opti-
mization problem with constraints of several variables to a single-objective opti-
mization problem without constraints of a single variable. For this, it uses succes-
sively the weighted distance of Tchebycheff, a penalization function, the Alienor
transformation and the Nelder-Mead algorithm [16].
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The commonly used Alienor transformation is that of Confé-Cherruault [15]
which is defined as follows:

(2.3) xi = hi(θ) =
1

2

[
(bi − ai) cos(ωiθ + ϕi) + ai + bi,

]
, xi ∈ [ai, bi] , i = 1, . . . , n,

with θmax =
(b− a)θ1 + (b+ a)

2
and θ1 =

2π − ϕ1

ω1

.

The algorithm of the MOMA-Plus method is defined below [20]:

Algorithm 1 MOMA-Plus Algorithm
Begin
f(x1, . . . , xn)←− Tch(f(x1, . . . , xn), λ, z)
g(x1, . . . , xn)←− g1(x1, . . . , xn) + |g1(x1, . . . , xn)|.
for i = 2 to m do
g(x1, . . . , xn)←− g(x1, . . . , xn) + gi(x1, . . . , xn) + |gi(x1, . . . , xn)|.

end for
L(x1, . . . , xn)←− f(x1, . . . , xn) + η.g(x1, . . . , xn).
for i = 1 to n do
xi = hi(θ).

end for
f(θ)←− L(h1(θ), h2(θ), . . . , hn(θ)),
θ∗ ←− argmin f(θ).
for i = 1 to n do
xi = hi(θ

∗)
end for

Ensure: Show all x solutions of the problem which is a compromise for the gen-
erated λk weights.
End

Remark 2.1.

• In Algorithm 1, the operation θ∗ ←− argmin f(θ) is performed with the
Nelder-Mead algorithm [16].
• The complexity of Algorithm 1 is:

(2.4) T = K.O(max{p2,m, n, w2}),

where p,m, n and w are respectively the size of the objective functions, the
constraints, of the decision variable and the size of the simplex of the Nelder-
Mead algorithm. K is the size of the weights.
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2.3. Differential Evolution algorithm.
The principle of the Differential Evolution algorithm is based on an initial popu-
lation generated on which an evolutionary process is applied which optimizes a
problem by iteratively improving a chosen based candidate solution [22]:

(1) A population of n individuals xi , i = 1, 2, . . . , k, k ≥ 4 is generated accord-
ing to the relation:

(2.5) xt
i = {xt

1,i, x
t
2,i, . . . , x

t
d,i}, to the generation t, t ≥ 0,

xt
i is the chromosome and d is the dimension of the search space.

(2) The mutation: For each xi at the generation t, we perform a random
choice of three vectors xh, xq and xr

(2.6) V t+1
i = xt

h + F (xt
q − xt

r),

where F is a constant chosen from the interval [0, 2] and h, q, r ∈ {1, 2, . . . , k}.
(3) Crossing:

• the first step is to choose a crossover parameter Cr ∈ [0, 1];
• the crossing is done under two processes which are described as fol-

lows:
– the binomial way performs the crossover operator on each com-

ponent of the variable according to the j-th component of Vi:

(2.7) ut+1
j,i =

{
V t
j,i, r ≤ Cr,

xt
j,i, Otherwise,

, j = 1, 2, . . . , d, and r ∈ [0, 1] .

– at the level of the exponential pathway, a part of the donor
vector is selected, let k ∈ [0, d− 1] and L ∈ [0, d] and we have:

(2.8) ut+1
j,i =

{
V t
j,i, j = k, . . . , k − L+ 1,

xt
j,i, Otherwise.

(4) The selection: The selection process used is identical to that of the genetic
algorithm. It results in the process below:

(2.9) xt+1
i =

{
ut+1
i , f(ut+1

i ) ≤ f(xt
i)

xt
i, Otherwise.

The algorithm of the Differential Evolution method is defined below:
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Algorithm 2 ALGORITHM OF THE DIFFERENTIAL EVOLUTION METHOD

Begin
Require: Population initialization
Require: Set constant F ∈ [0, 2],

while stopping criterion not reached do
for i = 1 to n do

for each xi do
choose randomly xp, xq and xr;

Generate a new vector V by the relation (2.6),
Generate Jr ∈ {1, 2, . . . , d} for permutation,
Generate ri ∈ [0; 1],

end for
for j = 1 to d do

ut+1
j,i =

{
V t+1
j,i , if ri ≤ Cr and j = Jr

xt
j,i, if ri > Cr and j ̸= Jr

;

end for
Select and update solution by (2.9).

end for
end while
End

2.4. Performance evaluation of a metaheuristic.
To evaluate the performance of a metaheuristic, we use performance metrics. The
metrics we will use are the convergence and the diversity of the Pareto optimal
solutions obtained. Convergence is calculated with the following relation [4]:

(2.10)

√
Π∑
i=1

d2i

Π

and reflects the gap separating the Pareto front and the analytical front.
Diversity is defined by the following relation [4]:

(2.11)
df + dl +

Π−1∑
i=1

|di − d|

df + dl + (Π− 1)d
.
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It evaluates the distributivity of the solutions on the analytical front.
In the relations (2.10) and (2.11), Π denotes the number of solutions provided

by our method. df and dl define respectively the Euclidean distances separating
the upper and lower extremal solutions provided by our method. di is the Eu-
clidean distance between two consecutive solutions, d is the arithmetic average of
all the solutions provided by our method.

In practice, a good convergence or a good distributivity is the one which con-
verges towards zero.

3. RESULTS OF HYBRIDIZATION

3.1. Principles.
The hybridization consists, from the solution provided by the algorithm of Nelder-
Mead in Algorithm 1, to define a simplex of 12 elements in the neighborhood of
the solution θ∗.

3.2. Algorithme.
The hybridization algorithm is defined by:

Algorithm 3 Hybrid Algorithm
Begin
f(x1, . . . , xn)←− Tch(f(x1, . . . , xn), λ, z)
g(x1, . . . , xn)←− g1(x1, . . . , xn) + |g1(x1, . . . , xn)|.
for i = 2 to m do
g(x1, . . . , xn)←− g(x1, . . . , xn) + gi(x1, . . . , xn) + |gi(x1, . . . , xn)|.

end for
L(x1, . . . , xn)←− f(x1, . . . , xn) + η ∗ g(x1, . . . , xn).
for i = 1 to n do
xi = hi(θ),

end for
f(θ)←− L(h1(θ), h2(θ), . . . , hn(θ)),
θ∗ ←− argmin f(θ),
for i = 1 to N do
θi = θ∗ +∆;

end for

x =
1

N

N∑
i=1

θi
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Algorithm 4 Hybrid Algorithm (continued)

Require: Construction of a simplex χ of 12 elements around θ∗ and x.
Require: Define constant F ∈ [0, 2];

while stopping criterion not reached do
for i = 1 to n do

for each xi do
choose randomly xp, xq et xr,
V t+1
i ←− θ∗ + F (xt

q − xt
r),

Generate Jr ∈ {1, 2, . . . , d} for permutation
Generate ri ∈ [0, 1]

end for
for j = 1 to d = |χ| do

ut+1
j ←−

{
V t+1
j , if ri ≤ Cr and j = Jr,

θ∗ ∈ χ, if ri > Cr and j ̸= Jr,
end for
if L(ut+1

j ) ≤ L(θ∗) do
xt+1
j ←− ut+1

j ,

else xt+1
j ←− θ∗,

Select and update the solution by relation (2.9).
end for

end while
for i = 1 to n do
xi = hi(x

t+1
j )

end for
End

Theorem 3.1. The complexity of Algorithm 3 is:

(3.1) T1 = T +K.(O(n) +O(n2) +O
( l!

2!(l − 2)!

)
+O(N) +O(1)).

Proof. We will proceed step by step through the different phases of hybridization
which are defined as follows:

(1) Definition of the elements in the neighborhood of θ∗ characterized by a
discretization:

(3.2) xi = θ∗ +∆i, i = {1, 2, . . . , N},

where ∆ is the discretization step and N the size of the defined elements.
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(2) We define the center of gravity of all the elements by the relation:

(3.3) x =
1

N

N∑
i=1

xi.

This operation has a complexity at worst equal to O(N).
(3) Subsequently, we define a simplex of 12 elements from the optimum θ∗

and the center of gravity x. which gives us the set

X = {x, xa, xa1 , xa2 , xb, xb1 , xc, xc1 , xc2 , xd, xd1 , xd2 , xd3}.

The elements of this simplex are defined by the following relations:

(3.4) xa = θ∗ + ρ(xbest − xN)

(3.5) xa1 = x+ ρ(x− xN)

(3.6) xa2 = x+ ρ(x− θ∗)

(3.7) xb = θ∗ + χ(x1 − θ∗)

(3.8) xb1 = x+ χ(x1 − θ∗)

(3.9) xc = θ∗ + γ(θ∗ − xN)

(3.10) xc1 = x+ γ(x− θ∗)

(3.11) xc2 = x+ γ(x− x1)

(3.12) xd = x+ ρ(θ∗ − x1)

(3.13) xd1 = x+ χ(θ∗ − x1)

(3.14) xd2 = x+ χ(x− x1)

(3.15) xd3 = x+ σ(x− xN).



710 A. Compaoré, A. Som, and K. Somé

The creation of this simplex is of constant complexity, since the number of
solutions does not vary.

(4) The random choice of the values xq and xr defined in the relation (2.6)
will be made in the set X . The complexity at worst of this operation is a

combination of 2 in l defined by the relation
l!

2!(l − 2)!
, where l = card(X ).

(5) Application of crossover and mutation operators based on conditions stated
in the description of the stages 3 of the Differential Evolution method to
the selected individual. The mutation operator that we are going to use is
of the binomial type (2.7) because of its simplicity of implementation. It
is defined by:

(3.16) V t+1
i = θ∗ + F (xt

q − xt
r), F ∈ [0, 2] .

Complexity at worst is O(N).
(6) Determining the best θ∗ and using of the dominance in the sense of Pareto

between the best solution and θ∗, to find the optimum, after having trans-
formed them into an element of Rn is an operation of complexity at the
worst O(n2).

□

4. NUMERICAL RESULTS

4.1. Test problems.
Our hybridization has been tested on Zitzler test problems below for a simulation.

Table 1: Multi-objective test problems

index Multiobjective problems n bounds

T1



min f1(x1, x2) = x1,

min f2(x1, x2) =
1 + x2

x1

,

0.1 ≤ x1 ≤ 1,

0 ≤ x2 ≤ 5.

2 x1, x2 ∈ [0, 1] .
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T2


min f1(x) = x2,

min f2(x) = (x− 2)2,

−5 ≤ x ≤ 5.

1 x ∈ [0, 4] .

T3



min f1(x) = x1,

min f2(x) = g(x).
(
1−

√
f1(x)
g(x)

)
,

g(x) = 1 +
9

n− 1
.

n∑
i=2

xi,

x = (x1, x2, . . . , xn) ∈ [0, 1]n.

30 xi ∈ [0, 1] .

T4



min f1(x) = x1,

min f2(x) = g(x).
(
1−

(f1(x)
g(x)

)2)
,

g(x) = 1 +
9

n− 1
×

n∑
i=2

xi,

x = (x1, x2, . . . , xn) ∈ [0, 1]n.

30 xi ∈ [0, 1] .

T5



min f1(x) = x1,

min f2(x) = g(x).h(x),

g(x) = 1 +
9

n− 1
.

n∑
i=2

xi,

h(x) = 1−

√
f1(x)

g(x)
− f1(x)

g(x)
sin(10πf1(x)),

x = (x1, x2, . . . , xn) ∈ [0, 1]n

30 xi ∈ [0, 1] .

T6



min f1(x) = x1,

min f2(x) = g(x).

√
1− f1(x)

g(x)
,

g(x) = 1 +
9

n− 1
.

n∑
i=2

xi,

x = (x1, x2, . . . , xn) ∈ [0, 1]n.

30 xi ∈ [0, 1] .
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4.2. Pareto fronts with hybridization.

FIGURE 1. Pareto fronts from simulations

4.3. Performance results.

TABLE 2. Hybridization convergence index

Convergence T1 T2 T3 T4 T5 T6

Hybrid 0.0281 0.0011 0.0014 0.0018 0.0029 0.0018
MOMA-Plus 0.0691 0.0053 0.0137 0.0042 0.0599 0.0046

NSGA-II 0.0324 0.0056 0.0175 0.0025 0.0124 0.0038

We note that the values of the hybridization convergence index are better than
those provided by the two methods MOMA-plus and NSGA-II. Consequently, these
converge better than the last two methods.
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TABLE 3. Hybridization diversity index
Diversity T1 T2 T3 T4 T5 T6

Hybrid 0.9819 0.9846 0.9825 0.9823 0.9824 0.9822
MOMA-Plus 1.1833 0.5537 0.3498 0.0309 0.9835 0.9820

NSGA-II 0.0290 0.0183 1.0023 0.0319 0.9710 0.0201

Rankings of methods on each test problem at the convergence level and diversity
are recorded in the tables below: this classification is based on the value of the
convergence and diversity metrics:

TABLE 4. Rank on convergence

Convergence T1 T2 T3 T4 T5 T6

Hybrid 1 1 1 1 1 1
MOMA-Plus 4 4 3 4 4 4

NSGA-II 3 3 4 3 3 3

TABLE 5. Diversity Rank

Diversity T1 T2 T3 T4 T5 T6

Hybrid 2 3 2 3 3 3
MOMA-Plus 4 2 1 1 2 2

NSGA-II 1 1 4 2 1 1

The sum of the rank values over all test problems for each metric is recorded in
the table below

TABLE 6. Joint ranking

Hybrid Moma-Plus NSGA-II
Convergence 6 22 20

Diversity 16 12 10



714 A. Compaoré, A. Som, and K. Somé

4.4. Comparison of different methods and discussions.
Following these results, the performance profiles of the methods give us the fol-
lowing figures:

FIGURE

2. Performance analy-
sis using the GAIA
method

FIGURE 3. Performance histogram

FIGURE 4. Profile of hybrid methods
FIGURE 5. NSGA-II
method profile
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The figures (2), (3), (4) and (5) reflect the profiles of the different methods. The
two hybrid methods having the same performance indices on the convergence axis
pointing to their positions in the figure (2).This would mean that the two hybrid
methods converge better than the MOMA-Plus and NSGA-II methods. The NSGA-
II method is the one that has a good diversity according to the figures. Therefore,
it has a better distribution of solutions on the Pareto front. This interpretation
emerges from the histogram represented by the figure (3), the hybrid method
converges better than the other methods. The NSGA-II method has the best di-
versity. The figure (4) shows that hybrid methods, in addition to being efficient
on the convergence of solutions on the Pareto front, have an acceptable indicator
on the diversity of solutions on the Pareto front. It is the same for the NSGA-II
method for the figure (5) which has an acceptable profile on the convergence of
the Pareto solutions on the front.

Remark 4.1.
The main steps that make up this hybridization suggest the possibility of defining
another approach in which the algorithm will already be launched from the domain
[0, θmax] instead of creating a simplex and the same operators that were used in the
first approach are still used. The solution resulting from the operations are compared
with θ∗ in the sense of Pareto dominance. It is:

(i) create an initial population in the interval [0, θmax] following a uniform dis-
tribution. This operation has complexity O(k), where k is the size of the
chosen population;

(ii) rank this population, which will find a minimum of the function L(θ). The
complexity of this operation is of the order of O(k2);

(iii) apply the crossover and mutation operators for the search for the optimum.
To improve the results, the mutation and the crossing will be done from θ∗

and the minimum defined by the previous step;
(iv) the results of these operations will be compared on the basis of Pareto dom-

inance from the solution θ∗, the optimum given by the MOMAPlus method.
This operation is of constant complexity.

The algorithmic complexity of this approach is defined by the relation:

T2 = T +K.(O(k) +O(k2) +O(N)).
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The complexities of the two approaches display a satisfactory result on the decidability
of these two approaches, the complexities are all polynomial.

5. CONCLUSION

The study of this hybridization reflects the possibility of combining the MOMA-
plus method with a metaheuristic represented by the Differential Evolution method.
The results of this work open the field for the development of new metaheuristics
for solving optimization problems in general. The results of this hybridization are
acceptable, in particular according to the values of the performance indices, be-
cause of their convergence towards zero and also in comparison with the MOMA-
Plus and NSGA-II methods. So, this work opens up perspectives and fields of
work in the direction of alleviating the complexity in the system of recognized and
recent methods for the search for optimal solutions.
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