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ABSTRACT. A family of K-step Trigonometrically-fitted Block Falkner Methods is
considered for the direct solution of second order Oscillatory Initial value prob-
lems. As unique to Falkner methods, two main formulas (one for the method and
one for the derivative) for each k-step and some additional formulas. This method
shall be adapted to general oscillatory second order ordinary differential equations
via the multistep collocation technique. The idea employed in this study is the
generalized collocation technique based on fitting functions that are combination
of trigonometric and algebraic polynomials, which is then implemented in a block
mode to get approximations at all the grid points simultaneously. As in other block
methods, there is no need of other procedures to provide starting values, and thus
the methods are selfstarting (sharing this advantage of Runge-kutta methods).
The study of the properties of the proposed adapted block Falkner methods re-
veals that they are consistent and zero-stable, and thus, convergent. Furthermore,
the stability analysis and the algebraic order conditions of the proposed methods
are established. As evident from the numerical results, the methods are efficient
and accurate when compared with some recent methods in the literature.
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1. INTRODUCTION

Numerical methods for the solution of second order differential equation with
oscillatory behaviour has gained a lot of attention. This oscillatory problems arise
in a wide range of fields such as astronomy, molecular dynamics, classical mechan-
ics, quantum mechanics, chemistry, biology and engineering. These problems can
be modeled by initial value problems of second order differential equations with
a linear term characterizing the oscillatory characteristic. Many of the numerical
methods that have been applied to this problems do not preserve the structure
in long term computation. It is possible that these problem can be integrated by
reformulating it as a system of first order ODEs and applying one of the methods
available for those systems. Nevertheless, a numerical methods that can integrate
it directly without transforming it into a first order system will be more accurate
and efficient. It also reduces the number of function of evaluation in the imple-
mentation by half the number required for reducing to a system of first order
equations. This paper focuses on the direct numerical integration of the initial
value problem of the form:

(1.1) y′′(x) = f(x, y(x), y′(x)) : y(0) = y◦, y′(0) = y′
◦,

whose solution is assumed to be oscillatory or periodic, and the frequency is ap-
proximately known in advance, with f :R×Rm ×Rm → Rm a smooth function that
satisfies existence and uniqueness of solution’s conditions, where m is the system’s
dimension. One of the most useful procedures for the construction of numeri-
cal methods that approximate the solution of second-order initial value problems
with oscillatory behaviour is the Adapted methods. Adapted methods are numer-
ical procedures whose coefficients are related to the frequency of the problem,
which can be identified in advance. Usually, a combination of polynomial and
appropriate non-polynomial functions are used as fitted functions. In the excel-
lent works by Vigo-Aguiar and Ramos [1], Jator et al. ( [6]- [8]), Awoyemi [9],
Liu and Wu [12], Li et al. [13] , which adopted the direct integration of the gen-
eral second order IVPs containing the first derivative and their implementation
based on a step-by-step fashion. Some used predictor-corrector modes. Neverthe-
less, they are computationally expensive, especially, for higher-order methods and
large systems of equation . It becomes apparent that, some of these methods do
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not take advantage of the oscillatory or even periodic behavior of the solutions.
If the frequency is known or can be estimated in advance this could be consid-
ered in the development of the method in order to improve its performance. One
of the numerical integrators for the general second order IVP in which the first
derivative appears explicitly is an explicit method due to Falkner [28], while the
implicit form is due to Collatz [18]. For some modifications on the Falkner meth-
ods(see [1], [2], [3], [4]). The adapted Falkner methods that preserve the osclla-
tory characteristics and the structure in long term computation can be found in the
works by Li and Wu [12], Li [13], and Ehigie and Okunuga [16] respectively. The
use of adapted methods started with the elegant work by Gautchi [27] and later
by Lyche [20]. Other adapted methods than have been considered can be found
therein Franco ( [24], [25]), Ixaru et al. [21], Vanden Berghe and Van Daele [22],
Jator et al. [7], Jator ( [6], [8]), Ramos and Vigo-Aguiar [1], Vigo-Aguiar and
Ramos ( [2], [4]), Coleman and Duxbury [18], Coleman and Ixaru [19], Fang et
al. [17]. Inspite of that,further research is needed to explore methods that can
give better performance. The proposed block Falkner method shall be adapted to
general oscillatory second order ordinary differential equations via the multistep
collocation techniques. The idea employed in this study is the generalized collo-
cation technique based on fitting functions that are combination of trigonometric
and algebraic polynomials. This approach shall be used to develop block methods,
whose coefficients are functions of the frequency and stepsize. The rest of this
paper is organized as follows: the derivation of (TFBFM) is presented in section 2.
The analysis of the characteristics of the (TFBFM) is discussed in section 3, while
some numerical experiments are presented in section 4. Finally,some concluding
remarks will be given in section 5.

2. DEVELOPMENT OF THE TFBFM

For emphasis, consider the general second order IVP of the form

(2.1) y′′ = f (x, y, y′) , y (x0) = y0, y′ (x0) = y′
0,

whose solution is periodic with the frequency that can be estimated or known in
advance and f : R × Rm → Rm is a smooth function that satisfies the conditions
of existence and uniqueness of solution, and m is the dimension of the system. To
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develop a discrete Trigonometrically Fitted Block Falkner Method for each family
member, a Continuous Trigonometrically Fitted Block Falkner Method (CTFBFM)
on the interval [xn, xn+k] is first constructed. In order to do this, m = 1, the scalar
case, is considered. We define its generalized continuous formulation for the direct
integration of IVPs(2.1) related with the methods in Ramos and Rufai [30], that
will aid the derivation of the TFBFM.

Definition 2.1. The continuous formulation of the k−step Trigonometrically Fitted
Block Falkner Method for approximating the solution of equation (2.1) is defined by

ȳ (x) = αk0 (x, u) yn+1 + hαk1 (x, u) y′
n+1

+ h2
k∑

j=0
βkj (x, u) fn+j + h3γk (x, u) gn+k,

(2.2)

where αk0 (x, u), αk1 (x, u), βkj (x, u) and γk (x, u) are functions of x and u = ωh.

Definition 2.2. The primary formulas of the adapted k−step Trigonometrically Fitted
Block Falkner Method for the numerical solution of equation (2.1) are given by

(2.3)


yn+k = yn+1 + (k − 1)hy′

n+1 + h2
k∑

j=0
βkj (u) fn+j + h3γk (u) gn+k

hy′
n+k = hy′

n+1 + h2
k∑

j=0
β̄kj (u) fn+j + h3γ̄ki (u) gn+k

,

where yn+j, y′
n+j, fn+j and gn+k are the numerical approximation to the exact

values y(xn+j), y′(xn+j), f(xn+j, y(xn+j), y′(xn+j)) and g(xn+j, y(xn+j), y′(xn+j)) re-
spectively, where

g(x, y, y′) = y′′′(x) = fx(x, y, y′) + fy(x, y, y′)y′(x) + fy′(x, y, y′)f(x, y, y′).

Definition 2.3. The (2k − 2) secondary formulas of the adapted k−step Trigonomet-
rically Fitted Block Falkner Method for the numerical solution of equation (2.1) are
given by

(2.4)


yn+µ = yn+1 + (µ − 1)hy′

n+1 + h2
k∑

j=0
βµ

kj (u) fn+j + h3γµ
k (u) gn+k

hy′
n+µ = hy′

n+1 + h2
k∑

j=0
β̄µ

kj (u) fn+j + h3γ̄µ
k (u) gn+k,

,

where µ = 0, 2(1)(k − 1).
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Definition 2.4. The k−step Trigonometrically Fitted Block Falkner Method consists
of the primary formulas in equation (2.3) and the secondary formulas in equation
(2.4).

Derivation of TFBFM

Let ∆ = {∆0, ∆1, ∆2, · · · , ∆k+3} be a set of k + 4 linearly independent functions.
We seek an approximate solution I (x) ∈ span ∆ called a fitted function associated
to the Trigonometrically Fitted Falkner method which satisfies the IVP in equation
(2.1) at some specified points.

For the construction of the adapted Falkner methods, ∆ is taken as

(2.5) ∆ = {1, x, · · · , xk+1} ∪ {sin (ωx) , cos (ωx)}.

To get the coefficients of the fitting function associated to the set ∆ in (2.5), I (x)
is interpolated at the point x = xn+1 , and the following collocating conditions are
considered: I ′ (x) at x = xn+1, I ′′ (x) at the points x = xn+j, j = 0, 1 · · · , k, and
I ′′′ (x) at x = xn+k. This leads to the following system of k + 4 equations

(2.6)


I(xn+1) = yn+1,

I ′(xn+1) = y
′
n+1,

I ′′(xn+j) = fn+j, j = 0, 1, · · · , k,

I ′′′(xn+k) = gn+k.

Theorem 2.1. Let I(x) be the fitting function associated to the set ∆ in (2.5),
{∆i (x)}k+3

i=0 = {1, x, · · · , xk+1, sin (ωx) , cos (ωx)} and the vector Λ =(yn+1, y
′
n+1, fn,

fn+1, · · · fn+k, gn+k)t), where t is the transpose. Consider the following square matrix
of dimension k + 4 which is the matrix of coefficients of the system in (2.6),

Ω =



∆0 (xn+1) ∆1 (xn+1) · · · ∆k+3 (xn+1)
∆′

0(xn+1) ∆′
1(xn+1) · · · ∆′

k+3(xn+1)
∆′′

0(xn) ∆′′
1(xn) · · · ∆′′

k+3(xn)
... . . . . . . ...

∆′′
0(xn+k) ∆′′

1(xn+k) · · · ∆′′
k+3(xn+k)

∆′′′
0 (xn+k) ∆′′′

1 (xn+k) · · · ∆′′′
k+3(xn+k)
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and Ωi obtained by replacing the ith column of Ω by the vector Λ. If we impose that
I(x) satisfies the system of k + 4 equations in (2.6) then it can be written as

(2.7) I (x) =
k+3∑
i=0

det (Ωi)
det (Ω) ∆i(x).

Proof. Let the fitting function I(x) associated to the set ∆ be defined as follows

I (x) = αk0 (x, u) yn+1 + hαk1 (x, u) y′
n+1 + h2

k∑
j=0

βkj (x, u) fn+j

+ h3γk (x, u) gn+k.

(2.8)

To solve the system of equations in (2.6), it is required that the coefficients in (2.8)
are expressed in terms of the assumed basis functions as follow

(2.9)

 αj0 (x, u) = ∑k+3
i=0 αi,j (x, u)∆i (x) , j = 0, 1,

αj1 (x, u) = ∑k+3
i=0 αi,j (x, u)∆i (x) , j = 0, 1,

(2.10) βj (x, u) =
k+3∑
i=0

βi,j (x, u)∆i (x) , j = 0, 1, · · · , k,

(2.11) γj (x, u) =
k+3∑
i=0

γi,j (x, u)∆i (x) , j = k.

Substituting equations (2.9),(2.10)and (2.11) into the equation (2.8) yields

I (x) =
k+3∑
i=0

{ 1∑
j=0

αi,j0(x, u)yn+j+
1∑

j=0
αi,j1(x, u)y′

n+j+h2
k∑

j=0
βi,j(x, u)fn+j

+ h3
k∑

j=k
γi,j(x, u)gn+j

}
∆i(x).

(2.12)

Let

ξi =
1∑

j=0
αi,j0(x, u)yn+j+

1∑
j=0

αi,j1(x, u)y′
n+j+h2

k∑
j=0

βi,j(x, u)fn+j + +h3
k∑

j=k
γi,j(x, u)gn+j .

Then equation (2.12) becomes

(2.13) I (x) =
k+3∑
i=0

ξi∆i(x),
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where ξ is an undetermined vector written as (ξ = ξ0, ξ1, · · · , ξk+3)t, t is the transpose.
By imposing conditions in (2.6) on equation (2.13), a system of k +4 is obtained and
can be expressed in matrix form as

(2.14) Ωξ = Λ.

□

Specification of The TFBFM

We emphasize that for each k, there are two primary formulas of the form
in equation (2.3) and (2k − 2) secondary formulas as those in equation (2.4)
(which are obtained by evaluating the fitting function in (2.7) at the correspond-
ing points) that combined together form the proposed TFBFM. Hence the TFBFM
has 2k formulas.

As an illustration, we specified how to obtain the TFBFM for k = 2.
For k = 2, we evaluate the fitting function in (2.7) and its first derivative at

x = {xn+2, xn} to obtain the two primary formulas and the two secondary formulas
as Evaluate the fitting function in (2.7) and its first derivative at x = {xn+2, xn} to
obtain the two primary methods and the two secondary methods as

(2.15)



yn+2 = yn+1 + hy
′
n+1 + h2

2∑
j=0

β2j (u) fn+j + h3γ2 (u) gn+2

hy
′
n+2 = hy

′
n+1 + h2

2∑
j=0

β̄2jfn+j (u) + h3γ̄2 (u) gn+2

yn = yn+1 − hy
′
n+1 + h2

2∑
j=0

β0
2j (u) fn+j + h3γ0

2 (u) gn+2

hy
′
n = hy

′
n+1 + h2

2∑
j=0

β̄0
2j (u) fn+j + h3γ̄0

2 (u) gn+2.

Remark 2.1. For small values of u, the coefficients of the TFBFM may be subject
to heavy cancellations. In that case the Taylor series expansion of the coefficients is
preferable (see Lambert, [33]). Specific coefficients of the two primary formulas and
their corresponding series expansion up to O (u16) for k = 2 are provided in Appendix
B.
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3. ANALYSIS OF THE TFBFM

We discuss the basic analysis of the proposed TFBFM in this section. The analysis
includes the Algebraic Order, Local Truncation Error, Consistency, Zero-Stability,
Convergence and Linear Stability of the TFBFM .

Algebraic Order, Local Truncation Errors and Consistency of the TFBFM

The purpose here is to establish that the TFBFM is of uniform order for the
individual formula that makes up the 2k formulas of the TFBFM and their equiv-
alent local truncation errors with the aid of the theory of linear operator (Lam-
bert, [34]).

Local Truncation Error of TFBFM

Proposition 3.1. The local truncation error of the of the k−step TFBFM is form
Ck+4h

k+4(y(k+4)+ω2yk+2(xn)(xn)) + O(hk+5).

Proof. Since the Falkner Methods in equations (2.3) and (2.4) are made up of
generalized linear multistep methods, we associate the Falkner methods with lin-
ear difference operators L [y (xn) ; h], L′ [y (xn) ; h] for the primary methods and
Lµ [y (xn) ; h],L′

µ [y (xn) ; h] for the secondary methods defined respectively by

(3.1)



L [y (xn) ; h] = y (xn + kh) − (y(xn + h) + (k − 1)hy′ (xn + h)

+h2
k∑

j=0
βkj(u)y′′ (xn + jh) + h3γk(u)y′′′ (xn + kh)


L′ [y (xn) ; h] = hy′ (xn + kh) − (hy′ (xn + h)

+h2
k∑

j=0
β̄kj(u)y′′ (xn + jh) + h2γ̄k(u)y′′′ (xn + kh)


Lµ [y (xn) ; h] = y (xn + µh) − (y(xn + h) + (µ − 1)hy′ (xn + h)

+h2
k∑

j=0
βµ

kj(u)y′′ (xn + jh) + h3γµ
k (u)y′′′ (xn + kh)


L′

µ [y (xn) ; h] = hy′ (xn + µh) − (hy′ (xn + h)

+h2
k∑

j=0
β̄µ

kj(u)y′′ (xn + jh) + h2γ̄µ
k (u)y′′′ (xn + kh)
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Consider the Taylor series expansions of y(xn+kh), y(xn+h), y(xn+µh), y′(xn+kh),
y′(xn + µh), y′′(xn + kh) and y′′′(xn + kh) about the point xn and the coefficients of
TFBFM specified by βkj (u), γk (u), β̄kj (u), γ̄k (u), βµ

kj (u), γµ
k (u),β̄µ

kj (u) and γ̄µ
k (u)

respectively. By collecting the coefficients of the same power of h, we observe that
the Taylor series expansion in equation (3.1) vanishes up to p + 1. The remaining
non zero terms of the Taylor series whose coefficients are Cp+2, Cp+3, . . . can be
equivalently written as Ck+4h

k+4(y(k+4)+ω2yk+2(xn)(xn)) + O(hk+5) which is the local
truncation error of the k−step TFBFM. □ □

Corollary 3.1. The order of the k−step TFBFM is at least p = k + 2.

Theorem 3.1. When the solution of the problem in equation (2.1) is a linear combi-
nation of the basis functions {I(x)}j=0(1)(k+3), then the local truncation errors vanish.

Proof. Solving the differential equation y(k+4) + ω2yk+2 = 0 provides the following
solution set

{
1, x, · · · , xk+1, sin(ωx), cos(ωx)

}
, which contains the basis function of

the TFBFM, from which the statement follows immediately. □ □

Corollary 3.2. The order p of the k−step TFBFFM is p = k + 2. Hence the order of
BFFM for k = 2 is p = 4 .

Theorem 3.2. When the solution of the problem in equation (2.1) is a linear combi-
nation of the basis functions {I(x)}j=0(1)(k+3), then the local truncation errors vanish.

Proof. Solving the differential equation y(k+4) + ω2yk+2 = 0 provides the following
solution set

{
1, x, · · · , xk+1, sin(ωx), cos(ωx)

}
, which contains the basis function of

the TFBFM, from which the statement follows immediately. □ □

Consistency of The TFBFM

Since the order of the k−step TFBFM is at least p = k +2, we therefore conclude
that it is consistent (Lambert, [33] and Fatunla, [29]).

Stability of The TFBFM

Stability is a key term in numerical analysis. It refers to the degree to which a
numerical system is suitable for solving an initial value problem in the context of
ordinary differential equations, if little changes in the data cause a modest alter-
ation in the solution a method gives, it is considered to be stable. The proposed
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method is typically written as a one-step recurrence difference system, after which
the requisite definition is applied to the matrices that arise, as in the cases of zero
stability and linear stability. Thus the TFBFM specified by equations (2.3) and
(2.4) may be written in the form of difference system defined by

(3.2) A1Yn+1 = A0Yn + h2B0Fn + h2B1Fn+1 + h3D1Gn+1

where

Yn+1 =
(
yn+1, yn+2, · · · , yn+k, hy′

n+1, hy′
n+2, · · · , hy′

n+k

)T
,

Yn =
(
yn−k+1, · · · , yn−1, yn, hy′

n−k+1, · · · , hy′
n

)T
,

Fn+1 =
(
fn+1, fn+2, · · · , fn+k, hf ′

n+1, · · · , hf ′
n+k

)T
,

Fn = (fn−k+1, · · · , fn−1, fn, hf ′
n−k+1, · · · , hf ′

n)T
,

Gn+1 = (gn+1, gn+2, · · · , gn+k)T .

Here A0, A1, B0, B1, and D1 are 2k × 2k matrices defined in canonical form re-
spectively for k = 2 and k = 3 as follows.

For k = 2:

A0 =



0 0 0 1

0 1 0 0

0 0 0 0

0 0 0 0


, A1 =



0 0 0 −1

0 −1 0 1

0 0 1 −1

1 −1 0 −1


, B0 =



0 −β̄0
20 0 0

0 −β0
20 0 0

0 −β̄20 0 0

0 −β20 0 0


,

B1 =



−β̄0
22 −β̄0

21 0 0

−β0
22 −β0

21 0 0

−β̄22 −β̄21 0 0

−β22 −β21 0 0


, D1 =



−γ̄0
2 0 0 0

−γ0
2 0 0 0

−γ̄2 0 0 0

−γ2 0 0 0


.
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For k = 3:

A0 =



0 0 0 0 0 1

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


, A1 =



0 0 0 0 0 −1

0 0 −1 0 0 −1

0 0 0 0 1 −1

0 1 −1 0 0 −1

0 0 0 1 0 −1

1 0 −1 0 0 −2


,

B0 =



0 0 −β̄0
30 0 0 0

0 0 −β0
30 0 0 0

0 0 −β̄2
30 0 0 0

0 0 −β2
30 0 0 0

0 0 −β̄30 0 0 0

0 0 −β30 0 0 0


, B1 =



−β̄0
33 −β̄0

32 −β̄0
31 0 0 0

−β0
33 −β0

32 −β0
31 0 0 0

−β̄2
33 −β̄2

32 −β̄2
31 0 0 0

−β2
33 −β2

32 −β2
31 0 0 0

−β̄3 −β̄32 −β̄31 0 0 0

−β33 −β32 −β31 0 0 0


,

D1 =



−γ̄0
3 0 0 0 0 0

−γ0
3 0 0 0 0 0

−γ̄2
3 0 0 0 0 0

−γ2
3 0 0 0 0 0

−γ̄3 0 0 0 0 0

−γ3 0 0 0 0 0


.

Worthy of note is that the difference system in (3.2) can be written in the form

Yn+1 − Yn = hϕΞ(Yn, Yn+1; u, h),

where the subscript indicates that the dependence of ϕ on Yn, Yn+1 is through
the function Ξ. Thus, the numerical solution of the problem in equation (2.1)
according to Abdulganiy et al. [35] is the one given by
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 Yn+1 − Yn = hϕΞ(Yn, Yn+1; u, h),
Y0 = Y (x0), n = 1, 2, . . . , N − 1.

(3.3)

Definition 3.1. Fatunla [29] A block method is zero stable if the roots of the first
characteristic polynomial have modulus less than or equal to one and those of mod-
ulus one do not have multiplicity greater than 2. i.e. ρ(R) = det [RA1 − A0] = 0
satisfies |Ri| ≤ 1 and for those roots with |Ri| = 1, the multiplicity does not exceed 2.

Proposition 3.2. The TFBFM is zero stable.

Proof. Normalize equation (3.1) to obtain the first characteristic polynomial of
BFFM given by ρk (R) = det [RA1 − A0]. So that ρk (R) = 0 =⇒ −Rk−2(1 + R)2 =
0. Consequently, the roots Ri, i = 1, 2, . . . k of ρk(R) satisfy|Ri| = 1, the roots are
simple. Hence for each k, the TFBFM is Zero stable. □

Linear Stability and Region of Stability of TFBFM

Proposition 3.3. The TFBFM, when applied to the Lambert-Watson test equations
y

′′ = λ2y and y
′′′ = λ3y gives

Yn+1 = M(z, v)Yn,

where

(3.4) M (z, v) =
(
A1 − B1z − C1z

2 − D1z
3
)−1

(A0 + B0z) .

Proof. First, apply the TFBFM to the test equations y
′′ = λ2y and y

′′′ = λ3y which
are expressed as f(x, y) = λ2y and g(x, y) = λ3y. Since Yn+1, Yn, Fn+1, Fn and Gn+1

are in vectors form, then the test equations can now be written as F = λ2Y and G =
λ3Y . Substituting for F and G to obtain a linear difference equation given by

A1Yn+1 = A0Yn + (λh)2B1Yn+1 + (λh)2B0Yn + (λh)3D1Yn+1.

Letting z = λh and v = ωh to have

A1Yn+1 = A0Yn + z2B1Yn+1 + z2B0Yn + z3D1Yn+1,

it follows that
Yn+1 = M(z, v)Yn,
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where
M (z, v) =

(
A1 − B1z − C1z

2 − D1z
3
)−1

(A0 + B0z) .

□

The rational function M (z, u) is called the amplification matrix which deter-
mines the stability of the method.

Definition 3.2. (Coleman and Ixaru, [19]): A region of stability is a region in the
zu−plane throughout which |ρ (z, v)| ≤ 1, where ρ (z, u) is the spectral radius of
M (z, u).

Linear Stability and Region of Stability of TFBFM

To analyze the linear stability of TFBFM, the block method in equation (3.2)
is applied to the Lambert-Watson test equation y

′′ = λ2y. After simple algebraic
calculations and letting z = λh , we obtain

Yn+1 = M(z, u)Yn,

where

(3.5) M (z, u) =
(
A1 − B1z

2
)−1 (

A0 + B0z
2
)

.

The rational function M (z, u) is called the amplification matrix and determines
the stability of the method.

Definition 3.3. (Coleman and Ixaru, [19]): A region of stability is a region in the
zu−plane throughout which |ρ (z, u)| ≤ 1, where ρ (z, u) is the spectral radius of
M (z, u).

Here the colored region (blue) is the stability region corresponding to the test
problem y′′ = λ2y. Since the Lambert-Watson test does not contain the first de-
rivative, another usual test equation to analyze linear stability is the one given
by

(3.6) y′′ = −2λy′ − λ2y

which has bounded solutions for λ ≥ 0 that tend to zero when x → ∞. The
corresponding stability region for the TFBFM k = 2 is plotted in Figure 2, where
the colored region (green) is the stability region corresponding to the test problem
y′′ = −2λy′ − λ2y.
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FIGURE 1. z − v stability region of TFBFM for k = 2

FIGURE 2. z − v stability region of TFBFM for k = 2
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4. IMPLEMENTATION AND NUMERICAL EXPERIMENTS

Implementation of TFBFM
The TFBFM is implemented using a written code in Maple 2016.1 enhanced by
the feature fsolve for both linear nonlinear problems respectively. All numerical
experiments are conducted on a Laptop with the following features:

(1) 64 bit Windows 10 Pro Operating System,
(2) Intel (R) Celeron CPU N3060 @ 1.60GHz processor, and
(3) 4.00GB RAM memory.

The summary of how TFBFM is applied to solve initial value problems (IVPs) with
oscillatory solutions in a block by-block fashion is as follows:
Step 1: Choose N , h = (xN − x0)/N to form the grid ΓN = {x0, x1, . . . , xN} with
xi = x0 + ih. Note that N must be a multiple of k, N = mk.
Step 2: Using the difference equation (3.2), n = 0, solve for the values of (y1, y2,

. . . , yk)T and (y′
1, y′

2, · · · , y′
k)T simultaneously on the block sub-interval [x0, xk],

as y0 and y′
0 are known from the IVP (2.1). We outline the procedure with k = 2

for the two first block intervals, when n = 0 and n = 2,
Step 3: Next, for n = k, the values of (yk+1, yk+2, . . . , y2k)T and (y′

k+1, y′
k+2, . . . ,

y′
2k)T are simultaneously obtained over the block sub-interval [xk, x2k], as yk and

y′
k are known from the previous block.

Step 4: The process is continued for 2k, 3k, . . . , (N − 1)k to obtain the numerical
solution to (2) on the sub-intervals [x0, xk], [xk, x2k], . . . , [xN−k, xN ].

Numerical Examples

To examine the numerical effectiveness of the newly constructed block Falkner
methods adapted to general oscillatory initial value problem, we carry out exper-
iments with the TFBFM for k = 2 on some well known oscillatory problems that
were solved in the recent literature. The accuracy is investigated using the maxi-
mum error of the approximate solution defined as Error = max1≤n≤N∥y (x) − yn∥ ,
where y(x) is the exact solution and yn is the numerical solution obtained using
TFBFM, while the computational efficiency is shown through the plots of the max-
imum errors versus the number of function evaluations, NFE, required by each
integrator. We emphasize that the fitting frequencies used in the numerical exper-
iments have been obtained from the problems referenced from the literature. For
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both linear and nonlinear problems, the TFBFM is implemented using written
code in Maple 2016.1, which has been improved by the function fsolve.

4.1. Example 1. Problems involving general second order IVPs:

y′′ = f (x, y, y′), y (x0) = y0, y′ (x0) = y′
0.

Consider the popular Van der Pol equation given by: y
′′ + y = δ (1 − y2) y′, with

initial values y (0) = 2 + 1
96δ2 + 1033

552960δ4 + 1019689
55738368000δ2, y

′ (0) = 0.

This is a nonlinear scalar equation. In the numerical experiment, the parameter
δ is selected as δ = 10−3 and the principal frequency is chosen as ω = 1. The prob-
lem is integrated in the interval [0, 100] . For the comparison of error of different
methods, the step lengths h = 1

2i , i = 1, 2, 3, 4 are considered. It is emphasized
that the analytic solution of this problem does not exists, thus, a reference nu-
merical solution which is obtained via special perturbation approach is used. The
TFBFM for k = 2 results in comparison with the Block Falkner methods (BFM) of
order 5 in Ramos et al. [30], Modified Block Falkner methods (MBFM) of order
5 in Ehigie and Okunuga [15], and The two-stage and three-stage Two-derivative
Runge-Kutta-Nystrom Methods (TDRKN2 and TDRKN3) of orders 4 and 5 respec-
tively are displayed in Table 1, while the efficiency curves are displayed in Figure
(3) respectively. It is evident from the Table (1) and Figure (3) that the family of
TFBFM performs better than some of the existing methods in the literature.

TABLE 1. Data for Example 1 with ω = 1, δ = 10−3

h TFBFM2 BFM MBFM TDRKN2 TDRKN3
Error NFE Error NFE Error NFE Error NFE Error NFE

1
2 5.21 ×

10−6
101 1.38 ×

10−2
101 1.23 ×

10−4
101 1.00 ×

10−2
603 0.75 ×

10−4
631

1
4 1.13 ×

10−7
201 2.45 ×

10−4
201 9.55 ×

10−7
201 1.00 ×

10−3
1202 3.98 ×

10−6
1230

1
8 1.00 ×

10−8
401 3.98 ×

10−6
401 9.12 ×

10−9
401 1.00 ×

10−4
2344 1.00 ×

10−7
2455

1
16 2.80 ×

10−10
801 6.31 ×

10−8
801 5.25 ×

10−10
801 1.00 ×

10−5
4786 1.00 ×

10−9
5012
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FIGURE 3. Efficiency Curves for Example 1

4.2. Example 2. Consider the following general second order IVP

y′′ + ω2y = −δy′

with initial conditions y (0) = 1 and y′ (0) = − δ
2 , with analytical solution y (x) =

e−( δ
2)x cos

(
x

√
ω2 − δ2

4

)
.

This problem is solved in the interval [0,100] with ω = 1, δ = 10−3 and compare
the result of TFBFM with the BNM of order 5 in Jator and Oladejo [7], BHT of
order 5 and BHTRKNM of order 3 in Ngwane and Jator ( [31], [32]) . Table (2)
shows the Maximum errors and the Number of Function Evaluations while the
efficiency curves of the family of TFBFM are presented in the Figure 4 showing
the superiority of the methods over some of the existing methods in the scientific
literature.
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TABLE 2. Data for Example 2 with ω = 1, δ = 10−3

h TFBFM2 BHT BHTRKNM BNM
Error NFE Error NFE Error NFE Error NFE

2 2.31 × 10−10 51 2.74 × 10−4 26 6.48 × 10−4 26 6.46 × 10−3 26
1 2.82 × 10−11 101 6.34 × 10−6 51 4.39 × 10−5 51 1.17 × 10−4 51
1
2 1.79 × 10−12 101 1.16 × 10−7 101 2.99 × 10−6 101 1.88 × 10−6 101
1
4 1.06 × 10−13 201 1.85 × 10−9 201 1.88 × 10−7 201 2.96 × 10−8 201
1
8 6.62 × 10−15 401 2.92 × 10−11 401 1.18 × 10−8 401 4.46 × 10−10 401

FIGURE 4. Efficiency Curves for Example 2

4.3. Example 3. Problems involving special second order IVP y′′ = f (x, y), y (x0) =
y0, y′ (x0) = y′

0.
The following well known mildly stiff Kepler problem

(4.1)
y

′′

1 (x) = −y1

r3 , y1 (0) = 1, y
′

1 (0) = 0

y
′′

2 (x) = −y2

r3 , y2 (0) = 0, y
′

2 (0) = 0
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where r =
√

y2
1 + y2

2 and whose analytic solution is given by y1 (x) = cos (x)
,y2 (x) = sin (x) is considered in the integration interval 0 ≤ x ≤ 30. The fit-
ting frequency ω is chosen as ω = 1 and the step size h is chosen as h = 1/2i,
where i = 2, 3, 4, 5, 6. Whereas the accuracy of the family of TFBFM in comparison
with the MBFM presented by Ehigie and Okunuga [14] and the TBNM of Jator
et al [6]. is presented in Table 3, the efficiency is presented visually in Figure 5
showing the advantage of the Family of TFBFM.

TABLE 3. Data for Example 3 with ω = 1, δ = 10−3

h TFBFM2 MBFM TBNM
Error NFE Error NFE Error NFE

1
4 1.18 ×

10−18
26 9.00 ×

10−13
31 1.90 ×

10−12
31

1
8 4.54 ×

10−21
51 5.80 ×

10−14
61 3.40 ×

10−14
61

1
16 6.09 ×

10−22
101 1.20 ×

10−14
121 9.20 ×

10−14
121

1
32 1.82 ×

10−24
201 1.90 ×

10−16
241 1.10 ×

10−15
241

1
64 4.37 ×

10−25
401 1.00 ×

10−17
481 1.00 ×

10−17
481

4.3.1. Example 4. Consider the following Undamped Duffing Equationy′′ + y3 + y = (cos (x) + ϵ sin (10x))3 − 99ϵ sin (10x) , 0 ≤ x ≤ 1000
y (0) = 1, y

′ (0) = 10ϵ
,

whose analytic solution is y (x) = cos (x) + ϵ sin (10x) . For this problem, ω = 1
is selected as principal frequency with parameter ϵ = 10−10 . Table 4 shows the
performnce of the family of TFBFM in comparison with the TFARKN by Fang et
al. [23], the EFRK by Franco [24] and the EFRKN by Franco [25] respectively. The
efficiency curves of the BFFM and the other methods used for comparisons are
displayed in Figure 6.
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FIGURE 5. Efficiency Curves for Example 3

TABLE 4. Data for Example 4 with ω = 1 and ϵ = 10−10

TFBFM2 TFARKN EFRK EFRKN
Error NFE Error NFE Error NFE Error NFE

1.55 ×
10−9

301 2.63 ×
10−2

300 1.26 ×
10−6

8000 7.94 ×
10−6

2000

1.20 ×
10−11

601 4.47 ×
10−6

400 0.75 ×
10−7

14000 0.75 ×
10−7

5000

6.02 ×
10−13

1201 3.72 ×
10−8

600 0.75 ×
10−8

22000 1.26 ×
10−8

9000

3.62 ×
10−14

2401 1.17 ×
10−13

4200 6.31 ×
10−9

38000 1.00 ×
10−9

19000
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FIGURE 6. Efficiency Curves for Example 4
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APPENDIX A. SPECIFICATION OF ENTRIES OF MATRIX Ω, THE DETERMINANT OF Ω
AND DETERMINANTS OF ξi

Ω =



1 xn+1 xn+1
2 xn+1

3 cos (ω xn+1) sin (ω xn+1)
0 1 2 xn+1 3 xn+1

2 − sin (ω xn+1) ω cos (ω xn+1) ω

0 0 2 6 xn − cos (ω xn) ω2 − sin (ω xn) ω2

0 0 2 6 xn+1 − cos (ω xn+1) ω2 − sin (ω xn+1) ω2

0 0 2 6 xn+2 − cos (ω xn+2) ω2 − sin (ω xn+2) ω2

0 0 0 6 sin (ω xn+2) ω3 − cos (ω xn+2) ω3


,
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ξ =



ξ0

ξ1

ξ2

ξ3

ξ4

ξ5


, Λ =



yn+1

y
′
n+1

fn

fn+1

fn+2

gn+2


.

ξ0 = [8 v3((fn+1 − 1/4 fn+2)h3 + ((9/4 fn+1 − 3/4 fn+2)xn − 3/2 δn+1)h2

+ ((3/2 fn+1 − 3/4 fn+2)xn
2 − 3/2 δn+1xn + 3/2 yn+1)h

+ 1/4 xn
3(fn+1 − fn+2))(cos(v))2

+ 2 (v(h3gn+2 + (3 xngn+2 − 3 fn+1)h2 + (3 gn+2xn
2 − 6 fn+1xn + 6 δn+1)h

+ xn
3gn+2 − 3 xn

2fn+1 + 6 δn+1xn − 6 yn+1)h sin(v)

+ ((−2 fn − fn+2)h3 + ((−9/2 fn − 3/2 fn+2)xn + 6 δn+1)h2

+ (−3 fnxn
2 + 6 y′

n+1xn − 6 yn+1)h − 1/2 xn
3(fn − fn+2))v2

− 6 (h2gn+2 + (xngn+2 + fn+1 − fn+2)h + 1/2 xn(fn − fn+2))h2)v cos(v)

− 2 ((h3gn+2 + (3 xngn+2 + 3/2 fn − 6 fn+1 + 3/2 fn+2)h2

+ (3 gn+2xn
2 − 6 fn+1xn + 6 y′

n+1)h + xn
3gn+2

+ (−3/2 fn − 3/2 fn+2)xn
2 + 6 y′

n+1xn

− 6 yn+1)v2 + 3 h2(fn − 2 fn+1 + fn+2))h sin(v)

+ 12 v(xn + h)(1/12 (xn + h)2(fn − 2 fn+1 + fn+2)v2

+ h2(hgn+2 + 1/2 fn − 1/2 fn+2))]

· [12 v2h(cos(v) − 1)(v cos(v) − sin(v))]−1

ξ1 = [−6 v2((fn+1 − 1/3 fn+2)h2 + ((4/3 fn+1 − 2/3 fn+2)xn − 2/3 y′
n+1)h

+ 1/3 xn
2(fn+1 − fn+2))(cos(v))2

+ (−2 (h2gn+2 + (2 xngn+2 − 2 fn+1)h + gn+2xn
2 − 2 fn+1xn + 2 y′

n+1)vh sin(v)

+ ((3 fn + fn+2)h2 + (4 fnxn − 4 y′
n+1)h + xn

2(fn − fn+2))v2

+ 4 h2(hgn+2 + 1/2 fn − 1/2 fn+2)) cos(v)

+ 2 (h2gn+2 + (2 xngn+2 − 2 fn+1)h + gn+2xn
2 + (−fn − fn+2)xn + 2 y′

n+1)vh sin(v)

− (xn + h)2(fn − 2 fn+1 + fn+2)v2 − 4 h2(hgn+2 + 1/2 fn − 1/2 fn+2)]

· [4 vh(cos(v) − 1)(v cos(v) − sin(v))]−1
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ξ2 = [4 ((fn+1 − 1/2 fn+2)h + 1/2 xn(fn+1 − fn+2))v(cos(v))2

+ (2 h(hgn+2 + xngn+2 − fn+1) sin(v) − 2 (hfn + 1/2 xn(fn − fn+2))v) cos(v)

− 2 (hgn+2 + xngn+2 − 1/2 fn − 1/2 fn+2)h sin(v) + v(fn − 2 fn+1 + fn+2)(xn + h)]

· [4 h(cos(v) − 1)(v cos(v) − sin(v))]−1

ξ3 = −2 v(fn+1 − fn+2) cos(v) − 2 h sin(v)gn+2 + v(fn − 2 fn+1 + fn+2)
12(v cos(v) − sin(v))h

ξ4 = [− cos(v(2 h + xn)
h

)h3gn+2 + 2 cos(v(xn + h)
h

)h3gn+2

− sin(v(2 h + xn)
h

)h2vfn + 2 sin(v(2 h + xn)
h

)h2vfn+1

− sin(v(2 h + xn)
h

)h2vfn+2 − cos(vxn

h
)h3gn+2 − cos(v(2 h + xn)

h
)h2fn

+ cos(v(2 h + xn)
h

)h2fn+1 + cos(v(xn + h)v
h

)h2fn − cos(v(xn + h)
h

)h2fn+2

− cos(vxn

h
)h2fn+1 + cos(vxn

h
)h2fn+2]

· [4 h(cos(v) − 1)(v cos(v) − sin(v))]−1

ξ5 = [− cos(v(2 h + xn)
h

)h3gn+2 + 2 cos(v(xn + h)
h

)h3gn+2 − sin(v(2 h + xn)
h

)h2vfn

+ 2 sin(v(2 h + xn)
h

)h2vfn+1 − sin(v(2 h + xn)
h

)h2vfn+2 − cos(vxn

h
)h3gn+2

− cos(v(2 h + xn)
h

)h2fn + cos(v(2 h + xn)
h

)h2fn+1 + cos(v(xn + h)
h

)h2fn

− cos(v(xn + h)
h

)h2fn+2 − cos(vxn

h
)h2fn+1 + cos(vxn

h
)h2fn+2]

· [2 v2(cos(v) − 1)(v cos(v) − sin(v))]−1
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APPENDIX B. COEFFICIENTS OF THE MAIN AND COMPLEMENTARY METHODS OF THE

TFBFM FOR k = 2

(B.1)



β20 = 2 cos(v)v2−9 sin(v)v+v2−12 cos(v)+12
6v(2 v cos(v)−v cos(2 v)−2 sin(v)+sin(2 v)−v)

β21 = (3 v2+6) sin(2 v)−2 cos(2 v)v3−4 v3+12 v2 sin(v)+12 v cos(v)−12 v−12 sin(v)
6(2 v cos(v)−v cos(2 v)−2 sin(v)+sin(2 v)−v)v2

β22 = 4 v3 cos(v)−cos(2 v)v3−9 v2 sin(v)+12 sin(v)−6 sin(2 v)
6(−v+2 v cos(v)−v cos(2 v)−2 sin(v)+sin(2 v))v2

γ2 = (v2+6) sin(2 v)−2 v2 sin(v)−12 v cos(v)+12 v−12 sin(v)
6(−v+2 v cos(v)−v cos(2 v)−2 sin(v)+sin(2 v))v2

(B.2)



β̄20 = cos(v)v2−4 sin(v)v+v2−4 cos(v)+4
2v(−v+2 v cos(v)−v cos(2 v)−2 sin(v)+sin(2 v))

β̄21 = − cos(2 v)v2+4 sin(v)v+2 sin(2 v)v−3 v2+2 cos(2 v)−2
2v(−v+2 v cos(v)−v cos(2 v)−2 sin(v)+sin(2 v))

β̄22 = 3 cos(v)v2−cos(2 v)v2−4 sin(v)v+4 cos(v)−2 cos(2 v)−2
2v(−v+2 v cos(v)−v cos(2 v)−2 sin(v)+sin(2 v))

γ̄2 = −2 sin(v)v+sin(2 v)v−8 cos(v)+2 cos(2 v)+6
2v(−v+2 v cos(v)−v cos(2 v)−2 sin(v)+sin(2 v))

(B.3)



β0
20 = −12 v(cos(v))2+(−4 v3+12 sin(v)) cos(v)+v3−3 v2 sin(v)+12 v−12 sin(v)

12v2(cos(v)−1)(v cos(v)−sin(v))

β0
21 = (4 v3+12 v)(cos(v))2+(−3 v2 sin(v)−6 v−6 sin(v)) cos(v)−v3+6 v2 sin(v)−6 v+6 sin(v)

6v2(cos(v)−1)(v cos(v)−sin(v))

β0
22 = −2 v2(cos(v))2−2 cos(v)v2−12 (cos(v))2−3 sin(v)v+v2+12 cos(v)

12v(cos(v)−1)(v cos(v)−sin(v))

γ0
2 = v2 sin(v)+6 sin(v)−6 v

6v2(v cos(v)−sin(v))

(B.4)



β̄0
20 = −3 cos(v)v2+2 sin(2 v)v+v2−4 cos(v)+2 cos(2 v)+2

2v(−v+2 v cos(v)−v cos(2 v)−2 sin(v)+sin(2 v))

β̄0
21 = 3 cos(2 v)v2+4 sin(v)v−6 sin(2 v)v+v2−2 cos(2 v)+2

2v(−v+2 v cos(v)−v cos(2 v)−2 sin(v)+sin(2 v))

β̄0
22 = − cos(v)v2−cos(2 v)v2+2 sin(2 v)v+4 cos(v)−4

2v(−v+2 v cos(v)−v cos(2 v)−2 sin(v)+sin(2 v))

γ̄0
2 = −2 sin(v)v+sin(2 v)v−8 cos(v)+2 cos(2 v)+6

2v(−v+2 v cos(v)−v cos(2 v)−2 sin(v)+sin(2 v))

As v → 0, the Taylor series expansion of coefficients of the TFBFM for k = 2 up
to the eight order are as follows:
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(B.5)



β20 = − 1
80 − 83 v2

50400 − 89 v4

672000 − 39887 v6

4656960000 − 5384573 v8

10897286400000

β21 = 3
10 + 13 v2

12600 + 59 v4

378000 + 1523 v6

129360000 + 985289 v8

1362160800000

β22 = 17
80 + 31 v2

50400 − 143 v4

6048000 − 14941 v6

4656960000 − 2497739 v8

10897286400000

γ2 = − 7
120 − 19 v2

8400 − 47 v4

432000 − 12473 v6

2328480000 − 481139 v8

1816214400000

(B.6)



β̄20 = − 1
48 − v2

360 − 13 v4

57600 − 89 v6

6048000 − 143203 v8

167650560000

β̄21 = 5
12 + v2

720 + 13 v4

50400 + 121 v6

6048000 + 52133 v8

41912640000
β̄22 = 29

48 + v2

720 − 13 v4

403200 − v6

189000 − 5939 v8

15240960000
γ̄2 = −1

8 − v2

240 − 13 v4

67200 − 19 v6

2016000 − 12979 v8

27941760000

(B.7)



β0
20 = 23

240 + 293 v2

50400 + 1801 v4

6048000 + 22279 v6

1552320000 + 675643 v8

990662400000

β0
21 = 8

15 − 59 v2

6300 − 23 v4

47250 − 13591 v6

582120000 − 374291 v8

340540200000

β0
22 = − 31

240 + 179 v2

50400 + 127 v4

672000 + 41891 v6

4656960000 + 4545239 v8

10897286400000

γ0
2 = 7

120 + 19 v2

8400 + 47 v4

432000 + 12473 v6

2328480000 + 481139 v8

1816214400000

(B.8)



β̄0
20 = −17

48 − v2

72 − 251 v4

403200 − 169 v6

6048000 − 213203 v8

167650560000

β̄0
21 = −11

12 + 17 v2

720 + 53 v4

50400 + 281 v6

6048000 + 87133 v8

41912640000

β̄0
22 = 13

48 − 7 v2

720 − 173 v4

403200 − v6

54000 − 135329 v8

167650560000

γ̄0
2 = −1

8 − v2

240 − 13 v4

67200 − 19 v6

2016000 − 12979 v8

27941760000

APPENDIX C. MATRICES R A1 − A0 FOR k = 2

[RA1 − A0]k=2 =



0 R − 1 0 −R

R R 0 R

0 0 0 −R − 1

0 0 R R


,
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For k = 2, when n = 0, the equation (3.2) becomes

(C.1) A1Y1 = A0Y0 + h2B0F0 + h2B1F1,

where
Y1= (y1, y2, hy′

1, hy′
2)

T
,

Y0 =
(
y−1, y0, hy′

−1, hy′
0

)T
,

F1 = (f1, f2, hg1, hg2)T ,

F0 = (f−1, f0, hg−1, hg0)T

Substituting for the square matrices A0, A1, B0 and B1 in equation (C.1) to obtain

(C.2)



y2 − hy′
2 = y0 + h2

2∑
j=0

(
β0

2j (u) y
′′
j + hγ0

2 (u) y
′′′
2

)
y1 + y2 + hy′

2 = h2
2∑

j=0

(
β2j (u) y

′′
j + hγ2 (u) y

′′′
2

)
−hy′

1 = hy′
0 + h2

2∑
j=0

(
β̄0

2jy
′′
j (u) + hγ̄0

2 (u) y
′′′
2

)
−hy′

1 + hy′
2 = h2

2∑
j=0

(
β̄2jy

′′
j (u) + hγ̄2 (u) y

′′′
2

)
.

Solve equation (C.2) simultaneously to obtain the values of (y1, y2, y′
1, y′

2)T on
the block sub-interval [x0, x2], as y0 and y′

0 are known from the IVP (2.1), y′′ =
f (x, y, y′) and y′′′ is the derivative of y′′.

When n = 2, the equation (3.2) becomes

(C.3) A1Y3 = A0Y2 + h2B0F2 + h2B1F3,

where
Y3= (y3, y4, hy′

3, hy′
4)

T
,

Y2 = (y1, y2, hy′
1, hy′

2)
T
,

F3 = (f3, f4, hg3, hg4)T ,

F2 = (f1, f2, hg1, hg2)T
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Substitute for the square matrices A0, A1, B0 and B1 in equation (C.3) to obtain

(C.4)



y4 − hy′
4 = y2 + h2

2∑
j=0

(
β0

2j (u) y
′′
j+2 + hγ0

2 (u) y
′′′
4

)
y3 + y4 + hy′

4 = h2
2∑

j=0

(
β2j (u) y

′′
j+2 + hγ2 (u) y

′′′
4

)
−hy′

3 = hy′
1 + h2

2∑
j=0

(
β̄0

2jy
′′
j+2 (u) + hγ̄0

2 (u) y
′′′
4

)
−hy′

3 + hy′
4 = h2

2∑
j=0

(
β̄2jy

′′
j+2 (u) + hγ̄2 (u) y

′′′
4

)
.

Solve equation (C.4) simultaneously to obtain the values of (y3, y4, y′
3, y′

4)T on the
block sub-interval [x2, x4], as y2 and y′

2 are known from the previous block.
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