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APPLICATION OF THE FOURIER TRANSFORMATION FOR SOLVING A FIRST
ORDER PARTIAL DIFFERENTIAL EQUATION WITH CONSTANT

COEFFICIENTS

Yanick Alain Servais Wellot

ABSTRACT. This work is devoted to the solution of a linear first-order hyperbolic
partial differential equation with constant coefficients. The specific objective is
to prove the existence and uniqueness of the solution of the proposed PDE. The
existence and uniqueness of the solution have been proved. To demonstrate the
existence of the solution, the Fourier transformation was used. The variational
formulation was used to prove the uniqueness of the solution. The combination of
the Fourier transformation and the variational formulation yielded the expected
results: the existence and uniqueness of the solution.

1. INTRODUCTION

PDEs appear frequently in applied sciences to translate fundamental principles
and continuously model physical phenomena.

A PDE generally translates physical principles (such as the conservation of mass,
energy, momentum) and models (such as the force /deformation relationship in a
spring, the law of gravitation), in which one can have reasonable trust [1,3,5,6,9].

EDPs are classified according to three types, namely: Hyperbolic EDPs, Parabolic
EDPs and Elliptical EDPs [2,5,11,13,14].
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This work is devoted to the application of the Fourier transformation for the
resolution of a linear hyperbolic PDE of first order, with constant coefficients.

Besides the introduction and the general conclusion, this work presents some
essential notions, useful for the good use of the Fourier transformation in this spe-
cific case. These notions and these results constitute an essential tool to approach
the study of the type of problem of this article. The main activity of this work, is to
prove the existence as well as the uniqueness of the solution of a linear hyperbolic
partial differential equation (PDE) of the first order with constant coefficients, by
the use of the Fourier transformation .

2. RESOLUTION OF PROBLEM

In this section which is the main one of this work, the activity is to study a case
of a hyperbolic system intervening in many branches of science: kinetic theory,
mechanics of inviscid fluids, magneto hydrodynamics, dynamics of inviscid gases ,
road traffic, flow of a river or a glacier, sedimentation process, chemical exchange
process, etc [3,7–10,12,15].

2.1. Presentation of the problem. This work concerns the resolution by the
Fourier transformation of a linear partial differential equation of order 1 with con-
stant coefficients which is presented as follows:

(2.1) ut +
n∑

j=1

Bjuxj = 0.

As:
u : Rn × [0,∞[ → Rm and Bj : Rn × [0,∞[ → Mm×m.

Where the Bj have square matrices of order m with the initial condition:

(2.2) u = g.

Knowing that
g : Rn → Rm.

2.2. Hyperbolic system of partial differential equations, Fourier transform.
Consider the following system of s partial differential equations of the first order
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for s unknown functions.

u⃗ = (u1, . . . , us) , u⃗ = (x⃗, t) , with x⃗ ∈ Rd.

(2.3)
∂u⃗

∂t
+

d∑
j=1

∂

∂xj

f⃗ j (u⃗) = 0.

For j = 1, . . . , d, the f⃗ j ∈ C1 (Rs,Rs), are continuously differentiable functions,
nonlinear in general. We then set each f⃗ j the Jacobian matrix s× s.

Aj =


∂f j

1

∂u1

· · · ∂f j
1

∂us
... . . . ...

∂f j
s

∂u1

· · · ∂f j
s

∂us

 for j = 1, . . . , d.

Thus, the system of equations (2.3) can also be written as follows:

(2.4)
∂u⃗

∂t
+

d∑
j=1

Aj ∂u⃗

∂xj

= 0.

Definition 2.1. This system (2.4) is said to be hyperbolic if, for all α1, . . . αd ∈ R,
the matrix A = α1A

1 + . . . + αdA
d has real eigenvalues and is diagonalizable, if the

matrix A has two by two distinct real eigenvalues, it is then diagonalizable and we
then speak of a strictly hyperbolic system ( [14,18]). Either

(2.5) ∂tu(t, x1, . . . , xd) +
d∑

i=1

Ai(u(t, x1, . . . , xd))∂xi
u(t, x1, . . . , xd) = 0.

Definition 2.2. The system (2.4) is said to be (strictly) hyperbolic in u ⊂ RN if, and
only if, the matrix

A(u, ξ) =
d∑

i=1

ξiAi(u)

is diagonalizable with real (distinct) eigenvalues for all (u, ξ) ∈ u × Rd,, where we
noted ξ = (ξi)

d
i=1 ∈ Rd.

Definition 2.3. If u ∈ L
′
(Rn), we define its Fourier transform F [U ] = Û by:

(2.6) Û(y) =
1

(2π)
n
2

∫
Rn

e−ixyu(x)dy (y ∈ Rn).
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Its inverse Fourier transform F−1 = Û is given by the relation (2.7) below

(2.7) Û(y) =
1

(2π)
n
2

∫
Rn

eixyu(x)dy (y ∈ Rn).

Since |e±ixy| = 1 and U ∈ L1(Rn), these integrals converge for each y ∈ Rn . We now
intend to extend the definition given by the equations (2.6) and (2.7) to the function
U ∈ L2(Rn)

Theorem 2.1 (Planchevel Theorem, [4, 15–17]). Suppose u ∈ L1(Rn) ∩ L2(Rn).
Next, û, û ∈ L2(Rn) and

∥û∥L2(Rn) = ∥ũ∥L2(Rn) = ∥u∥L2(Rn).

Theorem 2.2. Let k be a non-negative integer.

(i) A function u ∈ L2 (Rn) is long in Hk (Rn) if and only if:
(
1 + |y|k

)
û ∈

L2 (Rn) ;

(ii) Moreover, there is a positive constant c such that
1

c
∥u∥Hk(Rn) ≤ ∥

(
1 + |y|k

)
û∥L2(Rn) ≤

∥u∥Hk(Rn), pour chaque u ∈ Hk (Rn).

Definition 2.4. Suppose 0 < s < ∞ and u ∈ L2 (Rn). Afterwards u ∈ Hs (Rn). If
(1 + |y|s) û ∈ L2 (Rn) for non-integer s, we set: ∥u∥Hs(Rn) = ∥ (1 + |y|s) û∥L2(Rn).

2.3. Existence of the solution. For our system to be hyperbolic, we will assume
that the {Bj}nj=1 are constant and diagonalizable matrices m×m.

Hyperbolicity condition:

For our system to be hyperbolic, we will assume that the {Bj}nj=1 are constant and
diagonalizable matrices m×m.

(i) Either B(y) =
∑n

j=1 yjBj for each y ∈ Rn , with real eigenvalues.
(ii) As: λ1(y) ≤ λ2(y) ≤ · · · ≤ λm(y).

A priori, there is no assumption concerning the eigenvectors, and therefore we as-
sume here only a kind of very weak hyperbolicity. Then we also make no symmetry
assumption for the matrices {Bj}nj=1.

Let’s take g ∈ HS(Rn,Rm), S > n
2
+ m. So there is only one solution u ∈

C1(Rn × [0,∞[, Rm) from problem to initial values (2.1), (2.2).
The function u = (u1, . . . , um) is assumed to be a smooth solution then set û =

(û1, . . . , ûm) of the problem. the transformation will be done with respect to the



APPLICATION OF THE FOURIER TRANSFORMATION 855

time variable t. Thus the equation (2.1) becomes:

(2.8)
∂u

∂t
+

n∑
j=1

Bj
∂u

∂xj

= 0.

Applying the member-to-member Fourier transform to the equation (2.8) gives:

(2.9) F
[
∂u

∂t

]
(y) + F

[
n∑

j=1

Bj
∂u

∂xj

]
(y) = 0.

This last relation is equivalent to:

(2.10)
∂û

∂t
(y, t) +

n∑
j=1

BjF
[
∂u

∂xj

]
= 0.

Either

(2.11)
∂û

∂t
+ i

n∑
j=1

Bjλjû = 0.

Considering B(y) =
n∑

j=1

λjBjû, it follows:

(2.12)
∂û

∂t
+ iB(y)û = 0.

The equation (2.12) is nothing other than a first-order linear ordinary differential
equation whose unknown is the function û. Thus, the general solution is deduced
in the form:

(2.13) û(y, t) = ke−itB(y), k ∈ R.

Determine the value of k by applying the initial condition to the equation (2.13).
For t = 0, the equation (2.13) becomes:

(2.14) û(y, 0) = k.

Taking into account the initial condition (2.2), the following expression will result:
(2.2), we have:

(2.15) û(y, 0) = ĝ(y).
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Substituting the equation (2.15) into the equation (2.14) gives k = ĝ(y). So the
general solution (2.13) becomes:

(2.16) û(y, t) = e−itB(y)ĝ(y).

In order to obtain the solution u of the initial problem, the inverse Fourier trans-
form must be applied to the function û(y, t). Which would then be defined as
follows

(2.17) F−1 [û(·, t)] (x) = 1

(2π)
n
2

∫
Rn

û(y, t)eixydy.

By replacing the equation (2.16) in the expression (2.17) above, it is deduced:

(2.18) F−1 [û(·, t)] (x) = 1

(2π)
n
2

∫
Rn

eixye−itB(y)ĝ(y)dy.

Either

(2.19) u(x, t) =
1

(2π)
n
2

∫
Rn

eixye−itB(y)ĝ(y)dy, (x ∈ Rn, t ≥ 0).

Let us then show that u(x, t) is well defined. Indeed,

u(x, t) exists if and only if
∫
Rn

eixye−itB(y)ĝ(y)dx < ∞ and u ∈ C1 ([0,∞[ ,Rm) .

At this level, it is first a question of proving that the integral defined in the relation
(2.19) converges.

Since g ∈ HS(Rn,Rm), then according to the theory on fractional spaces of
Sobolev, there exists f ∈ L2 (Rn,Rm) such as

(2.20) |ĝ(y)| ≤ c(1 + |y|s)−1|f(y)| (y ∈ Rn).

Indeed, in order to study the convergence of the integral (2.19), we have to esti-
mate ∥e−itB(y)∥, for a fixed y.

Let Γ be the path ∂B(0, r) in the complex plane, traversed counter-clockwise;
the radius r chosen as large as the eigenvalues λ1(y), . . . , λm they are located
in Γ. It results:

(2.21) e−itB(y) =
1

2πi

∫
Γ

e−itz(zI −B(y))−1dz.

From all the above, it follows A(t, y) the right side of equality (2.21) and fix x ∈
Rm. Then, by multiplying on the left by B (y) and on the right by x the equality
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(2.21) the following result is obtained. To verify this, denote A(t, y) the right side
of equality (2.21) and fix x ∈ Rm. Next, we multiply on the left by B (y) and on
the right by x the equality (2.21)

B(y)A(t, y)x =
1

2πi

∫
Γ

e−itzB(y)(zI −B(y))−1xdz(2.22)

=
1

2πi

∫
Γ

e−itz(z(zI −B(y))−1x− x)dz(2.23)

=− 1

i

d

dt
A(t, y)x.(2.24)

Since ∫
Γ

e−itzdz = 0,

therefore:

(2.25)
(

d

dt
+ iB(y)

)
A(t, y) = 0.

In addition:

(2.26a) A(o, y)x =
1

2πi

∫
Γ

(zI −B(y))−1 xdz

(2.26b) A(o, y)x =
1

2iπ

∫
Γ

x+B(y) (zI −B(y))−1

z
dz

(2.26c) A(o, y)x = x+
1

2πi

∫
Γ

B(y) (zI −B(y))−1 x

z
dz

Let’s say:
w = (zI −B(y))−1 x,

so that zw −B(y)w = x. By taking the product with w̄, it follows:

(2.27) |w| ≤ c

|z|
, for a constant c.

Using this estimate and letting r tend to infinity, we conclude from the equation
(2.26c) that

(2.28) A(0, y)x = x.
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This equality (2.25) verifies the presentation formula (2.21). Furthermore, let’s
define a new path ∆ in the complex plane as follows: For fixed y, draw the circles
Bk = B(λk(y), 1) of radius equal to 1, centered at λk(y), (k = 1, . . . ,m). Next,
∆ is chosen as the boundary of Um

k=1Bk, whose travel counterclockwise. Thus,
deforming the path Γ into ∆, from the expression (2.21) is deduced

(2.29) e−tB(y) =
1

2iπ

∫
∆

e−itz(zI −B(y))−1dz.

Now,

(2.30) |e−itz| ≤ et (z ∈ ∆).

Furthermore,

(2.31) det(zI −B(y)) =
m∏
k=1

(z − λk(y)).

From where:

(2.32) |det(zI −B(y)| ≥ 1 if z ∈ ∆.

Right now,

(2.33) (zI −B(y))−1 =
Com(zI −B(y))T

det(zI −B(y))
,

where ”Com” denotes the matrix of cofactors. Thus it is deduced:

(2.34a) ∥(zI −B(y))−1∥ ≤ ∥Com(zI −B(y)∥

(2.34b) Either: ∥(zI −B(y))−1∥ ≤ c(1 + |z|m−1 + ∥B(y)∥m−1),

(2.34c) Or again: ∥(zI −B(y))−1∥ ≤ c(1 + |y|m−1) if z ∈ ∆.

In this calculation, a the following elementary inequality was used:

|λk(y)| ≤ C|y|, (k = 1, . . . ,m).

By combining the inequalities (2.30) and (2.34c), the derivation of the estimate is
favored. Either:

(2.35) ∥e−itB(y)∥ ≤ cet(1 + |y|m−1), (y ∈ Rn).
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Let’s now return to our solution (2.19). Referring to the existence condition of
u(x, t) and the inequality (2.34c), we deduce that:

(2.36a)
∫ n

R

|eixye−itB(y)ĝ(y)|dy ≤ c

∫
Rn

∥e−itB(y)∥(1 + |y|S)−1|f(y)|dy,

(2.36b)
∫ n

R

|eixye−itB(y)ĝ(y)|dy ≤ cet
∫
Rn

|f(y)|(1 + |y|m−1)(1 + |y|S)−1dy,

(2.36c)
∫ n

R

|eixye−itB(y)ĝ(y)|dy ≤ c(

∫
Rn

|f(y)|2dy)
1
2

(∫
Rn

dy

1 + |y|2(S−m+1)

) 1
2

,

(2.36d)
∫ n

R

|eixye−itB(y)ĝ(y)|dy < ∞.

As S >
n

2
+m−1, this result proves that the integral defined in the relation (2.19)

converges; and it easily follows that the function

(2.37) u(x, t) =
1

(2π)
n
2

∫
Rn

eixye−itB(y)ĝ(y)dy

is continuous on Rn × [0,∞[.
Now let’s show that u is of class C1. Observe for 0 < |h| ≤ 1 that

(2.38)
u(x, t)− u(x, t)

h
=

1

(2π)
n
2h

∫
Rn

eixy(e−i(t+h)B(y) − e−itB(y))ĝ(y)dy.

Since:

(2.39) e−i(t+h)B(y) − e−itB(y) = −i

∫ t+h

t

B(y)e−iSB(y)ds,

allowing ourselves to estimate as below that:

(2.40) |1
h
(e−i(t+h)B(y) − e−itB(y))| ≤ Cet+1(1 + |y|m),

it follows that

(2.41) |u(x, t+ h)− u(x, t)

h
| ≤ cet+1

∫
Rn

|f(y)|(1 + |y|S)−1dy.

The function u is therefore differentiable. This result allows us to conclude that u
is well defined.
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So ut exists and is continuous on R. A similar argument shows that uxi
(i =

1, . . . , n) exists and is continuous by the dominated convergence theorem, one can
further differentiate under the integral sign in (2.19), to confirm that u solves the
system

ut +
n∑

j=1

Bjuxj = 0.

u is therefore a solution of the system above. Hence the existence of the solution.

2.4. Uniqueness of the solution. Let’s first find the variational formulation of
the equation (2.1)

ut +
n∑

j=1

Bjuxj = 0. Either
n∑
j

Bjuxj = −ut.

The initial condition says that: u = g. Therefore:

(2.42)
n∑

J=1

Bjuxj = −g,

g ∈ H1(Rn,Rm) implies that
n∑

j=1

Bjuxj ∈ H1(Rn,Rm).

By multiplying equation (2.15) by v ∈ H1(Ω) and integrating over an open Ω of
Rn we easily obtain

∫
Ω

n∑
j=1

BjuxjvdΩ =

∫
Ω

−gvdΩ,

(2.43)
n∑

j=1

Bj

∫
Ω

∂u

∂xi

vdΩ = −
∫
Ω

gvdΩ.

Now,

∫
Ω

∂u

∂xi

vdΩ = −
∫
Ω

u
∂v

∂xi

dΩ +

∫
∂Ω

uvηids
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and by integration by parts, follows:
n∑

j=1

Bj

(
−
∫
Ω

gu
∂u

∂xi

dΩ +

∫
∂Ω

uvηids

)

= −
∫
Ω

gvdΩ−
n∑

j=1

Bj

∫
Ω

u
∂v

∂xi

dΩ +
n∑

j=1

Bj

∫
∂Ω

uvηids = −
∫
Ω

gvdΩ

Hence the variational formulation

n∑
j=1

Bj

∫
Ω

u
∂v

∂x
dΩ−

n∑
j=1

Bj

∫
∂Ω

uvηds =

∫
Ω

gvdΩ.

Let’s prove uniqueness. Let u1, u2 be two solutions of (2.1), then
n∑

j=1

Bj

∫
Ω

(u1 − u2)
∂v

∂xi

dΩ−
n∑

j=1

Bj

∫
∂Ω

(u1 − u2)vηds =

∫
Ω

gvdΩ.

Choose the test function v = u1 − u2. Then,
n∑

j=1

Bj

∫
v
∂v

∂xi

dΩ−
n∑

j=1

Bj

∫
∂Ω

vvηds =

∫
Ω

gvdΩ,

and η is the unit normal component outside Ω and,
∫
∂Ω

ηds = 0 because η is zero

on ∂Ω. The following results are easily obtained
n∑

j=1

Bj∥u1 − u2∥2H1
Ω
= 0, ∀ v ∈ H1(Ω),

∥u1 − u2∥H1(Ω) = 0 and So u1 = u2. Hence the uniqueness of the solution.

3. CONCLUSION

The general aim of our study was to solve a first-order linear hyperbolic partial
differential equation with constant coefficients. The specific objective was to prove
the existence and uniqueness of the solution. The existence and uniqueness of
the solution were proved. To achieve this specific objective, two methods were
exploited: the Fourier transform method to show the existence of the solution; and
the variational formulation method, with the use of a test function to justify the
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uniqueness of the solution. In conclusion, the combination of these two methods
delivered the expected results
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