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NUMERICAL SIMULATION OF A PHENOMENON OF SILTING UP OF RIVER
BANKS

Cyr.S. Ngamouyih Moussata1, Deryl Nathan Bonazebi Yindoula, and Benjamin Mampassi

ABSTRACT. In this paper we have placed a particular emphasis on the construc-
tion of the algorithmic scheme leading to the codes to identify the parameters
of the silting of the banks of the rivers. To overcome the lack of real field data,
we generated experimental data by solving a carefully chosen partial differential
equation . All the codes obtained were executed on the Matlab 7.14(R2012 a)
interface and the results of the simulation were satisfactory.

1. INTRODUCTION

The model describing the process of silting or sedimentation of a river bank is
described by the following equations:

∂S

∂t
+ kx(u, v)

∂S

∂x
+ ky

∂S

∂y
= ∆(Φ(S, u, v)) + f(t, x, y)(1.1)

∂S

∂n
= gi, on Γr

i(1.2)

where S(t, x, y) is the height of the sediments at time t; kx(u, v) and ky(u, v)) are
convective terms of sedimentation respectively in directions x and y. ∆(Φ(S, u, v))
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is a sediment dispersion term, f(t, x, y) is the source term and gi; i = 1, 2 are
supposed known functions. Furthermore, the velocity field components u and ν

must satisfy Navier Stokes equations describing the flow of water.
The model (1.1) - (1.2) is an incomplete data problem. In fact due to the vari-

ability of flows on a cross section of a river, the system (1.1) - (1.2) is thus a bound-
ary value problem for which the boundary conditions on a part of the boundary of
Ω is not provided or is poorly known. Such a system belongs to a class of ill-posed
problems for which their resolutions require inverse methods. However, since our
problem is the description of a silting process in the vicinity of river banks we shall
adopt an asymptotic approach.

2. THE DIRECT MODEL

Equations of type (1.1)) - (1.2) are widely studied in the literature. Notably it has
been shown that there exists at each time t a shock line where the solution admits
a C1 discontinuity (2.3). This shock line can be interpreted as a line where silting
wrinkles are formed. So, let us assume that we are given of a shock line near a
river bank described by the equation

y = η(t, x),(2.1)

where η is a sufficiently smooth function. Then we consider a domain Ωϵ,t round
the shock line (2.1) such that (2.1) as Ωϵ,t → Ω0 as ϵ→ 0, Ω0 being a sub-domain
of Ω. For an asymptotic study in the domain Ωϵ,t we introduce inner variables by
setting

(2.2) x∗ = x, y∗ =
y − η(t, x)

δ(ϵ
, t∗ = t,

where δ(ϵ) → 0 as ϵ → 0. We denote by uϵ(t, x, y) and vϵ(t, x, y) the components
of velocity fields and Sϵ(t, x, y) the solution of the equation system (1.1) - (1.2)
valid in the shock zone Ωϵ,t. Then we look for an asymptotic expansion of these
solutions in the form:

(2.3) Sϵ(t, x, y) = ϵ−αS0(t∗, x∗, y∗) + o(ϵ−α),

(2.4) uϵ(t, x, y) = ϵ−βu0(t∗, x∗, y∗) + o(ϵ−β),



NUMERICAL SIMULATION OF SILTING 731

(2.5) vϵ(t, x, y) = ϵ−γv0(t∗, x∗, y∗) + o(ϵ−α),

where α, β and γ are appropriate parameters and where we have set

(2.6) lim
ϵ→0

o(ϵM)

ϵM
= 0.

for M ∈ R∗. One obtains, after calculations, in the main order, as ϵ → 0 where
t∗, x∗, y∗ are fixed, the equation

k0
yv

0 ∂S

∂y∗
− µ0v0

∂2S

∂y∗2
− µ0v0

(
∂η

∂x

)2
∂2S

∂y∗2
= lim

ϵ→0
δ(ϵ)ϵα+γf(2.7)

Setting

f = f 0(t∗, x∗, y∗)
ϵ−α+γ

δ(ϵ
)2 + · · · ,(2.8)

one obtains

−µ0v0

[
1 +

(
∂η(t, x)

∂x

)2
]
∂2S0

∂y∗2
+ k0

yv0
∂S0

∂y∗
+ k0

yv
0∂S

0

∂y∗
= f 0.(2.9)

Furthermore, according to asymptotic expansions theory, the so-called matching
properties lead to the following boundary condition,

lim
|y∗|→+∞

S0(t∗, x∗, y∗) = 0.(2.10)

It is easy to show that for given non null parameters and sufficiently regular func-
tions µ0, k0

y, η, v
0 and f 0 the problem (2.9) - (2.10) admits a unique solution.

3. DISCRETE FORMULATION OF THE DIRECT PROBLEM

To construct the approached direct problem , we consider the finite difference
method. Let Y ∗

max be a sufficiently large positive real value. Then we divide the
interval [−Y ∗

max;Y
∗
max] in 2N + 1 values for a given parameter N and, let us put

h = 2Y ∗
max

2N+1
the step size of this subdivision.

Let S0
i be the value of the solution of the equation 2.9 at points y∗j = jh with

j = −N, . . . , N and where we have assumed that t∗ and x∗ are fixed. Following
centered finite differences formulas are considered:

∂2S0(t∗, x∗, y∗)

∂y∗2
=

1

h2
(S0

i+1 − 2S0
i + S0

i−1) + o(1),(3.1)
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and

∂S0(t∗, x∗, y∗)

∂y∗
=

1

2h
(S0

i+1 − S0
i−1) + o(h).(3.2)

Setting

a(t∗, x∗, y∗) = µ0v
0

[
1 +

(
∂η

∂x

)2
]
,(3.3)

and

b(t∗, x∗, y∗) = k0
yv

0,(3.4)

it follows from (2.9) that
(
−aj
h2

+
bj
2h

)
S0
−N+j+1 +

2aj
h2

S0
−N+j −

(
aj
h2

+
bj
2h

)
S0
−N+j−1 = f 0

j

S0
−N = s0N = 0j = 1, 2, . . . , 2N − 1.

,(3.5)

with ai = a(t∗, x∗, y∗i ) and bi = b(t∗, x∗, y∗i ).
Next, if we set

(3.6) Λ = (aN+1, . . . , aN−1, b−N+1, . . . , bN−1)
T ∈ R4N−2

the vector parameters, then the system (3.5) is written by

(3.7) A(Λ)S0 = f 0,

where we have set:

(3.8) A(Λ)i, j =
1

h2


2ai if i = j

−ai − bi if i = j − 1

−ai + bi if i = j + 1

0 otherwise

a (2N − 1) tridiagonal matrix and where S0 =
[
S0
−N+1, S

0
−N+2, . . . , S

0
N−1

]T and
f 0 =

[
f 0
−N+1, . . . , f

0
N−1

]T are, respectively, the discrete state vector and the source
vector with respect to inner variables. Parameters aj and bj being all non null, one
can easily prove that the matrix A(Λ) is invertible.

If we denote by Sϵ,k the sedimentation state vector calculated at a time t∗k on the
grid points (x∗

i , y
∗
i ) in the area of shock wave, then according to the development
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(2.3), we can write:

(3.9) A(Λ)Sε,k ≈ ϵ−αf 0,k.

It should be noted that within the framework of the problematic of this work, the
source vectors f 0,k are indeterminate. We agree to approach them via a spectral
Chebyshev approximation by considering the basic (Tj)j defined by

(3.10) Tj(y
∗) = cos

(
j cos−1 (y∗)

)
, j = 0, 1, 2, . . . ,

and allows us to write to a given order of approximation m,

(3.11) f 0(t∗k, x
∗, y∗) ≃

m∑
j=0

F k
j (x

∗)Tj(y
∗),

which can be written again in the following matrix form

(3.12) f 0,k ≃ T× F k,

where T is the matrix of order (m+ 1)× (2N − 1) whose the (i, j)th component is
Tj(y

∗
i ) and where we have set F k =

[
F k
1 , . . . , F

k
m

]T
.

The expression (3.9) is written by equations

(3.13) A(Λ)Sε,k ≈ ε−αT× F k, k = 0, . . . , nobs,

which defines the direct problem where to each couple (Λ, F k) is associated the
state of the system Sϵ,k at time tk.

4. FORMULATION OF THE IDENTIFICATION PROBLEM

To construct the objective function, we consider observation vectors Sobs,k at
times tk calculated at the discretization points. The objective function is then
defined by the following residual operator

(4.1) J(Λ, F 1, ..., F nobs) =

nobs∑
k=1

∥ Sε,k
(
Λ, F k

)
− Sobs,k ∥2 +λopt ∥ Λ− Λ0 ∥2,

where ∥∥ denotes the Euclidian norm, Sϵ,k(Λ,k is defined by (3.13), Λ0 is the a pri-
ori information vector and where λopt is an optimal regularization parameter. The
identification problem is then: Find (Λ, F 1, . . . , F nobs) ∈ R4N−2 × Rm×nobs which
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minimizes the operator J defined by (4.1). Solving this problem requires the cal-
culation of the gradient of the residual operator J relative to each of its arguments.
However it should be noted that this calculation is not obvious in many cases.

4.1. Computing the gradient of the residual operator J. We first notice that the
residual operator J defined in (4.1) can be written as

J(Λ, F 1, . . . , F nobs) =

nobs∑
k=0

⟨Sε,k(Λ, F k)− Sobs,k, Sε,k(Λ, F k)− Sobs,k⟩

+ λopt⟨Λ− Λ0, Λ− Λ0⟩
(4.2)

Here ⟨⟩ denotes the Cartesian scalar product. Then, to determine its gradient we
have to define associated tangent and adjoint equations.

4.2. Tangent equations. To determine the equations of the tangent model we
consider the direct model described by equation (3.13). At first a perturbation ξΛ

with respect to the control variable Λ leads to

(4.3) A(Λ + ξδΛ)Sε,k(Λ + ξδΛ, F k) = ε−αTF k.

Subtracting this last equation with the equation ( 4.1) gives

(4.4) A(Λ + ξδΛ)Sε,k(Λ + ξδΛ, F k)− A(Λ)Sε,k(Λ, F k) = 0,

which can be written further

(A(Λ + ξδΛ)− A(Λ))Sε,k(Λ + ξδΛ, F k)

+ A(Λ)
(
Sε,k(Λ + ξδΛ, F k)− Sε,k(Λ, F k)

)
= 0

(4.5)

If we divide both sides of this equation by ξ and one passes to the limit as ξ tends
to 0 then it follows the tangent equation with respect to the variable Λ that is

(4.6) Â(Sε,k)δΛ + AŜ
k

ΛδΛ = 0, k = 0, . . . , nobs,

where we have set

(4.7)
Â(Sε,k)δΛ = lim

ξ↘0

A(Λ + ξδΛ)− A(Λ)

ξ
δΛ,

Ŝ
k

ΛδΛ = lim
ξ↘0

(Sε,k(Λ + ξδΛ, F k)− Sε,k(Λ, F k)

ξ
.
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Similarly with respect to variables F k we can write

(4.8) A(Λ)Sε,k(Λ, F k + ξδF k) = ε−αT× (F k + ξδF k),

and by subtracting equation (36) to (32) one obtains

(4.9) A(Λ)Sε,k(Λ, F k+ ξδF k)−A(Λ)Sε,k(Λ, F k) = ε−αT× (F k+ ξδF k)−ε−αTF k,

where by carrying as above we obtain the tangent equation with respect to the
control variable F k,

(4.10) AŜ
k

FkδF k = ε−αTδF k, k = 0, . . . , nobs,

where we have set

(4.11) Ŝ
k

FkδF k = lim
ξ↘0

Sε,k(Λ, F k + ξδF k)− Sε,k(Λ, F k)

ξ
.

4.3. Computation of the component ∇ΛJ of the gradient with respect to Λ.
By perturbing relatively to the residual function (4.2) one obtains

J(Λ− ξδΛ, F 1, . . . , F k)− J(Λ, F 1, . . . , F k)

=

nobs∑
k=0

⟨Sε,k(Λ− ξδΛ, F k)− Sobs,k, Sε,k(Λ− ξδΛ, F k)− Sobs,k⟩

−
nobs∑
k=0

⟨Sε,k(Λ, F k)− Sobs,k, Sε,k(Λ, F k)− Sobs,k⟩

+ λopt⟨Λ− Λ0 − ξδΛ,Λ− Λ0 − ξδΛ⟩ − λopt⟨Λ− Λ0,Λ− Λ0⟩

(4.12)

After some calculations it follows

(4.13) ⟨∇ΛJ, δΛ⟩ = 2

nobs∑
k=0

⟨Ŝ
k

ΛδΛ, Sε,k − Sobs,k⟩+ 2λopt⟨Λ− Λ0, δΛ⟩,

where

(4.14) ⟨∇ΛJ, δΛ⟩ = lim
ξ↘0

J(Λ− ξδΛ, F 1, . . . , F k)− J(Λ, F 1, . . . , F k)

ξ
.

To give an explicit expression of ∇ΛJ the adjoint method can be performed using
inner product to the tangent equation (4.6) with a suitable vectors sequence qk .
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We then obtain

(4.15)
nobs∑
k=0

⟨Â(Sε,k)δΛ, qk⟩+
nobs∑
k=0

⟨AŜ
k

ΛδΛ, qk⟩ = 0,

which can be written further

(4.16)
nobs∑
k=0

⟨Â(Sε,k)δΛ, qk⟩+
nobs∑
k=0

⟨Ŝ
k

ΛδΛ, AT qk⟩ = 0.

If we consider the sequence qk satisfying

(4.17) A(Λ)T qk = Sε,k − Sobs,k, k = 0, . . . , nobs,

then from the equation(39) we deduce

(4.18)
nobs∑
k=0

⟨Ŝ
k

ΛδΛ, Sε,k − Sobs,k⟩ =
nobs∑
k=0

⟨Â(Sε,k)δΛ, qk⟩.

Therefore, considering the expression (38), one obtains

(4.19) ⟨∇ΛJ, δΛ⟩ = 2

nobs∑
k=0

⟨Â(Sε,k)δΛ, qk⟩+ 2λopt⟨Λ− Λ0, δΛ⟩,

which still writing

(4.20) ⟨∇ΛJ, δΛ⟩ = ⟨2
nobs∑
k=0

(
Â(Sε,k)

)∗
qk + 2λopt(Λ− Λ0), δΛ⟩,

where
(
Â(Sε,k)

)∗
denotes the adjoint of Â(Sε,k). Finally this equation yields

(4.21) ∇ΛJ = 2

nobs∑
k=0

(
Â(Sε,k)

)∗
qk + 2λopt(Λ− Λ0).

To compute ∇ΛJ we will need to determine the adjoint
(
Â(Sε,k)

)∗
. Firstly it is

easy to see that
(
Â(Sε,k)

)∗
= Â(Sε,k)T . So we need to calculate Â(Sε,k). Since the

application which associates to Λ associe A(Λ) is linear, then

(4.22) lim
ξ↘0

A(Λ + ξδΛ)− A(Λ)

ξ
δΛ = A(δΛ).
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Hence

(4.23) Â(Sε,k)δΛ = lim
ξ↘0

A(Λ + ξδΛ)− A(Λ)

ξ
δΛSε,k = A(δΛ)Sε,k.

Let us now set

(4.24) δΛ =

[
δΛ1

δΛ2

]
,

with

(4.25) δΛ1 =
[
δΛ1

1, . . . , δΛ
1
2N−1

]T et δΛ2 =
[
δΛ2

1, . . . , δΛ
2
2N−1

]T
.

Denoting S = [S1, . . . , S2N−1]
T yields the following.

Lemma 4.1. We have

(4.26) A(δΛ)S = diag (A1S) δΛ
1 + diag (A2S) δΛ

2,

where

(4.27) A1 =


2 −1
−1 2 −1

. . . . . . . . .

−1 2 −1
−1 2

 and A2 =


0 −1
−1 0 −1

. . . . . . . . .

−1 0 −1
−1 0

 .

Next, by setting the following block matrix

(4.28) D(S) = [diag(A1S) | diag(A2S)] .

Lemma 4.2. One has

(4.29) A(δΛ)S = D(S)δΛ.

Based on these two lemmas we can state the following result

Proposition 4.1. The adjoint of Â(Sε,k) and the gradient of the operator J with
respect to Λ are respectively given by

(4.30)
(
Â(Sε,k)

)∗
= D(Sε,k)T
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and

(4.31) ∇ΛJ = 2

nobs∑
k=0

D(Sε,k)T qk + 2λopt(Λ− Λ0).

4.4. Computation of the component ∇FkJ of the gradient with respect to F k.
As in the previous section, it is easily shown

(4.32) ⟨∇FkJ, δF k⟩ = 2⟨Ŝ
k

FkδF k, Sε,k − Sobs,k⟩, k = 0, . . . , nobs.

According to the tangent equation (4.10) we deduce

(4.33) Ŝ
k

FkδF k = ε−αA(Λ)−1TδF k.

Hence,

(4.34)
⟨∇FkJ, δF k⟩ = 2ε−α⟨A(Λ)−1TδF k, Sε,k − Sobs,k⟩

= 2ε−α⟨TT (A(Λ)−1)T (Sε,k − Sobs,k), δF k⟩.

We finally state

(4.35) ∇FkJ = 2ε−αTT (A(Λ)−1)T (Sε,k − Sobs,k), k = 0, . . . , nobs.

5. ALGORITHMIC SCHEME

The algorithmic scheme is based on the calculation of the gradient of the function
objective. To solve the problem, we use Newton’s method.

Let be the vectors Λ ∈ R4N−2 et F k ∈ Rm; k = 1, 2, . . . , nobs, where the parame-
ters N,m and n are fixed. Then the gradient calculation procedure summarizes as
follows:

(1) Read input arguments
• Λ ∈ R4N−2: sedimentation parameter vector;
• F k ∈ Rm: source function approximation vector.

(2) Read Sobs,k, k = 1, 2, . . . , nobs;
(3) Read the parameters Λ0 and λopt.
(4) Calculate the matrix T of order

(m+ 1)× (2N − 1)

with the formula (3.10);
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(5) Calculate the tridiagonal matrix A1 et A2 of order 2N − 1 with the formula
(4.29);

(6) Calculate A(Λ) with the formula (3.8);
(7) For k = 1 to k = nobs, do

• Calculate Sϵ,k by resolving the equation (3.13);
• Calculate D(Sϵ,k) with the formula (4.28);
• calculate qk by resolving the equation (4.17);
• Do ∇ΛJ ←− ∇ΛJ + 2D(Sϵ,k)T qk;
• Do ∇FkJ ←− 2ϵ−αTT (A(Λ)−1)T (Sϵ,k − Sobs,k).

(8) Do ∇Λ ←− ∇ΛJ + 2λopt(Λ− Λ0);
(9) Write ∇ΛJ,∇FkJ, k = 1, 2, ..., nobs.

6. IMPLEMENTATION

6.1. Experimental data. In the process of numerical experimentation, in the ab-
sence of real physical measurements, we must generate experimental data. We
consider observations represented by Xobs,k and Y obs,k, respectively the abscissa
and ordonate vectors of the observation points at an instant tk. We denote by δt

the time interval between two consecutive observations and by Sobs,k the height
vector of sediments at time tk at the observation points. We propose a procedure
allowing to generate the observed data S by solving the following partial differen-
tial equation analogous to that proposed by Lloyd N Trefethen [7],

(6.1)
∂S

∂x
+ c(t, y)

∂S

∂y
= 0

on a stretch of the river; with 0 ≤ x ≤ 8 and 0 ≤ y ≤ 6, taking c(t, y) =

0, 2
√
2sin2(y − t), with a boundary condition S(t, 0, y) = exp(−100(y − t)2).

From these experimental data we deduce the vectors of the observed shock line.

6.2. The direct scheme. The direct scheme consists in calculing the sedimenta-
tion state vector Sϵ,k from the application:

(6.2) (Λ, F k) 7→ Sϵ,k = ϵ−αA(Λ)−1TF k.

Matrix T can be generated by the simple command:

T=cos(acos((-N+1:N-1)*h/N)'*(0:m));
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FIGURE 1. sedimentation state observed(left) and the corresponding
shock line(right).

6.3. The reverse scheme. The inverse code consists in calculing at each iteration
k, the vector qk solution of the adjoint equation (4.17) and in the calculation of
the gradient.

And to finish, we take the code of the main program which allows us to identify
the sedimentation parameter as well as the vector coefficients in the Chebychev
basis of the source function according to the discretization parameters h and N

and the approximation parameters α, ϵ and n.

6.4. Numerical results. In this part we present the resultsof the numerical simu-
lation on the propagation of a sandbank and the convergence of the approximation
scheme over six observation times between the initial time t0 and the time t0 + 25

for the following values of the settings : n = 10, ε = 10−1, h = 10−1, m = 3 and
α = 1.

In figure 2, we observe the propagation of a sandbank considered as a shock
line from t0 to t0 + 25.

The following figures illustrate the convergence of the approximation scheme:
for larger and larger values of n and for smaller and smaller values of h, the
convergence is much clearer.
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FIGURE 2. Numerical simulation on the propagation of a sandbank
over six observation times between the initial time t0 and the time t0 +
25 for n = 1 and L = 0.1

FIGURE 3. Illustration of the approximation scheme at t0: for the first
figure n = 10 et h = 0.1, for the second figure n = 10 and h = 0.01
and for the third n = 100 et h = 0.01
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FIGURE 4. Illustration of the approximation scheme at t0 + 5:for the
first figure n = 10 and h = 0.1, for the second second n = 10 and
h = 0.01 and for the third n = 100 and h = 0.01

FIGURE 5. Illustration of the approximation scheme at t0 + 10:for the
first figure n = 10 and h = 0.1 , for the second second n = 10 and
h = 0.01 and for the third n = 100 and h = 0.01

FIGURE 6. Illustration of the approximation scheme at t0 + 15:for the
first figure n = 10 and h = 0.1, for the second second n = 10 and
h = 0.01 and for the third n = 100 and h = 0.01
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FIGURE 7. Illustration of the approximation scheme at t0+20: for the
first figure n = 10 and h = 0.1, for the second second n = 10 and
h = 0.01 and for the third n = 100 and h = 0.01

FIGURE 8. Illustration of the approximation scheme at t0+25: for the
first figure n = 10, h = 0.1, for the second n = 10, h = 0.01, for the
third n = 100, h = 0.01
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