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LARGE DEVIATIONS FOR STOCHASTIC VOLTERRA EQUATIONS WITH
REFLECTION IN HOLDERIAN NORM

R.A. Randrianomenjanahary! and T.J. Rabeherimanana

ABSTRACT. In this paper, we study the large deviations principle (LDP) of the
Volterra process with reflection in Hélderian norm by using the Azencott method.
As an application, we obtain the large deviations principle (LDP) of a perturbed
reflected diffusion process driven by the Fractional Brownian Motion with Hurst
parameter H € [1,1).

1. INTRODUCTION

The purpose of this paper is to study small perturbations of the solution of the
following Volterra-type stochastic differential equations (SDE):
(1.1)

¢ ¢
X = xo +/ b(t,s, X,) ds+ / o(t,s,X,) dBs+ 8 sup X, te€]0,1],
0 0

0<s<t

and let 7' = (7;),t > 0 be the solution of the stochastic differential equation

t
(1.2) T; :y+/ s(t,s,Ts) dBs + B sup Ts + Ly, ¢ €10,1],
0

0<s<t
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with 5 € [0,1],z € R,y € R, are deterministic. Here {L;, ¢ € [0, 1]} is a continuous
increasing process with L, and

t
(1.3) / \itizoy dL = L.
0

We can assume {L;, ¢ € [0, 1]} as the local time of the semimartingale {7}, ¢ € [0, 1]}
at the origin. {B;,t € [0, 1]} the standard one-dimensional Brownian motion on a
complete probability space (2, F, (F)io, P).

Letb,0:]0,1] x [0,1] x R — R and ¢ : [0, 1] x [0,1] x Ry — R are measurable
functions satisfying the following conditions:

(1) The functions b and o are lipschitzian with respect to the second variable.
In other words, there exist a constant L such that, for all z,y € R, s,t €
0, 1], we have:

\b(t,s,x) - b(t757y‘ < L’.I’ - y’u

o(t,5,2) — o(t,5,9)| < Lz — y].

(2) There exists a constant L such that, for all x,y € R, s,¢ € [0, 1], we have

|C(t,8,9§') - C(t,S,y)| S L|ZL‘ - y|

(3) The functions b(t, s, z), o(t, s, z) and (¢, s, ) are bounded.

For a €]0, 1, let C*([0, 1], R) be the space of continuous functions from [0,1] to
R equipped with the «- Holderian norm. Let us consider the small perturbations
solutions of the SDE

(1.4) Xf:xo—i—/ b(t,s, X?) ds—i—\/_/ (t,s,X5) dBs+ [ sup X¢,
0

0<s<t

H € (0,1), t € [0,1], and let T = (7y),t > 0 be the solution of the stochastic
differential equation

(1.5) Te—y—i-\/_/ (t,s,Tc) dBs+ 8 sup T: + L;

0<s<t

with ¢ € [0, 1]. Here {L;,¢ € [0,1]} is a continuous growing process with L and

t
(1.6) / X{Ts=0} AL = L.
0
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In this work, we propose to show for a €]0, [ and § €]0,1[ (resp. a €]0,1]
and 3 €0, 1[) the large deviations principle (LDP) for the laws of X¢ (resp. T¢
) solution of the equation (resp. (1.5)) in C*([0,1],R)using the Azencott
method.

In [6] Ventzell and Freidlin (1970) considered the LDP for the diffusion pro-
cesses of stochastic differential equations driven by the standard Brownian motion.
Azencott (1980) [1]], later Priouret (1982) [12] have extended this estimations
to the general class of diffusions where the coefficients are lipschitzian functions.
In [7], Priouret-Doss established the LDP for perturbed and reflected stochastic dif-
ferential equations driven by a standard Brownian motion. The stochastic Volterra
differential equation in the plane was studied by Rovira and Sanz-Solé (1997),
then David Nualart and Carles Rovira [10] studied the LDP of the Voltera equa-
tion. Later, Boualem Djehiche and M’hamed Eddahbi [2]] extended their results to
the Besov-Orlicz norm. In [9], El Hassan LAKHEL extended the results of Boualem
Djehiche and M’hamed Eddahbi in R¢.

As an application of the LDP for Volterra stochastic differential equations, we
study the stochastic differential equation with reflexion driven by a Fractional
Brownian motion.

This paper is organized as follows. In Section 2, we announce the first prelimi-
nary results. In section 3, we give the rigorous formulation of the problem and we
present the main theorem, the theorem [3.1], the theorem [3.3] and The proof
of these theorems depends on the reflection principle and the Lemma given in
section 2. In section 4, we prove the LDP of the solution of the equation and
(1.5). Finally, section 5 gives an example where we can apply this method.

2. PRELIMINARY RESULTS

Let F be a Polish metric space (complete metric space), B(F) its borelian tribute,
(P?).~o a family of probability measures on B(F).

We suppose that (P¢).., converges tightly to ¢,, and we want to quantify this
convergence.

Definition 2.1. A family of probabilities measures (IP%).~q is satisfies the large devi-
ations principle (or shorter LDP) with the rate function [ if there exists a function I
defined on E such that:
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-0<I(z) < +ooforany x € E,

- I is semicontinuous in lower terms, in other words, for all | < oo, {z : I(z) <
[} is a closed of E or for all x,, —» x, then I(x) < liminf I(x,)

- For every closed subset F' C F,

limsup elog P*(F) < — inf I(z).

e—0 zeF
- For every open subset O C E,
o . o
harn_%lf elog P*(0) > xlrel(fjf(x)

If additionally, for any | < oo, {x : I(x) <1} is a compact of E then we say that I is
a good rate function

Theorem 2.1. (Contraction principle) Let (P).-( be a family of probabilities sat-
isfying a principle of large deviations of good rate function I. Let, for all —,
f—. : E — R a continuous function of E in a separable metric space F. Assume
that there exist f : E — I such that

limsup sup dp(f-(x), f(z)) = 0.

e—0 x:I(z)<l
Then (Q° = P¢ o f-1) satisfies a large deviation principle with the rate function J
where

J(y) = inf I(x).

(y) me()

Theorem 2.2. (Schilder’s theorem) The family (W*®).¢ satisfy a large deviation
principle(LDP) on E of rate function \ given by :

A(h) = %/0 [h(s)[* ds  ifheH

)

400 otherwise

WMMH:{A%@M&EELMQW}

Proposition 2.1. (Azencott’s method) Let (F;,d;), i = 1,2 be two Polish spaces and
X! — FE;, &> 0,i=1,2 two families of random variables. Suppose that {X{, ¢ > 0
satisfy a LDP with the rate function I, : E; — [0, 400).

Let  : {I; < oo} — E, an application such that its restriction to compact sets
{I; < a} is continuous in the topology of E;. For all g € E, we pose I(g) =
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inf {Il(f), O(f) = g}. Suppose that for all R, p, a > 0 there exist « and ¢y > 0
such that for all h € E; satisfying I;(h) < a and € < gy we have

Lemma 2.1. [11](Gronwall’s Lemma) Soit T' > 0 and let f and h be two positive
functions measurable for any y € [0, T| satisfying %(., y) and h(y,y) exists. Supposed
that there exist a constant a > 0 such that for any t € [0, 7], we have:

2.1 f(t) <a+ /Ot h(t,s)f(s)ds.

t
Then, we have f(t) < aexp (/ h(t,u)du) foranyt € [0,7].
0

Theorem 2.3. (Reflection principle) Let (U;):>o et (D;);>o two continuous processes
on [0,T], with T > 0, and 8 € (0, 1). So the equation

(2.2) U= D;+  sup U,

0<s<t

admits a unique solution of the form

(2.3) U =D+ sup D;.
1 — B o<s<t
Proof. Let us note by : U, = sup U and by D; = sup D,. From the formula (2.2),
s<t s<t

we have U; < Dy + pU;". So, (1 — B)U; < Dj. Let sy(t) the point where D; is
attained, then by virtue of equation (2.2), we have : U,y = D; + ﬁUs”‘O(t), then it
follows that Dy < (1 — B)U; ) < (1 — B)U; because Us,) < Uy, and so(t) < ¢,
hence D} = (1 — §)U; and formula (2.2) is rewritten:

(2.4) U, =D, + %D;‘.

O

Theorem 2.4. (Corollary of the Reflection Principle) Let (U,);>o be a process of
the form
t t
U, =Uy+ / b(t,s,z)ds + / o(t,s,x)dBs + Bsup Us.
0 0

s<t

Then,

1 S S
supUy, < —— (U(] + sup/ b(s,u,z)du + sup/ o(s,u, x)dBu).
0 0

s<t 1-— 5 s<t s<t
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Lemma 2.2. Let {Z(t, s) }1er be a real process satisfying the following conditions:

(1) Z:[0,7] x [0,T] x Q@ — Rest B([0,T]) ® B([0,T]) ® F—mesurable.

(2) Z(t,s) =01if s >t.

(3) Z(t,s) is F — adapted.

(4) There exists a random variable ¢ and a real § €]0,2] such that for all t,r €
[0, T, we have:

min(r,t)
(2.5) / |Z(t,s) — Z(r,s)|ds < |t —r°.
0

Then, for any 5, 0 < 8 < min(1,0), there exist positive constants K,(f3), Ks, K3 such
that, we have:

t
IP’(H [ 29080 o> 0.1 7 s K < cz)

L2
K3}
(TK% +T°Cy) o}

(2.6)
< Kiexp{—

Proof. Readers are referred in [[10] for more detail of the proof of Lemma O

3. STATEMENT OF THE MAIN RESULTS

3.1. Statement of LDP results for the solution of (1.4).

Theorem 3.1. For every a €0, 3,3 €]0,1. By denoting {n.,e > 0} the family
of probability measures associated to X°© solution of the SDE (1.4), considered as a

random variable in C*([0, 1], R) equipped with the Holderian norm || . ||,, then the
family n. satisfy a LDP with the good rate function I(.) defined by:
: 1 Lo(12 x a
)=, nt {5100 =80} forany g e 0°(0.1.R)

where H is the Cameron Martin space associated with the Brownian motion B:

t
h:[0,1] = R, h(t) = / h(s)ds such that
H = 170
h(0) = 0 and / |hg|? ds < 400
0
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®*(h)(t) is the unique solution of the following solution of the deterministic differen-
tial perturbed equation, called the skeleton of (1.4)):

o (h)(t) :x0+/0t b(t,s,qﬂ(h)(s))dH/Ota<t,s,<1>x(h)(s)>h(s)ds
+ 3 sup ®*(h)(s)

0<s<t

(3.1)

First, we need to study the existence and uniqueness of the solution of the

equation ((1.4) and (3.1).

3.2. Existence and uniqueness of the solution of the equation (1.4).

Theorem 3.2. For every a €]0,1[, 8 €0, 1], for every zo > 0, the equation (1.4)
admits a unique solution in C*(]0, 1], R).

Proof. Consider the approximating sequence (X;"),>o defined by:

t t
Xom = g +/ b(t, s, Xo™) ds + /e / [U(t, S,Xi’n)} dB, + 5 sup X"
0 O

0<s<t

H € (0,1), t € [0,1]. It follows that,
t

X o X = [olts X2~ olts X )b,
0

t
4 / b(t, 5, X=™) — bit, s, X=") ds
0

+ 5( sup X" — sup Xj’”_l>.

0<s<t 0<s<t

By the Reflection principle, and by virtue of the fact that for two continuous
functions v and v on R,..

| sup u(s) — sup v(s)| < sup |u(s) —v(s)|.
0<s<t 0<s<t 0<s<t
Thus, by the Reflection principle,it follows that, for ¢ € [0, 1]
t
X - X < / lo(t,s, X27) —o(t,s, XJ"1)dB|
0
t

+ /\b(t,s,Xj’”) —b(t,s, Xe" N ds
0
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+ B Sup/ lo(s,u, XE™) — o(s,u, XE" 1) dB,|

-8 0<s<t

+ sup [ [b(s, u, X

0<s<t Jo
— b(s,u, Xo" 1) ds).
By Using the following estimate, for any u € R and v € R, we have:
(u+v)* < 2(u” +07),

and by applying Burkholder’s inequality on the martingale M, defined by
t
M = / lo(t,u, X5™) — o(t,u, X" V) dB,|(%),
0
and considering p = 2, we have

L?’L
E[sup [X7" — X" < Cp—E[sup |X7* — X7OF].
0<s<t n! 0<s<t
Again, by applying Burkholder inequality on the martingale )] which appears in
the expression of the | X5 — X9|2 it follows that
E[sup [ X' — X2Y?] < 0.
0<s<t
It should be noted that
1 1
P[ sup |Xss,n+1 Xs n| > _] — P[ sup |X§,n+1 Xen’2

0<s<T 2" 0<s<T ~ 4n

—1.

By Markov inequality and the relation (*), we have

1 4L)"
P[ sup |X&™ — Xom]2 > 47] <A4"E[ sup | X — Xo?) < C( ) :

0<s<T 0<s<T n!

It is easy to see that the general term series U,, = & is convergent.

By using the fact that if (X="),>o a sequence of random variables such that for
a convergent positive term series (U, ),,>0, we have > . P[|Xo" " — X" > U, ] <
oo, then (X*™"),>¢ is almost surely convergent. Hence,_the exitence of the solution
of the equation (1.4).

The uniqueness of the solution of the equation will be obtained by suc-
cessively applying Burkholder’s inequality the Fubini-Tonelli theorem and the
Gronwall Lemma. Indeed, if U, and V; are two solutions of the equation ((1.4]) we
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have:

U, — Vi? < K, sup / 05,1, U) — o(t,u, Vi)dB,[?

0<s<t

+Kgsup/|bqu b(t,u, Vy,)|*du.

0<s<t

By the Burkholder inequality, we have
t
E[|U; — ViP] < KQE[/ U, - V,Pds).
By using the Fubini-Tonelli Theorem

E| / U, -V, ’ds] = / (E[|U, — Vi[)ds

From Gronwall’s Lemma, we have:
E[|U, — Vi]*] < 0expt = 0.

Consequently, we have the uniqueness of the solution.

3.3. Existence and uniqueness of the solution of the equation (3.1).

753

Lemma 3.1. Suppose that the functions o and b are bounded and lipschitzian, then

the equation defined in the formula (3.1]) admits a unique solution.

Proof. Let us note by ®(V)(h) and ®®)(h) two solutions of the equation (3.]).

Now, let us denote by D®(h)(t) = &1 (h)(t)—d@ (h)(t). So, || D (h)—DP (h) ||,

can be rewritten as || D®(h) ||a,

IDO(R)(1)] < L /O [a(t,s,Xgn)} DO(h)(s) (1+ hy) ds

(3.2)
+ 5 sup. IDO(h)(s)]-
Thus, -
(33)  ||DB(h) u< Lm ot s, X5")| IDD(R) o (1+[iy]) ds
Set,
(3.4) b = ’U(t,s,Xj”) (1h]) 10 (s) € L1([0, 1]).
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It follows, by the Cauchy-Schwarz inequality that

[ ([ rensora) ([

= CH)([[ 1 [ls) < oo

N[

o(t,s, X5™)

We can conclude from Gronwall’s Lemma that | &™) (h) — ®®)(h) ||,= 0, hence
W (h) = @@ (n).
To study the existence, we use the following approximating. Let’s define
t t
O = 1 +/ b(t,s, ®' 1) ds —|—/ o(t,s, @ 1) h(s) ds + 8 sup O 1.
0 0 0<s<t

We note by @, (t) =|| " — " |, then we have:

t

B

Do (t)

IN

o(t, s, X5™)| (14 hy) ds < oo

1—

=

t

D, (1) < o(t, s, X™)| ®,_1(s) (1+ hy) ds < co.

=™

‘b«
S— —

1 —
Then, by iteration
L \" 1)
P <|— .
W(t) < (1_5) D KW (1)

We can then deduce that ¢,,(¢1) — &(¢) converges uniformly in ¢ and ¢ is the
solution of the equation (3.1)) O

3.4. The results on the LDP solution of (1.5). In this paragraph, we will prove
the PGD for the solution of the reflected diffusion equation (1.5).

For y > 0 and f € C*([0,1],R) (the space of continuous functions from [0, 1] to
R) with f(0) = y, let’s define two functionals I" and K as follows:

r:Cc*([0,1],R) — C*([0,1],R,)
f—Tf=f+]
and
K : C*([0,1],R) — C*([0,1],Ry)
f—Kf=1F,

with f = —ir<1{;(f(s) N0),t e 0,1].
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Let us note that the solution 7° of equation (1.5)) is given by:
(3.5) Ty = (I'Z°)(t) and L; = (KZ°)(t), te]0,1],

where Z¢ is a solution of the following differential equation:

3.6)  Z()=y+ \/E/ <(t,5,T2°)(s)) dB, + B sup (TZ%), te[0,1].
0

S,
Indeed,
TZe(t) = Z5(t) + KZ°(1)
= [ D26 B+ 8 s (020) + KZ)

0<s<t

0<s<t

t
= y+ \/E/ s(t,s,I'Z%)(s)) dBs + B sup (I'Z) + L
0
pum— 7—26.
For h € H, let ®¥(h) be the unique solution of the following equation:

B (h)(t) = y + / St 5, B(1))(s)) hs ds

+ 8 sup (2¥(h)(s)) + n(t),

0<s<t

(3.7)

t € [0, 1], where ®¥(h) is a continuous, non-negative function, and 7 is a continuous
increasing function satisfying n(t) = / t Xau(ny—o dn(s). Similarly to the formula
([3.5), ®¥(h) can also be written as: '

(3.8) ®¥(h)(t) = (TV(h))(t) and n(t) = (KV(h)(t), te€[0,1],

where V' (h) is a solution of the following deterministic equation:

3.9 V(h)(t)=y+ /t <(t,s, TV (h)(s)) hs ds + 8 sup (CV(R)(s)), te[0,1].

0<s<t

Let v/! be the law of Z¢ on C*([0, 1], R+) equipped with the Holder norm || . || c.
We have the following main results:

Theorem 3.3. For every a €]0, 5[, 8 €]0, 3|, by noting {v},e > 0} the family of prob-
ability measures associated to Z* considered as a random variable in C([0, 1], R;)
equipped with the Hoderian norm ||.||., , then v! satisfy the LDP with the rate function
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I,(.) defined by:

(3.10) I,(9) = inf  A(h),
{heH;g=2=(h)}

where ) is defined in (2.2]). We take the convention inf () = oo.

Theorem 3.4. For every a €]0,1[, 8 €]0,1[. by noting {v2,¢ > 0} the family of
probability measures related to T° considered as a random variable in C*([0, 1], R})
equipped with the Hoderian norm ||.||.., then v? satisfy the LDP with the rate function
I,(.) defined by:

I = inf ],
S9) = int T,(9)

where I is defined in the theorem (3.4). We take the convention inf () = cc.
3.5. Existence and uniqueness of the solution of the equation ((1.5).

Theorem 3.5. For every a €]0, 5[, for all y > 0, the equation (1.5) admits a unique
solution.

Proof. Let’s consider the sequence defined by:

t
(3.11) T — g 4 e / G(t, s, T dB, + B8 sup T + L™,
0

0<s<t

Let Tf’(o) be the unique solution of

0<s<t

—y—i-\/_/ (t,s, 75O dB, + B sup TE(O)—i-L()

Let’s construct the first stopping time 7, = {1r>1£}{T = 0} and the process
t
Bt(l) = B, — By. By invariance, Bt(l) is a Brownian motion. The reflection prin-

ciple ensures the existence and uniqueness of the solution to the SDE Z; M) =

t t
/O o(t,s, 20y dBM + L2W with L5 =0 et L7V = /O 1{25,(” oy AL,
Let’s now construct the second stopping time 7, = inf }{Zt = sup 7%} and
{t>71 0<s<m

the process Bt(2)

the reflection principle ensures the existence and uniqueness of the solution of the

t
SDE z;® = (1- )z, + / <(t,s,2;%) dB? + 8 sup 752,
0

T2—T1
0<s<t

. . 2) . . . .
= B,+., — B;,. By invariance, Bf ) is a Brownian motion. Similarly,
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By proceeding by recurrence, let us construct the following approximating se-
quences:
(1) : {B*Fk) = P = B
By=0

The sequence (By)ren are brownians motions from the Markov property.

(1, = inf {Zfﬁ;j) = sup T}
(IT) : ¢ {t>72n-1} 0<s<t—T2n_1
Ton+1 — inf {Zt T2n = 0}
\ {t 2"1}

Zts,(Zn 1) \/—/ tS Za (2n— 1)dB(2n 1) +LE(2n 1)

(I11)
Zf’@n) =(1-p)Tg +\/—/ (t,s, Z25W) dBPY + 3 sup TSV
. 0<s<t
LS,(Zn—l) -0
V) - _ ¢
( ) Li’(2n 1 :/ 1{Z§,(2n71):0}dL§’(2n71)
0
Le =1I=f LY f <t<
(V) . t Ton—1 + Ly U Top1 S TS T,
| L = LE, i o <t < Tanpa

e =T =Cn) jf Ton S U< Topg

t—Ton ?

<vz>-{ Tr =22 0 my s <t <,

Let us show that (Y}, L) satisfying the equation (1.5]).

Case 1: if rp,, <t < 7941

tiT(Qn)
To =T = (= OTa, +VE [ st () Z2) dBEY

€,(2n)
+13 SUPg<s<t—79, Ty
t—Ton

= (1= BT + /e / (t — Ton, 5, 25 (dByyr,, — dB,,,)

T2n

+03 SUPp<s<t—7g, T (Qn)

T2n

_y+\/_/ S(7on,8,T5) dBs + 3 sup Tg + L5,

0<s<19,

t—Ton
+\/_/ — Ton, S, ZE ) (dBS+T2n - dBTZn) + /8 sup T8€7(2n) - T‘gn'

0<s<t—Tan
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By using a new variable u = s + 7,, we have

t—Ton t
/ S(t — 7on, 8, Z?(Qn)) dBstr,, = / S(t — Tan, Zy, (2-7;1) dB,
0 T

2n

Noticing that,
T, = sup T

0<s<72n

As a result, it follows that
_y—l—\/_/ (t,s,T5)dBs+ 3 sup Ts + LS.

0<s<t

Case 2: if Ton41 <t < Ton4-2

t—Ton+1

7—’; = T2n+1 + \/_
T2n+1
_y+\/_/ S(t,5,T%) dB, + /2

. g,(2n+1) (2n+1) €
(t (7—271+1) S, Z ) dB + L’Tzn+1

(t,s,Tc) dB

T2n+1

+0 SUpo<s<TQn+1 5+ L
—y—i-\/_/ (t,s,T5)dBs + 3 sup T + Lj.

0<s<t

We remark that the sequence (7,),>0 is increasing and its limit co = 7 = lim 7,
- n—o00
O

We will now prove the Theorem so, it is a direct consequence of the

following Theorem

4. PROOF OF MAIN RESULTS

4.1. Main results on the LDP solution of (1.4).

Theorem 4.1. For every a €]0, 5[, # €]0,1[ and h € H. For any R,§ > 0 there exist

p > 0 such that
R
P X7 = 00 > . VEB ~ < 8) < exp(= 1)
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4.1.1. Proof of the Theorem

Proof. By the formulas and (3.1I), we can then write
X — 0t (h)(t) = /0 ot 5, X9) (\/5 dB, — h(s)> ds
+ /Ota(t, 5, X5) — 0<t, s, qﬂ(h)(s)) h(s) ds
+ /Ot b(t, s, X5) — b(t,s,qﬂ(h)(s)) ds
# A, X5 = g, #0000

Therefore, by the Reflection principle , it follows that:
t
X; = o0 < [ o5, X3) (VEdB,~ i) ds)
0

= L[ (X =m0+ li)) ds
8 sup |X2 - @7 (h)(s)].

0<s<t

where L > 0 is the Lipschitz coefficient of b and o, and noting that

(4.1) | sup u(s) — sup v(s)| < sup |u(s) —v(s)]

0<s<t 0<s<t 0<s<t

for two continuous functions v and v on R,. Thus, it follows that, for ¢ € [0, 1],

sup [ X — @(h)(u)] < =5 sup / lo(t, 5, X5) (Ve dB, — h(s)ds)|

0<u<t O<u<t

+ %gwp/’u§—¢%m<na+m<m

o<u<t Jo

By the Gronwall Lemma and the Cauchy-Schwarz inequality, we have

| X; =& (h)(t) [le < T%'&mt/’UtA%XE(VFdB — (s))] ds

0<t<1

X eXP(/Olfﬁ 1+‘h \ds)

< Oy sup/]atsXE <\/_dB — h(s ))\ds

0<t<1

H/Ut,s,Xj (\/Est—h(s)> ds oo,
0

IN

759
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1 1
where C1(h) = 15 exp(C(H) L (14 || b [}3)/(1=8) ) with || & [l5= (/ o ? dis)
0
for h € H, since t < 1.

Let us first examine the case where i = 0.
By using the fact that for any f € C([0,1],R), || f ||c<|| f ||l @and h = 0, it can
be deduced that

t
“4.2) X5 = 070) oo < CL0) [ VE [ o(t5.X7) dB o

0
For any t € [0, 1], for any continuous function f : [0, 1] — R, let us denote by
(4.3) I f llas= sup [f(w) = F)l < o0

o<uzv<t  |U—ul®
Set
Dy o) (u) = X5, — 97(0)(u).
By the Reflection principle, we will get:

D3tz (o) (1)=D3a o) (5)
3o (0 (M ~Di o) .
‘t3|a S ts|°‘< ﬁ/ﬁat’UX)dB
+ £ 5 Sup \/_ o(u,v,X;) dB )
s<u<t
+ £ sup / b(u v, X;) — b(u,v D7 (0)( )) dvD
s<u<t Js

Therefore, we obtain:
t
| X =80 s < 5 I VE [ 0(t0.X) dBy o
0
+2L | X7 = 07(0) [l
t
+25 /0 | X5 —®%(0) [|a; dv.

By using the formula (4.2]), we have:

e = w0 1o < (15 + 229 EY 1 vz [ ot x) am

X —d%(0
+ 28 [ - a0 o do
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By Gronwall’s Lemma , we have:

@) (-0 s (72547 705 ) 1 xvE [ ot X0 d, 1 000)

where ©(0) = exp(%).

Now, let us examine the case where % # 0.

In the general case, we proceed to a translation on the Wiener space by the
Cameron-Martin formula to obtain the case h = 0. By an argument similar to that
of the proof of the formula (4.2), we obtain

t
@) X7 = 000 |z ) | [ otts. X0 (VEdB. i) ) ds o
0
Set
Déj(h) (u) = X5, — % (h)(u).
Therefore,

€

€
D3 (h) (1) =Dgz (1) (5)

— < e (]ﬁ / ta(t,v,X;f) <\/E dB, — h@)) dv
+ %Sggt</guﬁa(u,v,){;) dBv>
+ 2 sup ( / (v, X5) — b(u,v, cpx(h)(v)) dv
+ %ss;%%/j [U(U,U,qu)(v) —a(u,v,wh))(v)] h(v) dvD.

By applying the formula (4.5), and by the Reflection principle, we obtain

1O =) s < o5 1 [ olts XD [VE dB. = is)]ds g

+ LLoi(n ||/ (t,s,X5) [x/_dB—h()]dsHa
b g ORI = 00 s s

By Gronwall’s Lemma, it follows that

(4.6) (X5 = @%(R)) [la< <1i6 " B(fflﬁ(;l))
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< | / ot 5, X5) (v dBy — by ds) [la ©(h).

where ©(h) = exp (w) .

On the basis of the relation (4.6) which we obtained previously, we have to
show the following Theorem to complete the proof of the Theorem

Theorem 4.2. For every o €]0, 5[, 3 €]0,1[. For any R,5,a > 0, there exist p > 0
and €y > 0 such that, for any h € C*([0, 1], R) satisfying A(h) < a and € < g

p(1 [ oty X2) (VE dB. — i(s) d5) ll> .| VE B~ h [l 5)

(%)
< exp -Z)

Proof. For € > 0, let us define a probability measure P on (2 by

1 [t 1 [
(4.7) dP° = M. dP = exp —/ h st——/ |hs|? ds |dP.
Ve Jo 2¢ Jo

Now, Girsanov Theorem ensures that { B = B; — \/LE hi, t € [0, 1]} is a Wiener
process with respect to the probability P°. Let {U;7,0 < t < 1} the solution to the
following deterministic differential equation:

Us(t) = zo —I—/O b(t,s,U%(s)) ds +/0 o(t,s,U%(s)) h(s) ds
+ 3 sup US(s).

0<s<t

(4.8)

To simplify the notation, let’s define for all p, a, € > 0,

_ { 1 /Ot o(t, s, X°) (ﬁ dB, — h(s) ds) o> p, 1| VE B = h [l 5}.

Using the definition of B;, we have:

t
_ { I / o(t, s, X5) VE dBE ds ||a> p,VE || B ||leo< 5}.
0

By the Cauchy-Schwarz inequality,

P(A°) /M X A= ()} P (dB) (/M ) P* dj}?))é(ﬂﬂf(/ﬁ))é
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An application of formula (4.7) yields

/M w)P*(dB) = Ep. exp( = h dB, + - / |hg|? ds)]
€ / 1 L2
= EIP’& exp \[ dB hs>+g ‘hs’ ds
Ep. exp( NG h dB, — / |h|? ds)}

1

xexp(%/ |h|? ds)
0

IN

2 (1.
By using the Ito formula, the process L; = exp< f h dB, — R / |hs|? ds)

is a finite martingale. Therefore, we have:

/M ) Pe( dB)<exp(— || h||H)

Therefore, if A(h) < a, then

(4.9) P(A%) < exp<g) (IPE(AE)) %.

So, we are left to estimate the quantity P°(A°) to complete the proof of the theo-
rem. Notice that:

t
P (A7) = Pe( || / o(t,s,X2) (VE dBy— (s)ds) o> .|| VE By = h |lao< 5)
0
t

—P&( IVE [ ot B > 1. V2 B s 5)

0

t
_ ]P’( Iz / o(t,5,U%) dBs o> p || VE B [l 5).

0

We will prove the following Theorem to complete the proof of Theorem
4.2l

Theorem 4.3. For every o €)0, 5[, 8 €]0,1[. For any R,§,a > 0, there exist p > 0
and €y > 0 such that, for all h € CO‘([O, 7], R) satisfying A(h) < a and ¢ < &,
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€

t
P( IVE [ ottis.) By o> .l V2 B s 5) < exp ( _ 5).
0

Proof. For all n € N*, we consider the sequence of approximating of the process
U¢ defined by

| o
Ut — US it € [l,”

[ forany j = 0,1,2,...,n — 1.
n n

For v > 0 and for each n € N, we have

t
_ { IV [ ott,sU2) B a2 .| VEB s 5} CATU AU A,
0

where
4

g,n p £ g,n
= {1VE [ (ot = ott .U B, o2 B, 07 - 07 oz o)

Ac
2

{ | U7 = U [l 7

t
— {1V [ olts. Uz aBu a2 5.1 VB < 6
\ 0
In the subsets {|| U¢ — U®" | < 7}, we have the following estimates

(4.10) I Velo(t,5,U5) —olt, s, U] lla< VELY,
and by using the Lemma [2.2} it follows that

2
P(AT) < K, exp{ - <2\/_L7 9 — 1) }
To estimate ]P’(Ag), in the subsets {|| \/eB* || < ¢}, if o is bounded by M, we get

t
| vz / o(t, 5,U=™) dB, |

= VE| Z oty 5, UL (Bltyia A) = B A) Nl

< MZ_: VeIl (Bltin) - B®) I

<nM 29,
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where M > 0 is a common bound of b and ¢. Consequently, if § < -2+ then
P(A5) = 0. By using the formula (2.17) in Bo and Zhang [3]], we have:

n (1 - p)? }

P(AS) <n exp{ - S%

We will now prove the continuity of the function ¢* solution of (3.1).

Proposition 4.1. Let a €]0, 5[ and 3 €]0, 1[. For any a > 0, the map

& . C*([0,1],R) N ({h € H: h|3< a}) — (C([0, 1], R), || - [la)

is continuous.

Proof. Let (h,), is a convergent sequence in C ({0, 1},R)ﬂ({h e H: hl3< a})
and converges to h. By combining the formulas (1.4) and (3.1)),

% (h,)(t) — @*(h)(t) = / ot 5,9 (h)(5)) (n(s) = i(s)) ds
+ /t o(t, 5, D% (hy)(s)) —a(t,s,@’”(h)(s)) ho(s) ds
£ ] U @) () - b(t,s,cpw(h)(s)) ds
B( sup @ (hy)(s) = sup 7(h)(s)).

0<s<t 0<s<t

Consequently;,
@7 (ha) (1) — = (B)(1)| < / 0 (t, 5, D% (ha)(5)) (hn(s) — h(s) ds)|
+ L / (197 (ha) () = @“(0)(s)| (u(5)])) ds

+ B sup [7(hn)(s) — ©(R)(s)],

0<s<t

where L > 0 is the Lipschitz coefficient of o, and noting that

(4.11) | sup u(s) — sup v(s)| < sup |u(s) —v(s)]
0<s<t 0<s<t 0<s<t
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for two continuous functions u and v on R,. Thus, by the Reflection principle, it
follows that for ¢ € [0, 1],

[y

sup |7 (hy)(u) — @7(h)(u)| < 135 sup /0u|a(t,s,<bx(hn)) (hu(s) — h(s)ds)|

0<u<t 0<u<t

< i s | U107 () (5) — 9 (h)(s)] (J(s)]) ds

0<u<t

By the Gronwall Lemma and the Cauchy-Schwarz inequality, we have

| 2%(hn) = @%(h) le < 715 sup / (2,5, % (hn)(5)) (hu(s) — h(s)] ds

xexp(/ ]h )
< 01251/ lo(t, s, % (h )(h' (s) — h(s))\ds

< W) | [ ot 076D (Kals) = his)) ds

1 1
where Cy(h) = % exp(C’(H) L(|h )/ - ﬁ)) with || o |Jz= (/0 1 ds)z
for h € H. ,

Now, we set by ~u(t) =| / o(t, 5, 0% (h)(9)) (FHa(s) — h(s)) ds [l We will
show that the sequence of fUI(l]CtiOIlS (7(t))n>0 is uniformly convergent on |0, 1].
So,

a(t)] < [ / (1[07,:]0@,s,¢$<hn><s>>>2ds} =Bl

Thus, by passing to sup, the sequence (v,(t)),>o simply converges to 0. As

[ (t) = (s)] < (/0 [Lsay(s)a(t, s, D% (hn)(s)] d8)2 I lln< V2aM [t = 5|2,

This ensures that ~,, is uniformly continuous and it follows that ®* is continuous
for the uniform norm. To study the continuity of ®* in the Holderian norm, let us
now note that, for any a €0, 3[, we have:

| @7 (hn) — @%(h) |la
_ g [ 2E)(E) — PUR)(R) — (2 (An)(s) — 27(2)(5))]

0<s<t<1 |t — s|®
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(@7 (ha)(t) — 7 (h)(t))] (@7 (ha)(s) — @*(h)(5))]
= 0<atrel |t —s|* " o<atiel |t — 5|

—{ | (h) — D%(h) e + || () — B(h) |1

< ﬁ{ | @*(hy) — @*(h) ||so

This completes the proof of the Proposition (4.1 O

4.2. Main results on the LDP solution of (1.5). The Theorem is a conse-
quence of the following Proposition 4.2]:

Proposition 4.2. For every a €]0,1[, 8 €]0,1[ and h € H. For any R, p > 0 there
exists 6 > 0 such that for all ¢ > 0,

z R
P77 =890 -+ 1 2 =0 a2 ) VEB = h < 5) < esp (=),

Proof. Note that for f and g two functions with values in C*(]0, 1], R), by definition
of the function I', for ¢ € [0, 1], we have:

ITf=Tgllax2f=9lla-
From the formulas 3.5/ and we have:
175 = ®(h) flo + | L =0 [la< 3 (| 2 = V(R) [|a -
0

Consequently, the proof of the Proposition reduces to showing the following

Theorem 4.4. For « €]0, 1, 8 €]0, [ and h € H. For any R, p > 0 there exist § > 0
such that for all € > 0,

]P)( | Z=¥ = V¥(h) [[a> p, || \/EB —h|le< 5) < exp (— E)

3

Proof. Let us first consider the case where h = (. More precisely, we have the
following theorem. O
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Theorem 4.5. For every o €]0, %[, 3 €]0, 3[. For any R, p > 0 there exist 6 > 0 and
g0 > 0 such that, for any £ small enough,

t
P(w& | <t Tz dB. > 0. VE B s 5) SeXp(—E)-
0

3

Proof. For all n € N*, we consider the sequence of approximating of the process

(Z%)e~0 defined by
——
7 — 75 ift e [l‘i[ forall j=0,1,2,...,n— 1.
n n n

For o« > 0 and for each n € N, we have
A= {1VE [ <) dBE a2 o] VEB* s 8} € AU AU A,
0

where
)

t
A ={| \/g/ (g(t,s,PZ§) —(t, s,rzganzy)) dB: ||
0

> L 27— 25 s,

A ={l1z7r - 22 |2 4},

t
A= { | \/5/ C(t, 5. D25 dBE o> "5)7 | VEBE s 5}'
0

\

By the result of Bo and Zhang [3], we have

ny(1 —28)?
8N2e >

For any R,~ > 0 there exist £, > 0 and 1 > 0 such that if ¢ < &, and n > 7,

P(A3) < eXp( - E)-

€

P(A5) <n exp( —

By the Lemma [2.2] and the Theorem

2

P(A}) < C exp( - 8;725).

To estimate P(ﬁg), in the subsets {|| \/¢B° ||< ¢}, if M is the boundness of
coefficient ¢, we have
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t
Ve [ slts T2z B |,
0

n—1
= VEIIY cltyys T2 (B (i A ) = B A ) o
j=0

<MY VR (B )~ B(0) s n M8

Consequently, if § < 52— then P(A45) = 0. O

We will now verify the continuity of the function ® solution de (3.7).

Proposition 4.3. Let « €]0, 1[and 8 €]0, 1[. For any a > 0, the map ®¥ : C*([0, 1],
({n e #anmsal) — co@ R ) and s oo {

H h|3< EL}) — (C*([0,1],R), || . ||o) are continuous.

Proof. The proof of this Proposition is similar to the proof of Proposition In-
deed,
Case 1: Continuity of the map dv.

Let (h,)n>0) @ convergent sequence of C*([0,1],R) N <{h e H: h ;< &})
and converges to h. By the formula (3.7)), we have:
éyt(hn)(t) — & (h)(1)
= /0 (ot 5, @1 (ha)(5)) = <(t,5,B()(5))) Finls) ds
+ 8 sup B (hn)(s) = sup B(R)(s)) + (M) (1) = (R)(D))).

0<s<t 0<s<t

By using the formula (3.8), we have:

@yt(hn)(t) — ¥(h)(t)
= /o <§(t,s,FV(hn)(s)) —g(t,s,FV(h)(s))) hn(s) ds
+ 5( sup TV (hy)(s) — sup FV(h)(s)) + (KV(hn)(t) . KV(h)(t)).

0<s<t 0<s<t
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Therefore, using the fact that for two continuous functions « and v on R,, we
have:
| sup u(s) — sup v(s)| < sup |u(s) — v(s)}.
0<s<t 0<s<t 0<s<t
As a result, it follows that
I@y(fin)(t) — ®(h)(1)]
< 1 [ (VO =~ TVOEIED) s

+ B sup [TV (hn)(s) = TV(h)(s)| + ‘Kv(hn)(t) — KV (n)(t)|,

0<s<t

where L > 0 is the Lipschitz coefficient. By definition of the function I, for ¢t €
[0, 1], we have:

TV (h)(t) = TV(R)(0)] < 2|V (ha)(t) = V(B)()].
Then by definition of the function K, for t € [0, 1], we have :
KV (Ba)(t) = KV (R)(®)] < |V (ha)(£) = V(B)(1)]
Thus, it follows that for ¢ € [0, 1],
9 () (1) — D4 (R)(0)
szLA(meg—vmmwmmm)%
+ 28 sup [V(ha)(s) = V()] + |V () (1) = V(R

0<s<t

Therefore, the proof of the continuity of ®¥ can be reduced to the proof of the
continuity of the function V' defined in (3.9)

vww@—vmw>=l4qmwwmm(mw—h@)w

b [ (s V) — s V) Buls) s
+ 6( sup V(h,)(s) — sup V(s)).

0<s<t 0<s<t

Consequently;,

[V (hn)(t) = V(R)(B)] < /0 [<(t, 5,V (ha)(5)) (ha(s) = h(s) ds)|
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= L [ (Vo) = VOEIED) s
B sup [V(ha)(s) = V(R)(s)]

0<s<t
where L > 0 is the Lipschitz coefficient of . Thus, by the Reflection principle, it

follows that, for ¢ € [0, 1],

sup [V (hn)(u) = V(R)(u)| < 45 sup /Oulc(u,s,V(hn)) (hn(s) — h(s)ds)|

0<u<t 0<u<t

+ ok sup [ V() — V) (h(s)) ds

0<u<t Jo

By the Gronwall Lemma and the Cauchy-Schwarz inequality, we have

IV (ha)(t) =V(R)(#) e < 725 sup / [<(t, 5,V (hu)(5)) (ha(s) = A(s)| ds

X exp(/ T |h )
< 0%151/ 5(t.5.V () (Fa(s) = h(s)) | ds

< Ci(h) H/Ogt,s,v (h)(5)) (hn(s)—h(s)> ds oo,

where C3(h) = 15 exp(C(H) L (| k lho)/(1 = 3)) with || b = (/ P ds)*
for h € H. . "
Now let us note by ~,(t) =|| / S(t, 5,V (h)(3)) (Hn(s) - h<s)> ds ||oc. We will

show that the functions sequences ~,(t) is uniformly convergent on [0, 1]. So,

()] < [ / (1[o,ﬂ<v<hn><s>>>2ds] = R

Therefore, by passing to sup, the sequence ~, simply converges to 0. As

() = (s)] < (/0 Vs (8)a (L, 5,V (hn)(s)] d8)2 I [l< V2aM[t = s]2.

This assures us that v, is uniformly continuous and it follows that V' is continuous
for the uniform norm, then &V is also continuous for the topology of uniform
convergence. Let us note that, for any o €0, 5[, we have:
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| 8 (ha) = () [l ) ]
(@ () (1) — DY (R) (1)) — (8(ha)(s) — B¥(R)(5))]

= sup
0<s<t<1 [t — s|*
(DY (hy,)(t) — ¥(R)(1))] (DY (hy)(s) — DY(h)(s))|
= 0<scret |t — s|® " 0<scret |t — s|*

< ﬁﬁnwmm—@wnu+uwmw—@mnm

< ] @) -0 I
This last inequality shows that ¥ is continuous with respect to the topology in-
duced by the Holderian norm of order o €]0, 1[.

Case 2: Continuity of the map 7.
The proof of the continuity of the map 7 resides in the facts that:

Fn(n) =n(h) llo < 25| 10(n) = 0(P) [l

and
(k) =1(R) loo < | KV (hn) = KV(R) [|oo
< V() = V(h) lloo
< [ Vi(hn) = V(h) lloc -
This completes the proof of the Proposition 4.3 O

5. APPLICATION: LARGE DEVIATIONS FOR STOCHASTIC VOLTERRA EQUATIONS
DRIVEN BY FRACTIONAL BROWNIAN MOTION WITH HURST PARAMETER
Hel1,1)
Definition 5.1. A fractional Brownian motion B¥ = {BF t > 0}, of parameter H
in (0,1), is a Gaussian process centred, satisfying the following conditions:

(1) B* is a process with stationary increases;
(2) E(BH)? = t24;
(3) B =o.

The parameter H is the Hurst parameter.



STOCHASTIC VOLTERRA EQUATIONS WITH REFLECTION IN HOLDERIAN NORM 773

Proposition 5.1. B admits as covariance function the function Ry defined for every
(s,t) € RT x RT by:

1
(5.1) Ry(t,s) = §(t2H + 21 — |t — s|*1).
Proposition 5.2. For any 0 < H < 1 and (s,t) € [0, 1]* we can write:
(5.2) KH(t,s) = s 1Hal(t — s)f_§LH(t, s),

where L is a continuous function on [0, 1] x [0, 1].

In [4,/5], L. Coutin and L. Decreusefond have studied the existence, uniqueness

and regularity of a solution of the stochastic differential equation directed by the

fractional Brownian motion of Hurst parameter H € [1

5, 1) and have considered

that such an equation is of type Volterra of the form:

t t
X7 = [ 08) b X0 ds+VE [ K (s, X0) d,
(5.3) 0 0
5 sup X2,

0<s<t

H € [5,1), t € [0,1], where b and o are two continuous bounded lipschitzian
functions and B, is a standard Brownian motion. In this case, we can consider
the solution of the SDE driven by fractional Brownian motion to be a Volterra-type

equation of the form:

(5.4) Xf:x(ﬁ—/b(tsXa ds+\/_/ (t,s,X5)dBs + 5 sup X,

0<s<t
with
b(t,s,x) = K" (t,s)b(s,x) and 5(t,s,2) = K" (t,s)0(s, ).

and the new coefficients & and b satisfy the conditions of the Theorem

REFERENCES

[1]1 R. AZENCOTT: Grandes Déviations et Application, Ecole de Proba. de Saint-Flour VIII, Lecture
Notes in Mathematics, 774 (1980), 1-76.

[2] B. DJEHICHE, M. EDDAHBI: Large deviations for a stochastic Volterra-type equation in the
Besov Orlicz space, Stochastic Processes and their Applications, 81 (1999), 39-72.

[3]1 B. L1JUN, Z. TUSHENG: Large deviations for perturbed reflected diffusion processes, Stochas-
tics, 81(6) (2009), 531-543.



774

(4]

[5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

R.A. Randrianomenjanahary and T.J. Rabeherimanana

L. COUTIN, L. DECREUSEFOND: Stochastic Differential Equations Driven by a Fractional
Brownian Motion, Citeseer, 1999.

L. COUTIN, L. DECREUSEFOND: Stochastic Volterra equations with singular kernel, Stochas-
tic Analysis and Mathematical Physics. Progress Prob. 50. Boston (MA): Birkhduser’, 2001,
39-50.

M. FREIDLIN, A. WENTZELL: On Small Random Perturbation of Dynamical Systems, Russian
Math. Surv. 25 (1970), 1-55.

H. Doss, P. PRIOURET: Petites perturbations de systémes dynamiques avec reflection, Lecteur
Notes in Math. No. 986, Springer, New York, 1983.

G. KALLIANPUR, J. XIONG: Stochastic Differential Equations in Infinite Dimensional Spaces,
IMS Lecture Notes-Monograph Series, bf 26, 1995.

E.H. LAKHEL: Large deviation for stochastic Volterra equation in the Besov-Orlicz space and
application, Random Oper. and Stoch. Equ., 11(4) (2003), 333-350.

D. NUALART, C. ROVIRA: Large deviations for stochastic Volterra equation, Bernoulli 6
(2000), 339-355.

J. NORBURY, A.M. STUART: Volterra integral equations and a new Gronwall inequality, Part
I: the linear case, Proc. Roy. Soc. Edinburgh Sect. A, 106 (1987), 361-373.

P. PRIOURET: Remarque sur les petites perturbations de systémes dynamiques, SAlminaire de
Proba de Strasbourg, Lecture Notes in Mathematics, Springer, New York, (1982), 184-200.
M. SCHILDER: Some asymptotic formulas for Wiener integrals, Trans. Amer. Math. Soc., 125
(1966), 63-85.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCES, B.P. 906, ANKATSO 101
UNIVERSITY OF ANTANANARIVO,

ANKATSO 101, AMBOHITSAINA,

MADAGASCAR.

Email address: abakeely@gmail.com

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCES, B.P. 906, ANKATSO 101
UNIVERSITY OF ANTANANARIVO,

ANKATSO 101, AMBOHITSAINA,

MADAGASCAR.

Email address: rabeherimanana.toussaint@yahoo.fr



	1. Introduction
	2. Preliminary results
	3. Statement of the main results
	3.1. Statement of LDP results for the solution of (1.4)
	3.2. Existence and uniqueness of the solution of the equation (1.4) 
	3.3. Existence and uniqueness of the solution of the equation (3.1) 
	3.4. The results on the LDP solution of (1.5)
	3.5. Existence and uniqueness of the solution of the equation (1.5) 

	4. Proof of main results
	4.1. Main results on the LDP solution of (1.4)
	4.2. Main results on the LDP solution of (1.5)

	5. Application: Large deviations for stochastic Volterra equations driven by Fractional Brownian Motion With Hurst parameter H [12,1) 
	References

