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EXISTENCE AND UNIQUENESS OF THE CAGINALP PHASE-FIELD SYSTEM
BASED ON THE CATTANEO LAW

Cyr Seraphin Ngamouyih Moussata1, Narcisse Batangouna, and Urbain Cyriaque Mavoungou

ABSTRACT. Our aim in this paper is to study the existence and the uniqueness
of the Caginalp phase-field system based on the Cattaneo Law,with initial condi-
tions,Dirichlet Boundary Conditions and Regular Potentiels.

1. INTRODUCTION

The Caginalp phase-field model

(1.1)
∂u

∂t
−∆u+ f (u) = θ

(1.2)
∂θ

∂t
−∆θ = −∂u

∂t

proposed in [5], has been extensively studied (see, e.g, [2–6,10]). Here, u denotes
the order parameter and θ the (relative) temperature.

Furthermore, all physical constants have been set equal to one. This system
models, e.g, melting-solidification phenomena in certain classes of materials. The
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Caginalp system can be derived as follows. We first consider the (total) free energy

(1.3) ψ(u, θ) =

∫
Ω

(
1

2
|∇u|2 + f(u)− uθ − 1

2
θ2
)
dx,

where Ω is the domain occupied by the materiel.
We then define the enthalpy H as

(1.4) H = −∂ψ
∂θ
,

where ∂ denotes a variational derivative, which gives

(1.5) H = u+ θ.

The governing equations for u and θ are then given by (see [1])

(1.6)
∂u

∂t
= −∂ψ

∂u
,

(1.7)
∂H

∂t
+ div, q = 0,

where q is the thermal flux vector. Assuming the classical Fourier Law

(1.8) q = −∇θ,

we find (1.1) and (1.2).
Now, a drawback of the Fourier Law is the so-called “paradox of heat conduc-

tion", namely, it predicts that thermal signals propagate with infinite speed, which,
in particular, violates causality (see,e.g. [7] and [14]). One possible modification,
in order to correct this unrealistic feature, is the Maxwell-Cattaneo Law.

(1.9)
(
1 +

∂

∂t

)
q = −∇θ.

In that case, it follows from (1.7) that(
1 +

∂

∂t

)
∂H

∂t
−∆θ = 0,

hence,

(1.10)
∂2θ

∂t2
+
∂θ

∂t
−∆θ =

∂2u

∂t2
+
∂u

∂t
.
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This model can also be derived by considering, as in [6] (see also [8–13]), the
Caginalp phase-field model with the so-called Gurtin-Pipkin Law

(1.11) q(t) = −
∫ +∞

0

k(s)∇θ(t− s)ds,

for an exponentially decaying memory kernel k, namely,

(1.12) k(s) = e−s.

Indeed, differentiating (1.11) with respect to t and integrating by parts, we recover
the Maxwell-Cattaneo Law (1.9).

Now, in view of the mathematical treatment of the problem, it is more conve-
nient to introduce the new variable

(1.13) α =

∫ t

0

θ(s)ds, θ =
∂α

∂t
,

and we have, integrating (1.10) with respect to s ∈ [0, 1].

(1.14)
∂2α

∂t2
+
∂α

∂t
−∆α = −∂u

∂t
− u.

Our objective in this article is to study a generalization of the Caginalp phase field
system based on these two temperature theories and the usual Fourier law with
a nonlinear coupling. In particular, we prove the existence and uniqueness of the
solutions by proceeding with the a priori estimates and the standard Garlerkin
scheme.

2. SETTING OF THE PROBLEM

We consider the following initial and boundary value problem:

(2.1)
∂u

∂t
−∆u+ f(u) =

∂α

∂t
in Ω,

(2.2)
∂2α

∂t2
+
∂α

∂t
−∆α = −∂u

∂t
− u in Ω,

(2.3) u|Γ = α|Γ = 0 on ∂Ω,

(2.4) u|t=0 = u0,
∂u

∂t
|t=0 = u1, α|t=0 = α0,

∂α

∂t
|t=0 = α1.
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We consider the regular potential f(s) = s3 − s which satisfies the following prop-
erties:

(2.5) f is of class C2, f(0) = 0;

(2.6) −c0 ≤ f ′(s), c0 ≥ 0, ∀s ∈ R;

−c1 ≤ F (s) ≤ f(s)s+ c2, c1, c2 ≥ 0, ∀s ∈ R

where

(2.7) F (s) =

∫ s

0

f(τ)dτ.

3. NOTATIONS

We note ∥.∥ the usual L2 norm ( with associated scalar product (.,.)) and
∥.∥−1 = ∥(− Delta)

−1
2 .∥, where −∆ denotes the Laplace minus operator with

Dirichlet boundary conditions. More generally, ∥.∥X denotes the Banach space
norm X and ⋆|Ω| is a measure of Ω. Throughout the article, c, c’ and c” represent
the constants which can vary from one line to another or even within the same
line. Similarly, the symbol cp represents the strictly positive constant which can
vary from one line to another or even within the same line.

4. A PRIORITI ESTIMATES

The estimates derived in this section are formal, but they can easily be justified
within a Galerkin scheme.

In what follows, the Poincaré, Holder and Young inequalities are extensively

used, Without further referring to them. We multiply (2.1) by
∂u

∂t
and have, inte-

grating over and by parts,

(4.1)
d

dt

(
∥∇u∥2 + 2

∫
Ω

F (u)dx

)
+ 2∥∂u

∂t
∥2 = 2

(
∂u

∂t
,
∂α

∂t

)
.

Multiplying then (2.2) by
∂α

∂t
, we obtain

(4.2)
d

dt

(
∥∇α∥2 + ∥∂α

∂t
∥2
)
+ 2∥∂α

∂t
∥2 = −2

(
u,
∂α

∂t

)
− 2

(
∂u

∂t
,
∂α

∂t

)
.
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Summing (4.1) and (4.2), we find the differential egality

d

dt

(
∥∇u∥2 + 2

∫
Ω

F (u)dx+ ∥∇α∥2 + ∥∂α
∂t

∥2
)
+ 2∥∂u

∂t
∥2 + 2∥∂α

∂t
∥2

= −2

(
u,
∂α

∂t

)
,

(4.3)

where

(4.4) E = ∥∇u∥2 + 2

∫
Ω

F (u)dx+ ∥∇α∥2 + ∥∂α
∂t

∥2.

Thanks to the estimate (2.7), we obtain

(4.5) (F (u) + c0, 1) ≥ 0.

We multiply (2.1) by u, integrate our Ω and find

(4.6)
d

dt
∥u∥2 + 2∥∇u∥2 + 2

∫
Ω

F (u)dx = 2

(
∂α

∂t
, u

)
which yields, owing to (2.7). Summing (4.3) and (4.6), we easily find

(4.7)
d

dt
E1 + 2

∂u

∂t
∥2 + 2

∂α

∂t
∥2 + 2∥∇u∥2 + 2

∫
Ω

F (u)dx = 0,

where

(4.8) E1 = ∥∇u∥2 + ∥u∥2 + 2

∫
Ω

F (u)dx+ ∥α∥2 + ∥∂α
∂t

∥2.

We multiply (2.2) by α, integrate our Ω and find

(4.9)
d

dt

[
2

(
∂α

dt
, α

)
+ ∥α∥2

]
+ ∥∇α∥2 ≤ ∥u∥2 + ∥∂u

∂t
∥2 + 2∥α∥2 + 2∥∂α

∂t
∥2,

where

E2 = 2

(
∂α

dt
, α

)
+ ∥α∥2 and E3 = E1 + γE2.

Summing (4.7) and γ(4.9), we easily find

d

dt
E3 + (2− γ)∥∇u∥2 + (2− γ)∥∂u

∂t
∥2 + 2(1− γ)∥∂α

∂t
∥2

+ (2− cγ)∥∇α∥2 + 2

∫
Ω

F (u)dx ≤ c0|Ω|,
(4.10)
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with γ > 0, 1− γ > 0, 2− γ > 0, 2− cγ > 0, where

E3 = ∥∇u∥2 + ∥u∥2 + 2

∫
Ω

F (u)dx+ ∥α∥2 + ∥∂α
∂t

∥2

+ 2γ

(
∂α

dt
, α

)
+ γ∥α∥2

(4.11)

satisfies

(4.12) E3 ≥ C−1

(
∥u∥2H1 + ∥α∥2 + ∥∂α

∂t
∥2 +

∫
Ω

F (u)dx

)
,

and

(4.13) E3 ≤ C

(
∥u∥2H1 + ∥α∥2 + ∥∂α

∂t
∥2 +

∫
Ω

F (u)dx

)
,

C−1

(
∥u∥2H1 + ∥α∥2 + ∥∂α

∂t
∥2 +

∫
Ω

F (u)dx

)
≤ E3

≤ C

(
∥u∥2H1 + ∥α∥2 + ∥∂α

∂t
∥2 +

∫
Ω

F (u)dx

)
.

(4.14)

We have

(4.15)
d

dt
E3 + c(E3 + ∥∂u

∂t
∥2) ≤ c′, c > 0.

Finally, we conclude that

u ∈ L∞(R+;H1
0 (Ω)) ∩ L2(0, T ;H1

0 (Ω)),

α ∈ L∞(R+;H1
0 (Ω)) ∩ L2(0, T ;H1

0 (Ω)),

∂α

∂t
∈ L∞(R+;L2(Ω)) ∩ L2(0, T ;L2(Ω)),

and
∂u

∂t
∈ L2(0, T ;L2(Ω)),

for all T > 0. Multiply (2.2) by
∂2α

∂t2
and integrate over Ω. We get

∥∂
2α

∂t2
∥2 + 1

2

d

dt
∥∂α
∂t

∥2 + (∇∂2α

∂t2
,∇α) = −(

∂u

∂t
,
∂2α

∂t2
)− (u,

∂2α

∂t2
),

where

(∇∂2α

∂t2
,∇α) = d

dt

(
∇∂α

∂t
,∇α

)
− ∥∇∂α

∂t
∥2.
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Applying the Gronwall’s lemma, we have

d

dt

(
∥∂α
∂t

∥2∥2 + 2(∇∂α

∂t
,∇α)

)
+

3

2
∥∂

2α

∂t2
∥2 ≤ ∥u∥2 + ∥∂u

∂t
∥2 + 2∥∇∂α

∂t
∥2,

and we deduce that
∂2α

∂t2
∈ L2(0, T ;L2(Ω)), ∀T > 0.

5. EXISTENCE AND UNIQUENESS OF SOLUTIONS

Theorem 5.1. (Existence) We assume (u0, α0, α1) ∈ H1
0 (Ω) × H1

0 (Ω) × L2(Ω) then
the system (2.1) − (2.4) possesses at least one solution (u, α) such that

u, α ∈ L∞(R+;H1
0 (Ω)) ∩ L2(0, T ;H1

0 (Ω)),

∂α

∂t
∈ L∞(R+;L2(Ω)) ∩ L2(0, T ;L2(Ω)),

∂u

∂t
∈ L2(0, T ;L2(Ω)).

(5.1)

Theorem 5.2. (Uniqueness) Let the assumptions of Theorem 3.2. hold. Then, the
system (2.1)− (2.4) with initial data (u

(1)
0 , u

(1)
1 , α

(1)
0 , α

(1)
1 ) and (u

(2)
0 , u

(2)
1 , α

(2)
0 , α

(2)
1 ) ∈

H1
0 (Ω)×H1

0 (Ω)× L2(Ω)× L2(Ω), respectively.

Proof. We set u = u(1) − u(2) and α = α(1) − α(2) so that (u, α) is solution of the
following system

(5.2)
∂u

∂t
−∆u+ f(u(1))− f(u(2)) =

∂α

∂t

(5.3)
∂2α

∂t2
+
∂α

∂t
−∆α = −∂u

∂t
− u

(5.4) u|∂Ω = α|∂Ω = 0; Γ = ∂Ω

(5.5) u|t=0 = u0 = u
(1)
0 − u

(2)
0 ;

∂u

∂t
|t=0 = u1 = u

(1)
1 − u

(2)
1

(5.6) α|t=0 = α0 = α
(1)
0 − α

(2)
0 ;

∂α

∂t
|t=0 = α1 = α

(1)
1 − α

(2)
1

We multiplying (5.2) by
∂u

∂t
and integrate over Ω.

d

dt
∥∇u∥2 + 2∥∂u

∂t
+ 2

(
f(u(1))− f(u(2)),

∂u

∂t

)
= 2(

∂α

∂t
,
∂u

∂t
).
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Lagrange theorem gives a estimates

f(u(1))− f(u(2)) =

∫ 1

0

f ′(u(2) + s(u(1) − u(2)))dsu

=

∫ 1

0

(3(su(1) + (1− s)u(2))2 − 1))ds|u|,

which implies

∥f(u(1) − f(u(2))∥2 ≤ 36

∫
Ω

(
(u(2))2 + (u(1))2 + 1

)2 |u|2dx
≤ 36

(
∥u(2)∥4L6 + ∥u(1)∥4L6 + 1

)
∥u∥2L6

≤ C
(
∥∇u(2)∥4 + ∥∇u(1)∥4 + 1

)
∥∇u∥2,

and we have

(5.7)
d

dt
∥∇u∥2 + ∥∂u

∂t
= c1∥∇u∥2 + 2(

∂u

∂t
,
∂α

∂t
).

Multiplying (5.3) by
∂α

∂t
and integrating over Ω, we get.

(5.8)
d

dt

(
∥∇α∥2 + ∥∂α

∂t
∥2
)
+ 2∥∂α

∂t
∥2 = −2(u,

∂α

∂t
)− 2(

∂u

∂t
,
∂α

∂t
).

Summing (5.7) and (5.8) then we obtain

(5.9)
d

dt

(
∥∇u∥2 + ∥∇α∥2 + ∥∂α

∂t
∥2
)
+ ∥∂u

∂t
∥2 + 2∥∂α

∂t
∥2 = c2∥∇u∥2 − 2(u,

∂α

∂t
)

where

(5.10) E4 = ∥∇u∥2 + ∥∇α∥2 + ∥∂α
∂t

∥2.

Multiplying (5.2) by u and integrating over Ω, we get

(5.11)
d

dt
∥u∥2 + 2∥∇u∥2 = c3∥u∥2 + 2(u,

∂α

∂t
).

Now summing (5.9) and (5.11) then we obtain

d

dt

(
∥u∥2 + ∥∇u∥2 + ∥∇α∥2 + ∥∂α

∂t
∥2
)
+ ∥∂u

∂t
∥2 + 2∥∂α

∂t
∥2 + 2∥∇u∥2

≤ c2∥∇u∥2 + c3∥u∥2,
(5.12)
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where

(5.13) E5 = ∥u∥2 + ∥∇u∥2 + ∥∇α∥2 + ∥∂α
∂t

∥2,

which implies that

(5.14)
d

dt
E5 + c(∥u∥2H1 + ∥∂u

∂t
∥2 + 2∥∂α

∂t
) ≤ c′,

which yields the uniqueness, owing to Gronwall’s lemma. □

6. CONCLUSION

We have just shown the theorems of existence and uniqueness of solution for
Caginalp phase-field system based on the Cattaneo Law.
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