

Advances in Mathematics: Scientific Journal **12** (2023), no.10, 863–876 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.12.10.2

\hbar -CENTRALIZERS ON PSEUDOQUOTIENTS

Asia Majeed¹, Cenap Özel, Majed Albaity, and Sadia S. Ali

ABSTRACT. A space of pseudoquotients, denoted by $\mathcal{B}(X, S)$, is defined as equivalence classes of pairs (x, f), where x is an element of a non-empty set X, f is an element of S, a commutative semigroup of injective maps from X to X, and $(x, f) \sim (y, g)$ when gx = fy. If X is a ring and elements of S are ring homomorphisms, then $\mathcal{B}(X, S)$ is a ring. We show that, under natural conditions, a \hbar -Jordan centralizer on X has a unique extension to a \hbar -Jordan centralizer on $\mathcal{B}(X, S)$

1. INTRODUCTION

Let *X* be a ring (or an algebra) with the unit 1. A linear mapping δ from *X* into it self is called a left(right) centralizer of *X* if

$$\delta(y) = \delta(1) \cdot y$$

and

$$\delta(y) = y \cdot \delta(1),$$

for all $y \in X$. If δ is a left and right centralizer, then it is called a δ centralizer. A linear mapping δ from X into itself is called a left (right) Jordan centralizer of X

¹corresponding author

²⁰²⁰ Mathematics Subject Classification. 47B47, 47L35, 20M14.

Key words and phrases. Centralizer, pseudoquotients, commutative semigroup, biadditive mapping. *Submitted:* 12.09.2023; *Accepted:* 28.09.2023; *Published:* 05.10.2023.

if

864

$$\delta(x^2) = \delta(x) \cdot x,$$

and

$$\delta(x^2) = x \cdot \delta(x),$$

for any $x \in X$. δ is called a Jordan centralizer of X if

$$\delta(x \cdot y + y \cdot x) = \delta(x) \cdot y + y \cdot \delta(x) = \delta(y) \cdot x + x \cdot \delta(y)$$

for any $x, y \in X$. In [4], Zalar shows that a left Jordan centralizer of a semiprime ring is a left centralizer and each Jordan centralizer of a semi-prime ring is a centralizer.

Let X be any nonempty set and S be a commutative semigroup acting on X injectively. This means that every $\phi \in S$ is an injective map $\phi : X \to X$ and $(\phi\psi)x = \phi(\psi x)$ for all $\phi, \psi \in S$ and $x \in X$. For $(x, \phi), (y, \psi) \in X \times S$, we write (x, ϕ) (y, ψ) if $\psi x = \phi y$. It is easy to check that this is an equivalence relation in $X \times S$, finally we define $\mathcal{B}(X,S) = (X \times S)/\sim$. The equivalence class of (x, ϕ) will be denoted by $\frac{x}{\phi}$. This is a slight abuse of notion, but we follow here the tradition of denoting rational numbers by $\frac{p}{q}$ even though the same formal problem is presented there. Elements of X can be identified with elements of $\mathcal{B}(X,S)$ via the embedding $\iota : X \to \mathcal{B}(X,S)$ defined by $\iota(x) = \frac{\phi x}{\phi}$, where ϕ is an arbitrary element of S. Clearly it is well-defined; that is, it is independent of ϕ . The action of S can be extended to $\mathcal{B}(X,S)$ via $\phi \frac{x}{\psi} = \frac{\phi x}{\psi}$. If $\phi \frac{x}{\psi} = i(y)$ for some $y \in X$, we will write $\phi \frac{x}{\psi} \in X$ and $\phi \frac{x}{\psi} = x$. Elements of S, when extended to maps on $\mathcal{B}(X,S)$, are bijections. The action of ψ^{-1} on $\mathcal{B}(X,S)$ can be defined as

$$\psi^{-1}\frac{x}{\phi} = \frac{x}{\phi\psi}.$$

Consequently, S can be extended to a commutative group of bijections acting on $\mathcal{B}(X, S)$. If (X, \odot) is a commutative group and S is a commutative semigroup of injective homomorphisms on X, then B(X, S) is a commutative group with the operation defined as

$$\frac{x}{\phi} \odot \frac{y}{\psi} = \frac{\psi x \odot \phi y}{\phi \psi}$$

Similarly, if X is a vector space and S is a commutative semigroup of injective linear mapping from X into itself, then $\mathcal{B}(X, S)$ is a vector space with the operations defined as

$$\frac{x}{\phi} + \frac{y}{\psi} = \frac{\psi x + \phi y}{\phi \psi} \text{ and } \lambda \frac{x}{\phi} = \frac{\lambda x}{\phi}.$$

If $\delta : X \to X$ and δ extends to a map $\hat{\delta} : \mathcal{B}(X,S) \to \mathcal{B}(X,S)$, then it is often important to know what properties of δ are inherited by $\hat{\delta}$. In this section, we consider some special situations when an extension is possible, which are important for the particular case studied in this paper.

If $\delta(fx) = f\delta(x)$ for all $x \in X$ and all $f \in S$, then we say that δ commutes with *S*.

Now we need the next Proposition from [1] to prove our results in the next section.

Proposition 1.1. Let $\delta : X \to X$. Then

$$\hat{\delta}(\frac{x}{f}) = \frac{\delta(x)}{f}$$

is a well-defined extension of δ to $\hat{\delta} : \mathcal{B}(X,S) \to \mathcal{B}(X,S)$ if and only if δ commutes with S.

2. CENTRALIZERS ON PSEUDOQUOTIENTS

Definition 2.1. Let X be a ring and \hbar be endomorphisms of X. A map $\delta : X \to X$ such that

$$\delta(y) = \delta(1) \cdot \hbar(y)$$

and

$$\delta(y) = \hbar(y) \cdot \delta(1),$$

for any $x, y \in X$ is called a left or right \hbar - centralizer on X.

Definition 2.2. Let X be a ring and \hbar be endomorphisms of X. A map $\delta : X \to X$ is called a \hbar -centralizer, if δ is a left and right \hbar -centralizer.

Theorem 2.1. Let X be a ring and S be a commutative semigroup of injective ring homomorphisms. Let \hbar be a homomorphism from X into itself that commutes with S, that is, $\hbar f(x) = f\hbar(x)$ for every $f \in S$ and $x \in X$. If δ is left(or right) \hbar -centralizer on X that commutes with S, then the map $\hat{\delta} : \mathcal{B}(X, S) \to \mathcal{B}(X, S)$ defined by

(2.1)
$$\hat{\delta}\left(\frac{x}{f}\right) = \frac{\delta(x)}{f}$$

is an extension of δ to a left(or right respectively) \hbar -centralizer on $\mathcal{B}(X, S)$.

Proof. Assume δ is an \hbar - centralizer on X that commutes with S. Then, $\hat{\delta}$ is welldefined by Proposition 1.1. In order to show that it is a left and right \hbar -centralizer on $\mathcal{B}(X, S)$, consider $\frac{x}{t} \in \mathcal{B}(X, S)$. Then, we have

$$\hat{\delta}(\frac{x}{f}) = \frac{\delta(x)}{f} = \frac{\delta(1) \cdot \hbar(x)}{f} = \hat{\delta}\left(\frac{1}{I}\right) \cdot \hbar(\frac{x}{f})$$

' and

$$\hat{\delta}(\frac{x}{f}) = \frac{\delta(x)}{f} = \frac{\hbar(x) \cdot \delta(1)}{f} = \hbar(\frac{x}{f}) \cdot \hat{\delta}\left(\frac{1}{I}\right),$$

which is the desired result.

Corollary 2.1. Let X be a ring and S be a commutative semigroup of injective ring homomorphisms. If δ is left(or right) centralizer on X that commutes with S, then the map $\hat{\delta} : \mathcal{B}(X, S) \to \mathcal{B}(X, S)$ defined by

(2.2)
$$\hat{\delta}\left(\frac{x}{f}\right) = \frac{\delta(x)}{f}$$

is an extension of δ to a left(or right repectively) centralizer on $\mathcal{B}(X, S)$.

Definition 2.3. A linear mapping δ from X into itself is called a left or right \hbar -Jordan centralizer of X if

$$\delta(x^2) = \delta(x) \cdot \hbar(x)$$

or

$$\delta(x^2) = \hbar(x) \cdot \delta(x)$$

for any $x \in X$ respectively.

866

Definition 2.4. A linear mapping δ from X into itself is called a \hbar -Jordan centralizer of X if

$$\delta(x \cdot y + y \cdot x) = \delta(x) \cdot \hbar(y) + \hbar(y) \cdot \delta(x) = \delta(y) \cdot \hbar(x) + \hbar(x) \cdot \delta(y)$$

for any $x, y \in X$.

Albas in [6] shows that under some conditions, a left \hbar -Jordan centralizer of a semi-prime ring is a left \hbar -centralizer and each \hbar -Jordan centralizer of a semi-prime ring is \hbar -centralizer.

Theorem 2.2. Let X be a ring and S be a commutative semigroup of injective ring homomorphisms. Let \hbar be a homomorphism from X into itself that commute with S. If δ is a left(or right) \hbar -Jordan centralizer on X that commutes with S, then the map $\hat{\delta} : \mathcal{B}(X,S) \to \mathcal{B}(X,S)$ defined by

(2.3)
$$\hat{\delta}\left(\frac{x}{f}\right) = \frac{\delta(x)}{f}$$

is an extension of δ to a left(or right respectively) \hbar -Jordan centralizer on $\mathcal{B}(X, S)$.

Proof. Assume that δ is a left or right \hbar -Jordan centralizer on X that commutes with S. Then, $\hat{\delta}$ is well defined by Proposition 1.1. In order to show that $\hat{\delta}$ is an left or right \hbar -Jordan centralizer on $\mathcal{B}(X,S)$, we consider $\frac{x}{f} \in \mathcal{B}(X,S)$. First for left \hbar -Jordan centralizer we have

$$\hat{\delta}(\frac{x}{f} \cdot \frac{x}{f}) = \frac{\delta(fx \cdot fx)}{f^2} = \frac{\delta f(x) \cdot \hbar f(x)}{f^2} = \frac{\delta x}{f} \cdot \frac{\hbar x}{f} = \hat{\delta}(\frac{x}{f}) \cdot \hbar(\frac{x}{f})$$

for any $\frac{x}{t} \in \mathcal{B}(X, S)$. Similarly it can be proven for right \hbar -Jordan centralizers. \Box

Theorem 2.3. Let X be a ring and S be a commutative semigroup of injective ring homomorphisms. Let \hbar be a homomorphism from X into itself that commute with S. If δ is \hbar -Jordan centralizer on X that commutes with S, then the map $\hat{\delta} : \mathcal{B}(X, S) \to \mathcal{B}(X, S)$ defined by

$$\hat{\delta}\left(\frac{x}{f}\right) = \frac{\delta(x)}{f}$$

is an extension of δ to a \hbar -Jordan centralizer on $\mathcal{B}(X, S)$.

Proof. It is known that δ is an \hbar -Jordan centralizer on X that commutes with S. Also $\hat{\delta}$ is well defined by Proposition 1.1. To show that $\hat{\delta}$ is an \hbar -Jordan centralizer

A. Majeed, C. Ozel, M. Albaity, and S.S. Ali

on $\mathcal{B}(X, S)$, we consider $\frac{x}{f}$ and $\frac{y}{q} \in \mathcal{B}(X, S)$. Thus

$$\begin{split} \hat{\delta}(\frac{x}{f} \cdot \frac{y}{g} + \frac{y}{g} \cdot \frac{x}{f}) &= \frac{\delta(gx \cdot fy)}{fg} + \frac{\delta(fy \cdot gx)}{gf} = \hat{\delta}(\frac{x}{f}) \cdot \hbar(\frac{y}{g}) + \hbar(\frac{y}{g}) \cdot \hat{\delta}(\frac{x}{f}) \\ &= \hat{\delta}(\frac{y}{g}) \cdot \hbar(\frac{x}{f}) + \hbar(\frac{x}{f}) \cdot \hat{\delta}(\frac{y}{g}) \end{split}$$

for any $\frac{x}{f}$ and $\frac{y}{g} \in \mathcal{B}(X, S)$.

Corollary 2.2. Let X be a ring and S be a commutative semigroup of injective ring homomorphism. If δ is Jordan centralizer on X that commutes with S, then the map $\hat{\delta} : \mathcal{B}(X,S) \to \mathcal{B}(X,S)$ defined by

$$\hat{\delta}\left(\frac{x}{f}\right) = \frac{\delta(x)}{f}$$

is an extension of δ to a Jordan centralizer on $\mathcal{B}(X, S)$.

In Theorem 2.2 and Corollary 2.2, it is necessary to assume that δ commutes with *S*. The last theorem guarantees that extension of a \hbar -Jordan left centralizer is a left \hbar -centralizer on $\mathcal{B}(X, S)$.

In order to prove the last theorem, we will discuss certain cases. The following first lemma is analogous to that of Lemma 3 of [6], so it will be given without proof. Before we state it, we need the following definition and remark.

Definition 2.5. Let X be a ring. A biadditive mapping D from X to itself is a mapping defined by:

(2.4)
$$D\left(\frac{x}{f}, \frac{y}{g}\right) = \delta\left(\frac{x}{f} \cdot \frac{y}{g}\right) - \delta\left(\frac{x}{f}\right) \cdot h\left(\frac{y}{g}\right)$$

for all $\frac{x}{f}$, $\frac{y}{g} \in \mathcal{B}(X, S)$.

Remark 2.1. If $D\left(\frac{x}{f}, \frac{y}{g}\right) = 0$ for all $\frac{x}{f}, \frac{y}{g} \in \mathcal{B}(X, S)$, then δ is a *h*-left centralizer of X.

Lemma 2.1. Let X be a ring and S be a commutative semigroup of injective ring homomorphisms. Let \hbar be a homomorphism from X into itself that commutes with S. Let δ be a left \hbar -Jordan centralizer on X that commutes with S. Then the extension

868

map $\hat{\delta} : \mathcal{B}(X, S) \to \mathcal{B}(X, S)$ defined by

$$\hat{\delta}\left(\frac{x}{f}\right) = \frac{\delta(x)}{f}$$

satisfies the following identities:

- (i) $\hat{\delta}(\frac{x}{f} \cdot \frac{y}{g} + \frac{y}{g} \cdot \frac{x}{f}) = \hat{\delta}(\frac{x}{f}) \cdot \hbar(\frac{y}{g}) + \hat{\delta}(\frac{y}{g}) \cdot \hbar(\frac{x}{f}) \text{ for all } \frac{x}{f}, \frac{y}{g} \in \mathcal{B}(X, S).$ (ii) $\hat{\delta}(\frac{x}{f} \cdot \frac{y}{g} \cdot \frac{x}{f}) = \hat{\delta}(\frac{x}{f}) \cdot \hbar(\frac{y}{g}) \cdot \hbar(\frac{x}{f}) \text{ for all } \frac{x}{f}, \frac{y}{g} \in \mathcal{B}(X, S).$ (iii) $\hat{\delta}(\frac{x}{f} \cdot \frac{y}{g} \cdot \frac{z}{h} + \frac{z}{h} \cdot \frac{y}{g} \cdot \frac{x}{f}) = \hat{\delta}(\frac{x}{f}) \cdot \hbar(\frac{y}{g}) \cdot \hbar(\frac{z}{h}) + \hat{\delta}(\frac{z}{h}) \cdot \hbar(\frac{y}{g}) \cdot \hbar(\frac{x}{f}) \text{ for all } \frac{x}{f}, \frac{y}{g}, \frac{z}{h} \in \mathcal{B}(X, S).$ (iv) $\hat{D}(\frac{x}{f}, \frac{y}{g}) = -\hat{D}(\frac{y}{g}, \frac{x}{f}) \text{ where } \hat{D}(\frac{x}{f}, \frac{y}{g}) = \hat{\delta}(\frac{x}{f} \cdot \frac{y}{g}) \hat{\delta}(\frac{x}{f}) \cdot \hbar(\frac{y}{g}) \text{ for all } \frac{x}{f}, \frac{y}{g} \in \mathcal{B}(X, S).$ $\mathcal{B}(X,S).$

Proof.

(2.7)

(i) Since δ is a left \hbar -Jordan centralizer on X, the equality

$$\delta(x^2) = \delta(x) \cdot \hbar(x)$$

$$\begin{aligned} \text{holds for all } x \in X. \\ & \hat{\delta}\left(\frac{(gx+fy)^2}{f.g}\right) \\ \text{(2.5)} &= \frac{\delta\left((gx+fy)^2\right)}{f.g} = \frac{\delta(gx+fy).\hbar(gx+fy)}{f.g} \\ &= \frac{\left[\delta(gx) + \delta(fy)\right][\hbar(gx) + \hbar(fy)]}{f.g} \\ \text{(2.6)} &= \frac{\delta(gx).\hbar(gx) + \delta(gx).\hbar(fy) + \delta(fy).\hbar(gx) + \delta(fy).\hbar(fy)}{f.g}, \\ & \hat{\delta}\left(\frac{(gx+fy)^2}{f.g}\right) = \hat{\delta}\left(\frac{(gx)^2 + (fy)^2 + gx.fy + fy.gx}{f.g}\right) \\ &= \frac{\delta\left((gx)^2 + (fy)^2 + gx.fy + fy.gx\right)}{f.g} \\ \text{(2.7)} &= \frac{\delta(gx).\hbar(gx) + \delta(fy).\hbar(fy) + \delta(gx.fy) + \delta(fy.gx)}{f.g}. \end{aligned}$$

Using the fact that (2.5) = (2.7), we obtain

$$\frac{\delta(gx).\hbar(fy) + \delta(fy).\hbar(gx)}{f.g} = \frac{\delta(gx.fy) + \delta(fy.gx)}{f.g}$$

This implies that

$$\frac{g\delta(x).f\hbar(y) + f\delta(y).g\hbar(x)}{f.g} = \frac{\delta(x)}{f} \cdot \frac{\hbar(y)}{g} + \frac{\delta(y)}{g} \cdot \frac{\hbar(x)}{f} = \hat{\delta}\left(\frac{x}{f} \cdot \frac{y}{g} + \frac{y}{g} \cdot \frac{x}{f}\right).$$

This completes the proof,

$$\hat{\delta}\left(\frac{x}{f}\right).\hbar\left(\frac{y}{g}\right) + \hat{\delta}\left(\frac{y}{g}\right).\hbar\left(\frac{x}{f}\right) = \hat{\delta}\left(\frac{x}{f}.\frac{y}{g} + \frac{y}{g}.\frac{x}{f}\right)$$

(ii) Replacing $\frac{y}{g}$ with $\frac{x}{f} \cdot \frac{y}{g} + \frac{y}{g} \cdot \frac{x}{f}$ in (i) and using the fact that δ is a left \hbar -Jordan centralizer of X, we see that

$$\hat{\delta}\left(\frac{x}{f}\left(\frac{x}{f},\frac{y}{g}+\frac{y}{g},\frac{x}{f}\right)+\left(\frac{x}{f},\frac{y}{g}+\frac{y}{g},\frac{x}{f}\right),\frac{x}{f}\right) \\
=\hat{\delta}\left(\frac{x}{f}\right).\hbar\left(\frac{x}{f},\frac{y}{g}+\frac{y}{g},\frac{x}{f}\right)+\hat{\delta}\left(\frac{x}{f},\frac{y}{g}+\frac{y}{g},\frac{x}{f}\right).\hbar\left(\frac{x}{f}\right) \\
=\hat{\delta}\left(\frac{x}{f}\right).\left[\hbar\left(\frac{x}{f}\right).\hbar\left(\frac{y}{g}\right)+h\left(\frac{y}{g}\right).\hbar\left(\frac{x}{f}\right)\right] \\
+\left[\hat{\delta}\left(\frac{x}{f}\right).\hbar\left(\frac{y}{g}\right)+\hat{\delta}\left(\frac{y}{g}\right).\hbar\left(\frac{x}{f}\right)\right].\hbar\left(\frac{x}{f}\right) \\
=\hat{\delta}\left(\frac{x}{f}\right).\hbar\left(\frac{x}{f}\right).\hbar\left(\frac{y}{g}\right).\hbar\left(\frac{x}{f}\right)+\hat{\delta}\left(\frac{y}{g}\right).\hbar\left(\frac{x}{f}\right).\hbar\left(\frac{x}{f}\right) \\
+\hat{\delta}\left(\frac{x}{f}\right).\hbar\left(\frac{y}{g}\right).\hbar\left(\frac{x}{f}\right)+\hat{\delta}\left(\frac{y}{g}\right).\hbar\left(\frac{x}{f}\right).\hbar\left(\frac{x}{f}\right) \\
=2\hat{\delta}\left(\frac{x}{f}\right).\hbar\left(\frac{y}{g}\right).\hbar\left(\frac{x}{f}\right).\hbar\left(\frac{y}{g}\right).$$
(2.9)

On the other hand, we have

$$\hat{\delta}\left(\frac{x}{f}\left(\frac{x}{f},\frac{y}{g}+\frac{y}{g},\frac{x}{f}\right)+\left(\frac{x}{f},\frac{y}{g}+\frac{y}{g},\frac{x}{f}\right),\frac{x}{f}\right)$$
$$=\hat{\delta}\left(\frac{x}{f},\frac{x}{f},\frac{y}{g}+\frac{x}{f},\frac{y}{g},\frac{x}{f}+\frac{x}{f},\frac{y}{g},\frac{x}{f}+\frac{y}{g},\frac{x}{f},\frac{x}{f}\right)$$
$$=\hat{\delta}\left(\frac{(fx)^{2}}{f^{2}},\frac{y}{g}+\frac{y}{g},\frac{(fx)^{2}}{f^{2}}+2\frac{x}{f}\frac{y}{g},\frac{x}{f}\right)$$

$$(2.10) = \hat{\delta}\left(\frac{(fx)^2}{f^2}\right) \cdot \hbar\left(\frac{y}{g}\right) + \hat{\delta}\left(\frac{y}{g}\right) \cdot \hbar\left(\frac{(fx)^2}{f^2}\right) + 2\hat{\delta}\left(\frac{x}{f}, \frac{y}{g}, \frac{x}{f}\right)$$
$$= \frac{\delta(fx)^2}{f^2} \cdot \hbar\left(\frac{y}{g}\right) + \hat{\delta}\left(\frac{y}{g}\right) \cdot \hbar\left(\frac{x}{f}, \frac{x}{f}\right) + 2\hat{\delta}\left(\frac{x}{f}, \frac{y}{g}, \frac{x}{f}\right)$$
$$= \frac{\delta(fx) \cdot \hbar(fx)}{f^2} \cdot \hbar\left(\frac{y}{g}\right) + \hat{\delta}\left(\frac{y}{g}\right) \cdot \hbar\left(\frac{x}{f}\right) \cdot \hbar\left(\frac{x}{f}\right) + 2\hat{\delta}\left(\frac{x}{f}, \frac{y}{g}, \frac{x}{f}\right)$$
$$= \frac{\delta(x)}{f} \cdot \frac{\hbar(x)}{f} \cdot \hbar\left(\frac{y}{g}\right) + \hat{\delta}\left(\frac{y}{g}\right) \cdot \hbar\left(\frac{x}{f}\right) \cdot \hbar\left(\frac{x}{f}\right) + 2\hat{\delta}\left(\frac{x}{f}, \frac{y}{g}, \frac{x}{f}\right)$$
$$= \hat{\delta}\left(\frac{x}{f}\right) \cdot \hbar\left(\frac{x}{f}\right) \cdot \hbar\left(\frac{y}{g}\right) + \hat{\delta}\left(\frac{y}{g}\right) \cdot \hbar\left(\frac{x}{f}\right) \cdot \hbar\left(\frac{x}{f}\right) + 2\hat{\delta}\left(\frac{x}{f}, \frac{y}{g}, \frac{x}{f}\right).$$

Since (2.8) = (2.10), we have

$$2\hat{\delta}\left(\frac{x}{f}\right).\hbar\left(\frac{y}{g}\right).\hbar\left(\frac{x}{f}\right) = 2\hat{\delta}\left(\frac{x}{f},\frac{y}{g},\frac{x}{f}\right).$$

This completes the proof.

(iii) Replacing $\frac{x}{f}$ with $\frac{x}{f} + \frac{z}{\hbar}$ in (*ii*), we obtain (*iii*). Actually,

$$\hat{\delta}\left(\left(\frac{x}{f} + \frac{z}{\hbar}\right) \cdot \frac{y}{g} \cdot \left(\frac{x}{f} + \frac{z}{\hbar}\right)\right) = \hat{\delta}\left(\frac{x}{f} + \frac{z}{\hbar}\right) \cdot \hbar\left(\frac{y}{g}\right) \cdot \hbar\left(\frac{x}{f} + \frac{z}{\hbar}\right).$$

The left hand side can be written as follows:

$$\hat{\delta}\left(\left(\frac{x}{f} + \frac{z}{\hbar}\right) \cdot \frac{y}{g} \cdot \left(\frac{x}{f} + \frac{z}{\hbar}\right)\right)$$

$$= \hat{\delta}\left(\left(\frac{x}{f} \cdot \frac{y}{g} + \frac{z}{\hbar} \cdot \frac{y}{g}\right) \cdot \left(\frac{x}{f} + \frac{z}{\hbar}\right)\right)$$

$$= \hat{\delta}\left(\frac{x}{f} \cdot \frac{y}{g} \cdot \frac{x}{f} + \frac{x}{f} \cdot \frac{y}{g} \cdot \frac{z}{\hbar} + \frac{z}{\hbar} \cdot \frac{y}{g} \cdot \frac{x}{f} + \frac{z}{\hbar} \cdot \frac{y}{g} \cdot \frac{z}{\hbar}\right)$$

$$= \hat{\delta}\left(\frac{x}{f} \cdot \frac{y}{g} \cdot \frac{x}{f}\right) + \hat{\delta}\left(\frac{z}{\hbar} \cdot \frac{y}{g} \cdot \frac{z}{\hbar}\right) + \hat{\delta}\left(\frac{x}{f} \cdot \frac{y}{g} \cdot \frac{z}{\hbar} + \frac{z}{\hbar} \cdot \frac{y}{g} \cdot \frac{x}{f}\right)$$

$$= \hat{\delta}\left(\frac{x}{f}\right) \cdot \hbar\left(\frac{y}{g}\right) \cdot \hbar\left(\frac{x}{f}\right) + \hat{\delta}\left(\frac{z}{\hbar}\right) \cdot \hbar\left(\frac{y}{g}\right) \cdot \hbar\left(\frac{z}{\hbar}\right)$$

$$+ \hat{\delta}\left(\frac{x}{f} \cdot \frac{y}{g} \cdot \frac{z}{\hbar} + \frac{z}{\hbar} \cdot \frac{y}{g} \cdot \frac{x}{f}\right) .$$

Also, the right hand side can be written as follows

$$\hat{\delta}\left(\frac{x}{f} + \frac{z}{\hbar}\right) \cdot \hbar\left(\frac{y}{g}\right) \cdot \hbar\left(\frac{x}{f} + \frac{z}{\hbar}\right)$$

$$(2.13) \qquad = \left(\hat{\delta}\left(\frac{x}{f}\right) + \hat{\delta}\left(\frac{z}{\hbar}\right)\right) \cdot \hbar\left(\frac{y}{g}\right) \cdot \left(\hbar\left(\frac{x}{f}\right) + \hbar\left(\frac{z}{\hbar}\right)\right)$$

$$= \left(\hat{\delta}\left(\frac{x}{f}\right) \cdot \hbar\left(\frac{y}{g}\right) + \hat{\delta}\left(\frac{z}{\hbar}\right) \cdot \hbar\left(\frac{y}{g}\right)\right) \cdot \left(\hbar\left(\frac{x}{f}\right) + \hbar\left(\frac{z}{\hbar}\right)\right)$$

$$= \hat{\delta}\left(\frac{x}{f}\right) \cdot \hbar\left(\frac{y}{g}\right) \cdot \hbar\left(\frac{x}{f}\right) + \hat{\delta}\left(\frac{x}{f}\right) \cdot \hbar\left(\frac{y}{g}\right) \cdot \hbar\left(\frac{z}{\hbar}\right)$$

$$+ \hat{\delta}\left(\frac{z}{\hbar}\right) \cdot \hbar\left(\frac{y}{g}\right) \cdot \hbar\left(\frac{x}{f}\right) + \hat{\delta}\left(\frac{z}{\hbar}\right) \cdot \hbar\left(\frac{y}{g}\right) \cdot \hbar\left(\frac{z}{\hbar}\right) \cdot h\left(\frac{z}{\hbar}\right) \cdot$$

Using (2.11) and (2.13), we obtain the result.

(iv) It is obvious from (i). We have to rewrite (i), using

$$\hat{D}(\frac{x}{f},\frac{y}{g}) = \hat{\delta}(\frac{x}{f}\cdot\frac{y}{g}) - \hat{\delta}(\frac{x}{f})\cdot\hbar(\frac{y}{g}), \text{ for all } \frac{x}{f},\frac{y}{g} \in \mathcal{B}(X,S).$$

Similarly, using (i) we obtain

(2.15)
$$\hat{\delta}\left(\frac{x}{f}\cdot\frac{y}{g}+\frac{y}{g}\cdot\frac{x}{f}\right)=\hat{\delta}\left(\frac{x}{f}\right).\hbar\left(\frac{y}{g}\right)+\hat{\delta}\left(\frac{y}{g}\right).\hbar\left(\frac{x}{f}\right).$$

From (2.14) and (2.15), we have

$$\hat{D}(\frac{x}{f},\frac{y}{g}) + \hat{D}(\frac{y}{g},\frac{x}{f}) = 0.$$

So we get the result (iv),

$$\hat{D}(\frac{x}{f},\frac{y}{g}) = -\hat{D}(\frac{y}{g},\frac{x}{f}) \text{ for all } \frac{x}{f},\frac{y}{g} \in \mathcal{B}(X,S).$$

Lemma 2.2. Let X be a ring and S be a commutative semigroup of injective ring homomorphisms. Let \hbar be a homomorphism from X into itself that commutes with

S. Let δ be a \hbar -left Jordan centralizer. If every \hbar -left Jordan centralizer is a \hbar centralizer on X that commutes with S, then the map $\hat{\delta} : \mathcal{B}(X,S) \to \mathcal{B}(X,S)$ defined
by

$$\hat{\delta}\left(\frac{x}{f}\right) = \frac{\delta(x)}{f}$$

is an extension of δ to a \hbar -left centralizer on $\mathcal{B}(X, S)$.

Proof. Let 1, *I* be the identities on *X* and *S*, respectively. Since \hbar is an endomorphism of *X*, then $\hbar(1) = 1$. We know that $\hat{D}(\frac{x}{f}, \frac{y}{g}) = \hat{\delta}(\frac{x}{f} \cdot \frac{y}{g}) - \hat{\delta}(\frac{x}{f}) \cdot \hbar(\frac{y}{g})$ for all $\frac{x}{f}, \frac{y}{g} \in \mathcal{B}(X, S)$, so we can write $\hat{D}(\frac{1}{I}, \frac{x}{f}) = \hat{\delta}(\frac{1}{I} \cdot \frac{x}{f}) - \hat{\delta}(\frac{1}{I}) \cdot \hbar(\frac{x}{f})$ for all $\frac{x}{f} \in \mathcal{B}(X, S)$. By Lemma 2.1 in [8], we have $\hat{D}(\frac{1}{I}, \frac{x}{f}) = -\hat{D}(\frac{x}{f}, \frac{1}{I}) = 0$ for all $\frac{x}{f} \in \mathcal{B}(X, S)$. Thus $\hat{\delta}(\frac{x}{f}) = \hat{\delta}(\frac{1}{I}) \cdot \hbar(\frac{x}{f})$ for all $\frac{x}{f} \in \mathcal{B}(X, S)$.

To prove the next theorem, we need to define the center of A, where A is a unital subalgebra of B(X). The center of A is defined as $Z = \hat{A} \cap A$, where $\hat{A} \cap A = CI$ is the center of B(X). Similarly we can define center on the ring $\mathcal{B}(X,S)$. Consider $\mathcal{B}(X,S)$ as a unital subalgebra of $\mathcal{B}(X,S)$. Then $\hat{Z} = \hat{B} \cap B$ where $\hat{B} \cap B = \hat{C}I$.

Lemma 2.3. Let $\frac{a}{k}$ be a fixed element in $\mathcal{B}(X, S)$. If $\frac{a}{k} \cdot \hbar(\frac{x}{f}) - \hbar(\frac{x}{f}) \cdot \frac{a}{k} \in \hat{Z}$ for all $\frac{x}{f} \in \mathcal{B}(X, S)$, then $\frac{a}{k} \in \hat{Z}$.

Proof. First $\frac{a}{k} \cdot \hbar(\frac{x}{f}) - \hbar(\frac{x}{f}) \cdot \frac{a}{k} \in \hat{Z}$. From [7], we have $\frac{a}{k} \cdot \hbar(\frac{x}{f}) - \hbar(\frac{x}{f}) \cdot \frac{a}{k} = 0$, and then \hbar is injective; and therefore $\frac{a}{k} \in \hat{Z}$.

Lemma 2.4. Let $\frac{a}{k}$ be a fixed element in $\mathcal{B}(X,S)$ and $\delta(\hat{\frac{x}{f}}) = \frac{a}{k} \cdot \hbar(\frac{x}{f}) + \hbar(\frac{x}{f}) \cdot \frac{a}{k}$ for any $\frac{x}{f} \in \mathcal{B}(X,S)$. If $\delta(\hat{\frac{x}{f}})$ is a \hbar -centralizer of $\mathcal{B}(X,S)$, then $\frac{a}{k} \in \hat{Z}$.

Proof. Since $\hat{\delta}$ is a \hbar -Jordan centralizer of $\mathcal{B}(X, S)$, it follows that

$$\hat{\delta}(\frac{x}{f}\cdot\frac{y}{g}+\frac{y}{g}\cdot\frac{x}{f})=\hat{\delta}(\frac{x}{f})\cdot\hbar(\frac{y}{g})+\hbar(\frac{y}{g})\cdot\hat{\delta}(\frac{x}{f})$$

for all $\frac{x}{f}, \frac{y}{q} \in \mathcal{B}(X, S)$. Therefore

$$\begin{aligned} \frac{a}{k}\hbar(\frac{x}{f}\cdot\frac{y}{g}+\frac{y}{g}\cdot\frac{x}{f}) &+\hbar(\frac{x}{f}\cdot\frac{y}{g}+\frac{y}{g}\cdot\frac{x}{f})\frac{a}{k} \\ &=(\frac{a}{k}\cdot\hbar(\frac{x}{f})+\hbar(\frac{x}{f})\cdot\frac{a}{k})\cdot\hbar(\frac{y}{g})+\hbar(\frac{y}{g})\cdot(\frac{a}{k}\cdot\hbar(\frac{x}{f})+\hbar(\frac{x}{f})\cdot\frac{a}{k})) \\ \frac{a}{k}\cdot\hbar(\frac{y}{g})\cdot\hbar(\frac{x}{f})+\hbar(\frac{x}{f})\cdot\hbar(\frac{y}{g})\cdot\frac{a}{k}=\hbar(\frac{x}{f})\cdot\frac{a}{k}\cdot\hbar(\frac{y}{g})+\hbar(\frac{y}{g})\cdot\frac{a}{k}\cdot\hbar(\frac{x}{f}).\end{aligned}$$

A. Majeed, C. Ozel, M. Albaity, and S.S. Ali

$$\hbar(\frac{x}{f}) \cdot (\frac{a}{k} \cdot \hbar(\frac{y}{g}) - \hbar(\frac{y}{g}) \cdot \frac{a}{k}) = (\frac{a}{k} \cdot \hbar(\frac{y}{g}) - \hbar(\frac{y}{g})) \cdot \frac{a}{k} \cdot \hbar(\frac{x}{f})$$

for all $\frac{x}{f}, \frac{y}{g} \in \mathcal{B}(X, S)$. Since \hbar is surjective, we have that $\frac{a}{k} \cdot \hbar(\frac{y}{g}) - \hbar(\frac{y}{g}) \cdot \frac{a}{k} \in \mathbb{Z}$. Hence $\frac{a}{k} \in \mathbb{Z}$ by Lemma 2.3.

Lemma 2.5. Every \hbar -Jordan centralizer of $\mathcal{B}(X, S)$ maps \hat{Z} into itself.

Proof. For any $\frac{a}{k} \in \hat{\mathbb{Z}}$, let $\frac{a}{k} = \hat{\delta}(\frac{c}{l})$. Since $\hat{\delta}$ is a \hbar -Jordan centralizer of $\mathcal{B}(X, S)$, we have

$$2\hat{\delta}(\frac{c}{l}\cdot\frac{x}{f}) = \hat{\delta}(\frac{c}{l}\cdot\frac{x}{f} + \frac{x}{f}\cdot\frac{c}{l}) = \hat{\delta}(\frac{c}{l})\cdot\hbar(\frac{x}{f}) + \hbar(\frac{x}{f})\cdot\hat{\delta}(\frac{c}{l}) = \frac{a}{k}\cdot\hbar(\frac{x}{f}) + \hbar(\frac{x}{f}\cdot\frac{a}{k})$$

for all $\frac{x}{f} \in \mathcal{B}(X, S)$. Let $\hat{\delta}_1(\frac{x}{f}) = 2\hat{\delta}(\frac{x}{f})$. Then

$$\begin{split} \hat{\delta}_1 &(\frac{x}{f} \cdot \frac{y}{g} + \frac{y}{g} \cdot \frac{x}{f}) \\ &= 2\hat{\delta}(\frac{c}{l} \cdot (\frac{x}{f} \cdot \frac{y}{g} + \frac{y}{g} \cdot \frac{x}{f})) = 2\hat{\delta}(\frac{c}{l} \cdot \frac{x}{f} \cdot \frac{y}{g} + \frac{y}{g} \cdot \frac{c}{l} \cdot \frac{x}{f}) \\ &= 2\hat{\delta}(\frac{c}{l} \cdot \frac{x}{f}) \cdot \hbar(\frac{y}{g}) + \hbar(\frac{y}{g}) \cdot \hat{\delta}(\frac{c}{l} \cdot \frac{x}{f}) = \hat{\delta}_1(\frac{x}{f}) \cdot \hbar(\frac{y}{g}) + \hbar(\frac{y}{g})\hat{\delta}_1(\frac{x}{f}). \end{split}$$

Also

$$\begin{split} \hat{\delta}_1(\frac{x}{f} \cdot \frac{y}{g} + \frac{y}{g} \cdot \frac{x}{f}) \\ &= 2\hat{\delta}(\frac{c}{l} \cdot (\frac{x}{f} \cdot \frac{y}{g} + \frac{y}{g} \cdot \frac{x}{f})) = 2\hat{\delta}(\frac{x}{f} \cdot \frac{c}{l} \cdot \frac{y}{g} + \frac{c}{l} \cdot \frac{y}{g} \cdot \frac{x}{f}) \\ &= 2\hat{\delta}(\frac{c}{l} \cdot \frac{y}{g}) \cdot \hbar(\frac{x}{f}) + \hbar(\frac{x}{f}) \cdot \hat{\delta}(\frac{c}{l} \cdot \frac{y}{g}) = \hat{\delta}_1(\frac{y}{g}) \cdot \hbar(\frac{x}{f}) + \hbar(\frac{x}{f})\hat{\delta}_1(\frac{y}{g}); \end{split}$$

for any $\frac{x}{f}, \frac{y}{g} \in \mathcal{B}(X, S)$. Therefore, $\hat{\delta}_1$ is \hbar -Jordan centralizer of $\mathcal{B}(X, S)$. By Lemma 2.2 we have $\frac{a}{k} = \hat{\delta}(\frac{c}{l}) \in \hat{Z}$ for all $\frac{c}{l} \in \hat{Z}$.

Theorem 2.4. Each \hbar -Jordan centralizer $\hat{\delta}$ of $\mathcal{B}(X, S)$ is \hbar -centralizer.

Proof. By (2.1) in Theorem 2.1, we have

$$2\hat{\delta}(\frac{x}{f}) = \hat{\delta}(\frac{x}{f} \cdot \frac{1}{I} + \frac{1}{I} \cdot \frac{x}{f}) = \hat{\delta}(\frac{1}{I}) \cdot \hbar(\frac{x}{f}) + \hbar(\frac{x}{f}) \cdot \hat{\delta}(\frac{1}{I})$$
$$= 2\hat{\delta}(\frac{1}{I}) \cdot \hbar(\frac{x}{f}) = 2\hbar(\frac{x}{f}) \cdot \hat{\delta}(\frac{1}{I})$$

for all $\frac{x}{t} \in \mathcal{B}(X, S)$. Thus,

$$\hat{\delta}(\frac{x}{f}) = \hat{\delta}(\frac{1}{I}) \cdot \hbar(\frac{x}{f}) = \hbar(\frac{x}{f}) \cdot \hat{\delta}(\frac{1}{I})$$

for all $\frac{x}{f} \in \mathcal{B}(X, S)$.

Example 1. Let R be a ring and δ be a \hbar -Jordan centralizer on R. Suppose that the square of any element $x \in R$ is zero but the product of some elements in R is non zero. Let S be a commutative semi group of injective homomorphisms. We know that $\hbar \in S$. Let

$$R = \left\{ r = \left(\begin{array}{cc} x & y \\ 0 & 0 \end{array} \right) | forall x, y \in R \right\},$$

where

$$\delta(r) = \left(\begin{array}{cc} 0 & x\\ 0 & 0 \end{array}\right)$$

and

$$\hbar(r) = \left(\begin{array}{cc} x & -y \\ 0 & 0 \end{array}\right),$$

for all $r \in R$. It is clear that δ is a left \hbar -Jordan centralizer but not a left \hbar -centralizer on R. Therefore, δ can has a unique extension to a \hbar -Jordan centralizer on B(R, S).

REFERENCES

- D. ATANASIU, P MIKUSIŃSKI, D. NEMZER: An algebraic approach to tempered distributions, J. Math. Anal. Appl, 384(2) (2011), 307-319.
- [2] A. MAJEED, P. MIKUSINSKI: *Derivations on Pseudoquotients*, Ukrainian mathematical journal, **65** (2013), 959-966.
- [3] LI. JIANKUI, Z. JIREN: Characterization of Jordan derivations and Jordan homomorphisms, Linear and Multilinear Algebra, **52**(2) (2011), 193-204.
- [4] B. ZALAR: On centralizers of semiprime rings, Comment.Math.Univ.Carolin, 32(4) (1991), 609-614.
- [5] A. ERDOS: Operator of finite rank in nest algebras, London Math.Soc, 43(1) (1968), 391-397.
- [6] E. ALBAS: On τ -centralizers of semiprime rings, Siberian Math.J., 48(2) (2007), 191-196.
- [7] P. HALMOS: Hilbert Space Problem Book, Springer Verlag, 1974.

A. Majeed, C. Ozel, M. Albaity, and S.S. Ali

[8] B. HADWIN: Local multiplications on algebras spanned by idempotents, Linear and multilinear Algebras, **37**(4) (1994), 259-263.

SHERIDAN COLLEGE MISSISSAUGA CAMPUS CANADA. *Email address*: Asia.majeed@sheridancollege.ca

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE KING ABDULAZIZ UNIVERSITY P.O. BOX 80348, JEDDAH 22254, SAUDI ARABIA. *Email address*: cenap.ozel@gmail.com

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE KING ABDULAZIZ UNIVERSITY P.O. BOX 80348, JEDDAH 22254, SAUDI ARABIA. *Email address*: malbaity@kau.edu.sa

DEPARTMENT OF INDUSTRIAL ENGINEERING KING ABDULAZIZ UNIVERSITY, JEDDAH 21589 SAUDI ARABIA. *Email address*: ssaali@kau.edu.sa