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ON SPHERICAL FUNCTIONS ASSOCIATED WITH MULTIPLICITY-FREE
INDUCED REPRESENTATIONS OF A HOMOGENEOUS TREE

Hervé Atché Milan1 and Ibrahima Toure

ABSTRACT. Let Tq,n be a homogeneous rooted tree, let Σn be the set of leaves of
Tq,n and let Kq,n be the stabilizer of the leftmost leaf by the action of Aut(Tq,n),
the group of automorphisms of Tq,n, on Σn.

In this paper, we study spherical functions associated with multiplicity-free in-
duced representation of Kq,n and obtain their explicit formula.

1. INTRODUCTION

Homogeneous trees and their automorphisms groups particularly automorphi-
sms groups of rooted trees have been studied intensely for the past few years in
connection with their application in geometric group theory [6], theory of dynamic
systems [3], theory of probability and statistics [7]. Also, the foundation for in-
terest is that automorphisms of rooted trees contain various interesting subgroups
with extremal properties. Moreover, there exists a connection between harmonic
analysis on trees and harmonic analysis on hyperbolic spaces by emphasizing the
strict analogy between the group of automorphisms of the tree and the real rank
one semi-simple Lie groups.
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J. P. Serre’s lecture notes [15], In 1970 was the starting point of infatuation for
this study. P. Cartier [5], initiated thereafter the study of spherical functions on
trees. In the same vein, in 1990, Alessandro Figà-Talamanca [11] has considered
and has studied the Gelfand pair (G;K) where G is the group of automorphisms
of a locally finite homogeneous tree and K is the stabilizer of a vertex.

The harmonic analysis on a tree and the representation theory of the group
of automorphisms acting on the homogeneous tree will be pursued by other re-
searchers such as E. Casadio-Tarabusi [6], E. Axelgaard [2]. Unlike other re-
searchers, T. Cecceherini and al. [8] will focus on harmonic analysis on the group
of automorphisms of a finite homogeneous rooted tree Aut(Tq,n). They describe
an application of the theory for the Gelfand pair and spherical functions to define
and study a diffusion process in ultrametric spaces (Σn, d) where Σn is the space
of the leaves of the tree Tq,n and d is an ultrametric distance.

We know that, for finite Gelfand pair (G,K), the quasi-regular representation
IndGK(1K) is multiplicity-free. The notion of Gelfand pair has been extended to
commutative triples [1, 4, 9, 14] and in this case IndGKτ is multiplicity-free that
is the one-dimensional trivial representation of K is remplaced by a non triv-
ial unitary irreducible representation τ of K. In addition, the generalisation
of spherical functions to the case of commutative triples implies the considera-
tion of functions with values in the endomorphism of a finite-dimensional vector
space [9,13,14,16,18]. It would be interesting for Aut(Tq,n) to describe an appli-
cation of the theory of commutative triples and spherical functions to define and
study diffusion process in ultrametric spaces (Σn, d).

The aims of our paper is to construct spherical functions with values in the endo-
morphism of a finite-dimensional vector space Vτ for a finite homogeneous rooted
tree Tq,n. To do so, we adopt the following plan: In section 2, we provide the pre-
liminaries and the basic notions useful for the proper understanding of our paper.
In section 3, we construct the τ - spherical functions associated with multiplicity-
free induced representation on Aut(Tq,n). To achieve that, we decompose the gen-
eralized permutation and obtain the explicit formula of the τ - spherical functions
on Σn.
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2. PRELIMINARIES AND NOTATIONS

We use the notations and setup of this section in the rest of the paper without
mentioning it. Let G be a finite group. Let X be a finite set and let G acts tran-
sitively on X. Let x ∈ X and denote by K = StabG(x) = {g ∈ G : g.x = x} the
stabilizer of x, a subgroup of G. Then, the map

Φ : G/K → X

gK 7→ g.x

is a G-equivariant bijection, thus making X and G/StabG(x) isomorphic as G-
spaces (Lemma 3.1.6 [7], page 80).

Let τ be an irreducible unitary representation of K on finite-dimensional vector
space Vτ . Let lVτ be the identity map on Vτ . We denote by Ĝ the set of equiv-
alence classes of irreducible unitary representations of G and denote by m(τ, σ)

the multiplicity of τ in σ|K, for all σ ∈ Ĝ. The character of the representation τ

is the function denoted χτ on K with complex values defined by: for all k ∈ K,
χτ (k) = Tr(τ(k)), where Tr(τ(k)) is the trace of τ(k). The induced representation
of the representation τ on G is the G-representation generally denoted by IndGKτ .
Its space of realization is: L(G, Vτ , τ) = {f : G −→ Vτ / f(gk) = τ(k−1)f(g),
∀g ∈ G, k ∈ K}.

The action of G on L(G, Vτ , τ) is given by:

((IndGKτ)(g1)f)(g2) = f(g−1
1 g2), ∀g1, g2 ∈ G and f ∈ L(G, Vτ , τ).

Let F be a finite group. We denote by FX the set of all maps f : X −→F . The
action of G on X induces an action of G on FX . The set FX × G equipped with
the following multiplication:

(f, g)(f
′, g′

) = (f.gf
′
, gg

′
), ∀ (f, g) ; (f ′, g′

) ∈ FX ×G

where (f.gf
′
)(x) = f(x)f

′
(g−1x), ∀ x ∈ X,

is a group [8]. The identity element is (1F ,1G) and the inverse of (f, g) is given
by (g−1f−1, g−1). This group is called the wreath product of F by G with respect
to X and is denoted by F ≀XG or by F ≀ G if there is no confusion on X. Let N be
a normal subgroup of G and ρ ∈ Ĝ/N . An inflation representation ρ of ρ is the
unitary representation of G defined by: ρ(g) = ρ(gN), for all g ∈ G.

An extension of τ ∈ K̂ is the representation of G denoted τ̃ such that the re-
striction of τ̃ to K is equal to τ .
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Let (σ, V ) and (ρ,W ) be two representations of G. The inner tensor product of σ
and ρ is the representation of G on V ⊗W , defined by:

(σ ⊗ ρ)(g)(v ⊗ w) = σ(g)v ⊗ ρ(g)w, for all g ∈ G, v ∈ V , w ∈ W .

We denote it by σ ⊗ ρ.
Let (σ, V ) be a representation of G1 and (ρ,W ) be a representation of G2. The

outer tensor product of σ and ρ is the representation of (G1 × G2) on V ⊗ W ,
defined by:

(σ⊠ ρ)(g1, g2)(v⊗w) = σ(g1)v⊗ ρ(g2)w, for all g1 ∈ G1, g2 ∈ G2, v ∈ V , w ∈ W .

We denote it by σ ⊠ ρ.
Let us consider the cartesian product G× Vτ . The group G acts on G× Vτ by:

h.(g, v) = (hg, v) ∀h, g ∈ G,∀v ∈ Vτ .

Let us denote by [g, v] the orbit of (g, v) ∈ G× Vτ by above action, by G×τ Vτ the
set of orbits. The action of G on G× Vτ induces an action of G on G×τ Vτ defined
by:

h.[g, v] = [hg, v], ∀h, g ∈ G,∀v ∈ Vτ .

The subgroup K acts on G× Vτ in the following way:

k.(g, v) = (gk, τ(k−1)v), ∀k ∈ K, ∀g ∈ G,∀v ∈ Vτ .

Let us consider a projection

p : G×τ Vτ → G/K

[g, v] 7→ gK

This projection is G-equivariant for the action of G on G×τ Vτ .
We designate by Eτ = (G ×τ Vτ , p, G/K) the homogeneous vector bundle over

G/K = X. A cross-section of Eτ may be identified with a vector-valued function
f : G → Vτ which is right-K-covariant of type τ , that is f(gk) = τ(k−1)f(g) [17].
We designate by Γ(Eτ ) the space of cross-sections of Eτ .

In [1], the authors have given a generalization of the permutation representa-
tion called a generalized permutation. The generalized permutation representa-
tion of G is the representation of G on Γ(Eτ ) defined by: ∀g ∈ G,∀s ∈ Γ(Eτ ) and
∀x ∈ X,

λτ (g)(s) = g.s(g−1.x).

Let End(Vτ ) be the vector space of all endomorphisms of Vτ and let us denoted by
L(G,End(Vτ ))= {F : G −→ End(Vτ )}, the space of all End(Vτ ))- valued functions
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defined on G. A function F ∈ L(G,End(Vτ )) is said τ -radial if it satisfies the prop-
erty: F (k1gk2) = τ(k−1

2 )F (g)τ(k−1
1 ), for all k1, k2 ∈ K and g ∈ G. We denote by

L(G,K, τ, τ) the space of τ -radial functions.
Let (G,K, τ) be a commutative triple. A non-trivial function φ in the space L(G,K, τ, τ)

is said to be a τ -spherical function if the map

χ : F 7→ 1

dτ

∑
g∈G

Tr[F (g)φ(g−1)] is a character of L(G,K, τ, τ) on C. When τ is the

trivial representation of K of dimension one, we obtain the notion of spherical
functions associated with a Gelfand pairs (G,K).

Let φ ∈ L(G,K, τ, τ). The following assertions are equivalent:

(1) φ is a τ−spherical function.

(2) ∀g, h ∈ G,
1

|K|
∑
g∈G

φ(gkh)χτ (k) = φ(h)φ(g).

Let q ∈ N. A composition of q of length t is the t-uple λ = (q1, q2, . . . , qt) such

that
t∑

i=1

qi = q with qi ∈ N. If q1 ≥ q2 ≥ . . . ≥ qt, then λ is a partition of q.

We write λ ⊢ q. It is well known that the irreducible representations of Sq are
labelled by integer partitions of q. Therefore, we denote by Sλ the irreducible
representation associated with the partition λ. Let (q1, q2, . . . , qt) be a composition
of q. If r1 ⊢ q1; . . . ; rt ⊢ qt, then (r1, . . . , rt) is a multipartition of q. We denote it
by (r1, . . . , rt) ⊩ q. Let Σ = {0; 1; . . . ; q − 1}, where q ∈ N∗. We call the set Σ the
alphabet. A word over Σ of length k is a sequence x = x1x2 . . . xk where xi ∈ Σ

for i = 1,. . . ,k. The set of all the words of length k is denoted by Σk. A tree is a
connected graph without circuits. A tree is said to be rooted if it has a fixed vertex
called the root of the tree. A leaf is a vertex of degree one. A homogeneous tree is
a tree where all the vertices which are not leaves have the same degree. On a tree,
we define a distance from two vertices x and y as the length of the shortest path
joining x and y. We denote by Tq,n a finite homogeneous rooted tree whose root is
of degree q and the distance from the root to a leaf is n. We designate by Aut(Tq,n)

the group of automorphisms of the homogeneous rooted tree Tq,n. The set Σn of
leaves of Tq,n can be endowed with a metric d as follows: for x =x1x2 . . . xn and
y = y1y2 . . . yn d(x, y) = n−max{k : xi = yi for all i ⩽ k}. Thus (Σn, d) is a metric
space, in particular, d is called an ultrametric distance.
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3. τ -SPHERICAL FUNCTIONS

In this part, G is the group of automorphisms of the homogeneous rooted tree
Tq,n. Σn is the set of the leaves of Tq,n and x0 = 0 . . . 0︸ ︷︷ ︸

(n)times

= 0n ∈ Σn is the leftmost

leaf. Aut(Tq,n) acts transitively on Σn. Let Kq,n = {g ∈ Aut(Tq,n) : g(x0) = x0} be
the stabilizer of x0. For i = 1, . . . , n − 2, let Ci be an irreducible unitary represen-
tation of Aut(Tq−1,n−(i+1)) ≀ Sq−1 and let D be a representation of Sq−1.

τq,n = C1⊠ . . .⊠Cn−2⊠D is a unitary representation of Kq,n. In [12], the authors
prove that the representation Ind

Aut(Tq,n)
Kq,n

τq,n is multiplicity-free. For i = 1, . . . , n−
2, let σi

1, . . . , σ
i
ℓi

be a set of pairwise inequivalent irreducible representations of
Aut(Tq−1,n−(i+1)). We set:

H = Aut(Tq−1,n−2) ≀ (S1+α1
1
× . . .× S1+α1

ℓ1
)× . . .× Aut(Tq−1,1) ≀ (S1+αn−2

1

× . . .× S1+αn−2
ℓn−2

)× Sq−1,

Λ1 = (σ̃
1⊠1+α1

1
1 ⊗ Sβ1

1 )⊠ . . .⊠ (
˜

σ
1⊠1+α1

ℓ1
1 ⊗ Sβ1

ℓ1 ), . . . .,Λn−2

= (
˜

σ
n−2⊠1+αn−2

1
1 ⊗ Sβn−2

1 )⊠ . . .⊠ (
˜

σ
n−2⊠1+αn−2

ℓn−2

ℓn−2
⊗ S

βn−2
ℓn−2 ).

The decomposition into multiplicity-free irreducible representations of
Ind

Aut(Tq,n)
Kq,n

τq,n is:

Ind
Aut(Tq,n)
Kq,n

τq,n =
⊕

(β1
1 ,...,β

1
ℓ1
)⊩q−1

. . .
⊕

(βn−2
1 ,...,βn−2

ℓn−2
)⊩q−1

⊕
λ⊢q−1

δλβ1,...,βn−2

, where δλβ1,...,βn−2 = Ind
Aut(Tq,n)
H (Λ1⊠ . . .⊠Λn−2⊠Sλ) (For terms and notations not

mentioned here see [12]).
We denote by ̂Aut(Tq,n)(τq,n) the set of those representations δλβ1,...,βn−2 in ̂Aut(Tq,n)

which contain τq,n upon restriction to Kq,n. Let Vδλ
β1,...,βn−2

be the realization space

of δλβ1,...,βn−2 and let Vδλ
β1,...,βn−2

(τq,n) be the isotypique component of τq,n. Let

P
δλβ
τq,n : Vδλ

β1,...,βn−2
→ Vδλ

β1,...,βn−2
(τq,n)

be the orthogonal projection given by:

P
δλβ
τq,n =

dτq,n
|Kq,n|

∑
k∈Kq,n

χτq,n(k)δλβ1,...,βn−2(k−1).



ON SPHERICAL FUNCTIONS OF A HOMOGENEOUS TREE 825

Since m(τq,n, δ
λ
β1,...,βn−2) = 1, Vδλ

β1,...,βn−2
(τq,n) can be identified with Vτq,n. We assume

that τq,n extends to a representation π of Aut(Tq,n) on Vτq,n.
Let us consider the projection:

p : Σn ×τq,n Vτq,n → Σn

[x, v] 7→ x.

The homogeneous vector bundle over Σn associated with the representation τq,n

is on the form Eτq,n = (Σn ×τq,n Vτq,n , P,Σ
n). The space of the sections Γ(Eτq,n) is

identified with the space L(Aut(Tq,n), Vτq,n , τq,n) [1]. Also if τq,n extends to a rep-
resentation π of Aut(Tq,n) on Vτq,n, Γ(Eτq,n) is identified with the space L(Σn, Vτq,n)

= {f : Σn −→ Vτq,n}. Let f ∈ L(Σn, Vτq,n) and let (vj)1⩽j⩽dτq,n be an orthonor-
mal basis of Vτq,n where dτq,n is the dimension of the representation τq,n. Then

f =

dτq,n∑
j=1

fjvj where fj ∈ L(Σn). The action of Aut(Tq,n) on L(Σn, Vτq,n) is given by:

g.f(x) = π(g)f(g−1.x), for all g ∈ Aut(Tq,n), f ∈ L(Σn, Vτq,n) and x ∈ Σn.

The following result give us τq,n-spherical functions defined on Aut(Tq,n) with val-
ues in End(Vτq,n).

Proposition 3.1. Let δλβ1,...,βn−2 ∈ ̂Aut(Tq,n). The function ϕ ∈ L(Aut(Tq,n), End(Vτq,n))

defined by

ϕ(g) = P
δλβ
τq,nδ

λ
β1,...,βn−2(g−1)P

δλβ
τq,n

is a τq,n-spherical function associated with Ind
Aut(Tq,n)
Kq,n

τq,n.

In the following result, we show that the τq,n-spherical functions are positive
definite.

Theorem 3.1. Let ϕ be a τq,n-spherical function on Aut(Tq,n). Then, ϕ is a positive
definite function.
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Proof. Let c1, c2, . . . , cn ∈ C, g1, . . . , gn ∈ Aut(Tq,n) and v ∈ Vτq,n. Then,∑
i,k

cick < ϕ(g−1
k gi)v, v > =

∑
i,k

cick < P
δλβ
τq,nδ

λ
β1,...,βn−2(g−1

i gk)P
δλβ
τq,nv, v >

=
∑
i,k

cick < P
δλβ
τq,nδ

λ
β1,...,βn−2(g−1

i )δλβ1,...,βn−2(gk)v, v >

=
∑
i,k

cick < δλβ1,...,βn−2(g−1
i )δλβ1,...,βn−2(gk)v, P

δλβ
τq,nv >

=
∑
i,k

cick < δλβ1,...,βn−2(gk)v, δ
λ
β1,...,βn−2(gi)v >

= <
∑
i=1

ckδ
λ
β1,...,βn−2(gk)v,

∑
k=1

ciδ
λ
β1,...,βn−2(gi)v >

⩾0,

thus ϕ is a positive definite τq,n-spherical function. □

A function f ∈ L(Σn, Vτq,n) can be considered as a function f(x1, x2, . . . , xn) of
the Σ-valued variables x1, x2, . . . , xn. We set W0 = L(∅, Vτq,n) ≃ Vτq,n and for j =

1, . . . , n, Wj = {f ∈ L(Σn, Vτq,n) : f = f(x1, x2, . . . , xj) and
q−2∑
x=0

f(x1, x2, . . . , xj−1, x) ≡

0}.
In the following result, we give a decomposition of the space L(Σn, Vτq,n).

Theorem 3.2. We have that L(Σn, Vτq,n) =
n⊕

j=0

Wj is the decomposition of L(Σn, Vτq,n)

into Aut(Tq,n)-irreducible subrepresentations.

Proof. We know that Aut(Tq,n) acts transitively on Σn. Also, the condition that
f(x1, x2, . . . , xj) depends on the first j variables is invariant because Aut(Tq,n) pre-
serves the levels of the tree. The action of Aut(Tq,n) on Σn is given by: g(x1 . . . xn)

= g∅(x1)gx1(x2) . . . gx1...xn−1(xn), and the action of Aut(Tq,n) on L(Σn, Vτq,n) is given
by :

g−1.f(x1, . . . , xn) = π(g−1)f(g(x1, . . . , xn)),
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for all g ∈ Aut(Tq,n), f ∈ L(Σn, Vτq,n) and x1 . . . xn ∈ Σn. So,

g−1.f(x1, . . . , xn) = π(g−1)f(g(x1, . . . , xn))

= π(g−1)f(g∅(x1), gx1(x2), . . . , gx1...xn−1(xn)).

Therefore,
q−2∑
x=0

g−1.f(x1, . . . , xj−1, x)

=

q−2∑
x=0

π(g−1)f(g∅(x1), gx1(x2), . . . , gx1...xj−2
(xj−1), gx1...xj−1

(x)).

= π(g−1)

q−2∑
x=0

f(g∅(x1), gx1(x2), . . . , gx1...xj−2
(xj−1), gx1...xj−1

(x))

= π(g−1)

q−2∑
x′=0

f(g∅(x1), gx1(x2), . . . , gx1...xj−2
(xj−1), x

′) ≡ 0.

Thus Wj are Aut(Tq,n)-invariant.

Let f ∈ Wj, f ′ ∈ Wj′, j ̸= j′ such that f(x) =

dτq,n∑
k=1

fk(x)vk, fk ∈ L(Σn) and

f ′(x) =

dτq,n∑
k′=1

f ′
k′(x)vk′, f

′
k′ ∈ L(Σn). We have that f ′ ∈ Wj′ thus

q−2∑
t=0

f ′(x1, x2, . . . ,

xj′−1, t) = 0. That is
dτq,n∑
k′=1

(

q−2∑
t=0

f ′
k′(x1, . . . , xj′−1, t))vk′ = 0. Since (vk′)1⩽k′⩽dτq,n is an

orthonormal basis of Vτq,n then, they are linearly independent so
q−2∑
t=0

f ′
k′(x1, x2, . . . ,

xj−1, t) = 0.
Suppose that j < j′. We have for x = x1 . . . xn,

< f, f ′ > =
∑
x∈Σn

< f(x), f ′(x) >

=
∑

x1...xn∈Σn

<

dτq,n∑
k=1

fk(x1, . . . , xn)vk,
dτ∑

k′=1

f ′
k′(x1, . . . , xn)vk′ >
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=

q−1∑
x1=0

q−1∑
x2=0

. . .

q−1∑
xn−1=0

q−2∑
xn=0

<

dτq,n∑
k=1

fk(x1, . . . , xn)vk,

dτq,n∑
k′=1

f ′
k′(x1, . . . , xn)vk′ >

=

q−1∑
x1=0

q−1∑
x2=0

. . .

q−1∑
xn−1=0

q−2∑
xn=0

dτq,n∑
k,k′=1

< fk(x1, . . . , xn)vk, f
′
k′(x1, . . . , xn)vk′ >

=

q−1∑
x1=0

q−1∑
x2=0

. . .

q−1∑
xn−1=0

q−2∑
xn=0

dτq,n∑
k,k′=1

fk(x1, . . . , xn)f ′
k′(x1, . . . , xn) < vk, vk′ >

= qn−j′
q−1∑
x1=0

q−1∑
x2=0

. . .

q−1∑
xj′−1=0

dτq,n∑
k,k′=1

fk(x1, . . . , xj)

q−2∑
t=0

f ′
k′(x1, . . . , xj′−1, t) < vk, vk′ >

= qn−j′
q−1∑
x1=0

q−1∑
x2=0

. . .

q−1∑
xj′−1=0

fk′(x1, . . . , xj)

dτq,n∑
k′=1

q−2∑
t=0

f ′
k′(x1, . . . , xj′−1, t).

As
q−2∑
t=0

f ′
k′(x1, . . . , xj′−1, t) = 0, we conclude that < f, f ′ > = 0 and the spaces Wj

are pairwise orthogonal.
The final step is to prove that the W ′

js fill all the space L(Σn, Vτq,n). We prove it
by induction on n.

For n = 1, f depends only on one variable and we have f(x) =

dτq,n∑
k=1

fk(x)vk,

where vk is an orthonormal basis of Vτq,n and fk ∈ L(Σ1). Any function fk can be

expressed as: fk(x) = ck + gk(x), where
q−2∑
x=0

gk(x) = 0 and ck =
1

q − 1

q−2∑
x=0

fk(x). We

have:

f(x) =

dτq,n∑
k=1

(ck + gk(x))vk=

dτq,n∑
k=1

ckvk +

dτq,n∑
k=1

gk(x)vk.
dτq,n∑
k=1

ckvk ∈ W0, also

q−2∑
x=0

dτq,n∑
k=1

gk(x)vk =

dτq,n∑
k=1

q−2∑
x=0

gk(x)vk = 0. Thus
dτq,n∑
k=1

gk(x)vk ∈ W1. Therefore the

assertion is true on rank one.
Suppose the assertion is true for (n − 1). A function f ∈ L(Σn, Vτq,n) can be ex-

pressed as: f(x1, . . . , xn−1, xn) =

dτq,n∑
k=1

fk(x1, . . . , xn−1, xn)vk with fk(x1, . . . , xn−1, xn)
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= ck(x1, . . . , xn−2, xn−1) + gk(x1, . . . , xn−1, xn), where
q−2∑
xn=0

gk(x1, x2, . . . , xn−1, xn) =

0, and ck(x1, . . . , xn−1) =
1

q − 1

q−2∑
xn=0

fk(x1, . . . , xn−1, xn). Therefore, f(x1, . . . ,

xn−1, xn) =

dτq,n∑
k=1

(ck(x1, . . . , xn−2, xn−1) + gk(x1, . . . , xn−1, xn))vk=

dτq,n∑
k=1

ck(x1, . . . ,

xn−2, xn−1)vk +

dτq,n∑
k=1

gk(x1, . . . , xn−1, xn)vk.

Set H(x1, . . . , xn−2, xn−1) =

dτq,n∑
k=1

ck(x1, . . . , xn−2, xn−1)vk and R(x1, . . . , xn−1, xn) =

dτq,n∑
k=1

gk(x1, . . . , xn−1, xn)vk. H depends only on (n− 1) variables, then according to

induction, H ∈
n−1⊕
j=0

Wj. Also,
q−2∑
x=0

R(x1, . . . , xn−1, x)=

q−2∑
x=0

(

dτq,n∑
k=1

gk(x1, . . . , xn−1, x)vk)

and
dτq,n∑
k=1

(

q−2∑
x=0

gk(x1, . . . , xn−1, x))vk= 0. Thus
dτq,n∑
k=1

gk(x1, . . . , xn−1, xn)vk ∈ Wn, so the

assertion is true for n.
We observe that Aut(Tq,n) acts on Σn transitively, and d(Σn,Σn) = {0, 1, . . . , n}.

Set S(x0, j) = {x ∈ Σn : d(x0, x) = j} the sphere of radius j centred at x0, these
are the Kq,n-orbits. Since d(Σn,Σn) = {0, 1, . . . , n}, so the number of Kq,n-orbits is
exactly n + 1. By virtue of Theorem 3.6 [1], we have that the W ′

js are irreducible
subspaces. □

We consider the action of Aut(Tq,n) on L(Σn, End(Vτq,n)) defined by: g.F (x) =

g−1.F (g−1.x), for all g ∈ Aut(Tq,n), F ∈ L(Σn, End(Vτq,n)) and x ∈ Σn. We desig-
nate by Lτq,n(Σ

n, End(Vτq,n)) = {F : Σn → End(Vτq,n) : k.F (x) = τ(k−1)F (x), for
all k ∈ Kq,n}.

The following result establishes an isomorphism between Lτq,n(Σ
n, End(Vτq,n))

and L(Aut(Tq,n), End(Vτq,n), τq,n, τq,n).

Theorem 3.3. Let us consider the map
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Θ : Lτq,n(Σ
n, End(Vτq,n)) → L(Aut(Tq,n), End(Vτq,n), τq,n, τq,n)

F 7→ F̃

defined by F̃ (g) = g−1.F (g−1.x0) that is for all v ∈ Vτq,n, F̃ (g)[v] = g−1.F (g−1.x0)[v]

= F (g−1.x0)[g
−1.v] is an isomorphism.

Proof. Let us prove that F̃ is a τq,n− radial function. For all k1, k2 ∈ Kq,n, g ∈
Aut(Tq,n) and v ∈ Vτq,n we have

F̃ (k1gk2)[v]

= (k1gk2)
−1.F ((k1gk2)

−1.x0)[v] = (k−1
2 g−1k−1

1 ).F (k−1
2 g−1k−1

1 .x0)[v]

= (k−1
2 g−1k−1

1 ).F (k−1
2 g−1.x0)[v] = (k−1

2 g−1).F (k−1
2 g−1.x0)(k

−1
1 .v)

= k−1
2 .g−1.F (k−1

2 g−1.x0)(τq,n(k
−1
1 )v) = k−1

2 .F (k−1
2 g−1.x0)(g

−1.τq,n(k
−1
1 )v)

= τq,n(k
−1
2 )F (g−1.x0)(g

−1.τq,n(k
−1
1 )v) = τq,n(k

−1
2 )g−1.F (g−1.x0)(τq,n(k

−1
1 )v)

= τq,n(k
−1
2 )F̃ (g)τq,n(k

−1
1 )[v]

Thus, F̃ is a τq,n-radial function. It is straightforward to prove that Θ is linear. Let
F1, F2 ∈ L(Σn, End(Vτq,n)) such that Θ(F1) = Θ(F2). We have

Θ(F1) = Θ(F2) ⇒ F̃1 = F̃2 ⇒ F̃1(g) = F̃2(g)

⇒ g−1.F1(g
−1.x0) = g−1.F2(g

−1.x0), ∀g ∈ Aut(Tq,n)

⇒ F1(g
−1.x0) = F1(g

−1.x0) ⇒ F1 = F2.

Thus Θ is injective. Let H ∈ L(Aut(Tq,n), End(Vτq,n), τq,n, τq,n) and set F (g.x0) =

g−1.H(g−1). For all k ∈ Kq,n and v ∈ Vτq,n,

(k.F (g.x0))(v) = k−1.F (k−1g.x0)(v) = F (k−1g.x0)(k
−1v) = (g−1k).H(g−1k)(k−1.v)

= H(g−1k)(g−1kk−1.v) = H(g−1k)(g−1.v) = τ(k−1)H(g−1)(g−1.v)

= τ(k−1)(g−1.H(g−1))(v) = τ(k−1)F (g.x0)(v).

Therefore, F ∈ Lτq,n(Σ
n, End(Vτq,n)).

Also, Θ(F )(g) = g−1.F (g−1.x0) = g−1.g.H(g) = H(g). Thus Θ is surjective and is
an isomorphism. □

In the sequel, we set S(x0, j) = {z ∈ Σn : d(x0, z) = j}. We know that if k ∈ Kq,n,
k is uniquely determined by labelling. We denote by (k∅, kx1 , kx2 , . . . , kx1x2...xn−1)
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the labelling of k ∈ Kq,n. Each label kx1x2...xj
is an automorphism of the subtree

rooted at x1x2 . . . xj [12].

Remark 3.1. If F ∈ Lτq,n(Σ
n, End(Vτq,n)) and x = x1x2 . . . xn−1xn, y = y1y2 . . . yn−1yn

∈ S(x0, j) then there exists k ∈ Aut(Tq,n) such that F (y) = F (x)τq,n(k
−1). In par-

ticular, if x and y are brothers we can identify k with its label kx1x2...xn−1 and write
F (y) = F (x)τq,n(k

−1
x1x2...xn−1

).

In fact, the action of Kq,n on Σn is transitive so there exists k ∈ Aut(Tq,n) such
that y = kx. Thus F (y) = F (kx) = F (x)τq,n(k

−1). Now if x and y are brothers we
have

k.x = k∅(x1)kx1(x2) . . . kx1x2...xn−2(xn−1)kx1x2...xn−1(xn)

= x1x2 . . . xn−1kx1x2...xn−1(xn)

= x1x2 . . . xn−1yn,

that is all the labels are identity map except the last one kx1x2...xn−1. So we can
identify k with kx1x2...xn−1

In the next result, we obtain the explicit formula of τq,n-spherical functions de-
fined on Σn.

Theorem 3.4. The τq,n-spherical function is given by:

Ψj(x1, x2, . . . , xn)

=



IVτq,n
if x1 = x2 = . . . = xj = 0;

−
(
IVτq,n

+

q−2∑
i=2

τq,n((k
i
x1x2...xj−1

)−1)
)−1

τq,n((k
xj
x1...xj−1)

−1), ifx1 = x2 = . . . = xj−1 = 0 and xj ̸= 0;

0, otherwise;

,

where for t ∈ {1, 2, . . . , q−2}, kt
x1x2...xj−1

is the jieme label of kt ∈ Aut(Tq,n) such that
kt(x1, x2, . . . , xj−1, 1) = x1x2 . . . xj−1t.

Proof. The functions Ψj ∈ L(Σn, End(Vτq,n)) are left Kq,n−covariant of type τq,n.
Moreover, we observe that if x1x2 . . . xj−1 ̸= 00 . . . 0, all the points of the form
x1x2 . . . xn have the same distance from the base point x0 = 00 . . . 0. Since Ψj(•)v ∈
L(Σn, Vτq,n) is left Kq,n-covariant of type τq,n, then
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Ψj(x1, . . . , xj−1, ℓ)v = Ψj(x1, . . . , xj−1, 0)τq,n((k
ℓ
x1x2...xj−1

)−1)v, for all ℓ = 1, . . . , q−2.
As Ψj(•)v ∈ Wj we have

q−2∑
ℓ=0

Ψj(x1x2 . . . xj−1, ℓ)v =
( q−2∑

ℓ=0

Ψj(x1, . . . , xj−1, ℓ)
)
v

=
(
Ψj(x1, . . . , xj−1, 0) + Ψj(x1, . . . , xj−1, 0)τq,n((k

1
x1x2...xj−1

)−1)

+ . . .+Ψj(x1, . . . , xj−1, 0)τq,n((k
q−2
x1x2...xj−1

))−1
)
v

= (Ψj(x1, . . . , xj−1, 0)
(
IVτq,n

+

q−2∑
ℓ=1

τq,n((k
ℓ
x1x2...xj−1

)−1)
)
v = 0,

As τq,n is an irreducible unitary representation of Kq,n then (τq,n(k)v, v) ⩾ 0, for
all v ∈ Vτq,n, k ∈ Kq,n. Also (IVτq,n

v, v) ⩾ 0, for all v ∈ Vτq,n. Since IVτq,n
is

invertible and IVτq,n
⩽ IVτq,n

+

q−2∑
ℓ=1

τq,n((k
ℓ
x1x2...xj−1

)−1) then by Theorem 2.3 [10],

IVτq,n
+

q−2∑
ℓ=1

τq,n((k
ℓ
x1x2...xj−1

)−1) is inversible. Therefore Ψj(x1, . . . , xj−1, 0) = 0.

Furthermore, Ψj(x1, . . . , xj−1, ℓ)v = Ψj(x1, . . . , xj−1, 0)τq,n(k
ℓ
x1x2...xj−1

)v, for all
ℓ = 1, . . . , q − 2 thus Ψj(x1, . . . , xj−1, ℓ) = Ψj(x1, . . . , xj−1, 0) = 0.

Similarly, all leaves of form 00 . . . 0︸ ︷︷ ︸
j−1

tyj+1 . . . yn with t = 1, 2, . . . , q − 2 constitute

the ball of radius n−j+1. By definition of τq,n-spherical function, Ψj(0, 0, . . . , 0) =

IVτq,n
. As Ψj(•)v ∈ Wj, for all v ∈ Vτq,n then, (Ψj(0, 0, . . . , 0) +

q−2∑
t=1

Ψj(0, 0, . . . 0, t))v

= 0. Also,

(
Ψj(0, 0, . . . , 0) +

q−2∑
t=1

Ψj(0, 0, . . . 0, t)
)
v =

(
IVτq,n

+Ψj(0, 0, . . . 0, 1)(IVτq,n

+

q−2∑
i=2

τq,n((k
i
x1...xj−1

))−1)
)
v = 0,

and
(
IVτq,n

+Ψj(0, 0, . . . 0, 1)(IVτq,n
+

q−2∑
i=2

τq,n((k
i
x1x2...xj−1

)−1))
)
v = 0 implies IVτq,n

+

Ψj(0, 0, . . . 0, 1)
(
IVτq,n

+

q−2∑
i=2

τq,n((k
i
x1x2...xj−1

)−1)
)
= 0 which implies −Ψj(0, 0, . . . 0, 1)
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(
IVτq,n

+

q−2∑
i=2

τq,n((k
i
x1x2...xj−1

)−1)
)
= IVτq,n

. Thus −Ψj(0, 0, . . . 0, 1) admits an inverse

on the right. As Vτq,n is a finite-dimensional vector space then Ψj(0, 0, . . . 0, 1) is

invertible and Ψj(0, 0, . . . 0, 1) = −
(
IVτq,n

+

q−2∑
i=2

τq,n((k
i
x1x2...xj−1

)−1)
)−1.

For t = 2, . . . , q−2, Ψj(0, 0, . . . 0, t) = Ψj(0, 0, . . . 0, 1)τq,n((k
t
x1...xj−1

)−1), it follows

that Ψj(0, 0, . . . 0, t) = −
(
IVτq,n

+

q−2∑
i=2

τq,n((k
i
x1x2...xj−1

)−1)
)−1

τq,n((k
t
x1...xj−1

)−1).

Finally, if d(x, x0) < n − j + 1, then x = 00 . . . 0︸ ︷︷ ︸
h

yh+1 . . . yn with h > j + 1. Thus

Ψj(x1, x2, . . . , xn) = Ψj(0, 0, . . . 0, 0) = IVτq,n
. □

Remark 3.2. If τq,n is the one-dimensional trivial representation of Kq,n, then we

can identifty τq,n with C. So,
q−2∑
i=2

τq,n((k
i
x1x2...xj−1

)−1)v =

q−2∑
i=2

v = (q − 3)v, for all

v ∈ Vτq,n. Therefore,
q−2∑
i=2

1 = (q − 3) and −(IVτq,n
+

q−2∑
i=2

τq,n((k
i
x1x2...xj−1

)−1))−1 =

−(1 + q − 3)−1 = − 1

q − 2
. We obtain the spherical functions for the Gelfand pair

(Aut(Tq,n), Kq,n) [7].
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