
ADV  MATH
SCI  JOURNAL

Advances in Mathematics: Scientific Journal 12 (2023), no.10, 877–885
ISSN: 1857-8365 (printed); 1857-8438 (electronic)
https://doi.org/10.37418/amsj.12.10.3

ON SOME ERGODIC RATIONAL FUNCTIONS ON Z5

Jasmina Muminović Huremović

ABSTRACT. In this paper, we considered ergodicity conditions of certain rational
functions in Z5. It is given the case when numerator is transitive modulo 5, but
not modulo 25, and the case when numerator is not transitive even modulo 5.

1. INTRODUCTION

Necessary and sufficient conditions for 1-Lipschitz functions that are uniformly
differentiable modulo p on Zp, to be ergodic were studied in [15]. Ergodic poly-
nomials were studied in [8], [9], [12], [13]. Besides, rectification of perturbed
monomials to construct ergodic transformations was considered in [4], [16], and
[14]. It is known that rational functions are not ergodic on the infinite measure
set of p-adic numbers [6]. Ergodicity of rational functions on 2-adic spheres was
studied in [11]. In Corollaries 2.1 and 2.2, a perturbation of some non-ergodic
polynomials is obtained by division by a unit polynomial, to produce ergodic ra-
tional functions on the ring of 5-adic integers.

We recall some facts about the ring of p-adic integers Zp. Every x ∈ Zp has

the p-adic representation x =
∞∑
i=0

xip
i, where for each nonnegative integer i, xi ∈

{0 . . . , p − 1}. The p-adic valuation νp(x) of any p-adic integer x is defined as the
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least nonnegative integer i such that xi > 0. It is known that the p-adic norm |x|
of any p-adic number x is given by |x| = p−νp(x).

Each set x+ pnZp, n ≥ 1, is a clopen ball of radius p−n. Besides, the set Zp is the
disjoint union of pn balls of radius p−n.

The natural probability measure µ defined on Zp gives measure p−n to any ball
x+ pnZp.

It is clear that a function f : Zp → Zp is 1-Lipschitz if and only if f(x + pnZp) ⊆
f(x) + pnZp, for all p-adic integer x and every positive integer n. (See [8, Lemma
1]).

A bijective function f : Zp → Zp is said to be measure preserving if and only if
µ(f−1(S)) = µ(S) for every measurable subset S of Zp.

A 1-Lipschitz function f : Zp → Zp is said to be bijective modulo pn if the induced
mapping modulo pn is a permutation on Zp/p

nZp.
It was also proved in [8, Proposition 4.] that a 1-Lipschitz function on Zp is

measure preserving if and only if it is bijective modulo pn for all positive integers
n. It can be easily seen that such functions are isometric. A 1-Lipschitz function
f : Zp → Zp is said to be transitive modulo pn if it is bijective modulo pn and the
set x, f(x), . . . , f pn−1(x) is composed of only one cycle. In other words, fpn(x) =

x (mod pn), but f r(x) ̸= x (mod pn), for all r < pn. A measure preserving function
is said to be ergodic if it has no proper invariant subset. We recall that in [2,
Theorem 1.1.] and [3, Proposition 4.35.] it is proved that a 1-Lipschitz measure
preserving function is ergodic if and only if it is transitive modulo pn for every
positive integer n. Some equivalent definitions of 1-Lipschitz measure preserving
and ergodic functions are presented in [2], [1], [3], [5] and [8].

A function f : Zp → Zp is said to be uniformly differentiable modulo pk if there
exist a positive integer N and a function ∂kf : Zp → Qp such that for all r ≥ N

and h ∈ Zp, we have

f(u+ prh) = f(u) + prh∂kf(u) (mod pk+r),∀u ∈ Zp.

The smallest integer N satisfying this property is denoted by Nk(f). In [3, Propo-
sition 3.41.] it was proved that if f is 1-Lipschitz , then ∂kf takes its values in
Zp.

We recall the van der Put representation for functions on Zp (see [10]). If the
p-adic expansion of the positive integer k is given by
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k =
s∑

i=0

kip
i, 0 ≤ ki < p, ks ̸= 0,

then we define q(k) = ksp
s.

For every function f : Zp → Zp we define the coefficients

Bk =

{
f(k), k ∈ {0, . . . , p− 1};
f(k)− f(k − q(k)), k ≥ p.

In this way the function f can be represented in the so called van der Put basis
as follows

f(x) =
∞∑
k=0

Bkχ(k, x),

where if k > 0,

χ(k, x) =

{
1, |x− k| ≤ p−⌊logp k⌋−1;
0, otherwise.

For k = 0 we have

χ(0, x) =

{
1, |x| ≤ p−1;
0, otherwise.

Theorem 1.1. [15, Theorem 2.1] Let f be an isometric and uniformly differentiable
function modulo p on Zp, where N1(f) = 1. Then, f is ergodic on Zp if and only if
the following conditions are satisfied:

(1) f is transitive modulo p.
(2) For every positive integer k, fpk(0) ̸= 0 (mod pk+1).
(3) For every positive integer k,

pk−1∏
j=0

Bj+pk

(pk)pk
= 1 (mod p).

Remark 1.1. Notice that for any analytic function f we have
B

i+pk

pk
= f ′(i) (mod pk),

for every positive integer k and every i ∈ {0, . . . , pk − 1}, because f(i+ pk) = f(i) +

pkf ′(i) (mod p2k).



880 Jasmina Muminović Huremović

2. MAIN RESULT

Theorem 2.1. Let P (x) = anx
n+an−1x

n−1+ . . .+a1x+1 be an isometric polynomial
on Z5. Let ti be representatives of 5Z5-cosets such that P (ti) = ti+1 (mod 5) and
P (t4) = t0 = 0 (mod 5). Assume that

(2.1) P 5(t0) = t0 (mod 25)

and

(2.2) P ′(t0)P
′(t1)P

′(t2)P
′(t3)P

′(t4) = 1 (mod 5).

Then R =
P

Q
is ergodic if the polynomial Q(x) satisfies the following conditions

(1) Q(Z5) ⊆ 1 + 5Z5,
(2) Q′(x) = 0 (mod 5), for all x ∈ Z5,

(3) t4

(
1 − 1

Q(t3)

)
+ t3P

′(t3)
(
1 − 1

Q(t2)

)
+ t2P

′(t3)P
′(t2)

(
1 − 1

Q(t1)

)
̸= 0

(mod 25).

Proof. Since P is transitive modulo 5, from condition (1), it can be easily seen that
R satisfies condition (1) of Theorem 1.1. Considering that P ′ is constant modulo 5
on every 5Z5-coset, according to Remark 1.1 and (2.2), we can see that P satisfies
condition (3) of Theorem 1.1, for every nonnegative integer k. From condition
(1) we have

R′ = P ′ − PQ′ (mod 5).

Therefore, from condition (2) we have

(2.3) R′(x) = P ′(x) (mod 5), (∀x ∈ Z5),

which means that function R also satisfy the third condition of Theorem 1.1.
According to [8, Proposition 9], it remains to prove that function R is transitive

modulo 52 to prove that it is ergodic. Therefore, it remains to prove that condition
(2) of Theorem 1.1 satisfied for k = 1.

Using the notations introduced in the proof of [15, Theorem 2.1] with the ad-
ditional notation that t5 = t0 = 0, applying formula (2.4) ( [15, Theorem 2.1]) on
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the function P for k = 1, we have

P 5(0) = P (t4) +
4∑

i=1

P (t4−i)− t5−i

pi

i∏
j=1

Bt5−j+5 (mod 52)

= P (t4) +
P (t3)− t4

5
Bt4+5 +

P (t2)− t3
52

Bt4+5Bt3+5

+
P (t1)− t2

53
Bt4+5Bt3+5Bt2+5 (mod 52).

According Remark (1.1) now we have

P 5(0) =P (t4) + (P (t3)− t4)P
′(t4) + (P (t2)− t3)P

′(t4)P
′(t3)

+ (P (t1)− t2)P
′(t4)P

′(t3)P
′(t2) (mod 52)

=R(t4)Q(t4) + (R(t3)Q(t3)− t4)R
′(t4) + (R(t2)Q(t2)− t3)R

′(t4)R
′(t3)

+ (R(t1)Q(t1)− t2)R
′(t4)R

′(t3)R
′(t2) (mod 52)

=R(t4)(Q(t4)− 1) +R(t4) + (R(t3)− t4)R
′(t4) + (R(t2)− t3)R

′(t4)R
′(t3)

+ (R(t1)− t2)R
′(t4)R

′(t3)R
′(t2) +R′(t4)R(t3)(Q(t3)− 1)

+R′(t4)R
′(t3)R(t2)(Q(t2)− 1)

+R′(t4)R
′(t3)R

′(t2)R(t1)(Q(t1)− 1) (mod 52)

=R5(t0) +R′(t4)R(t3)(Q(t3)− 1) +R′(t4)R
′(t3)R(t2)(Q(t2)− 1)

+R′(t4)R
′(t3)R

′(t2)R(t1)(Q(t1)− 1) (mod 52),

because
R(t4) = Q(t4)− 1 (mod 5) = 0 (mod 5).

Hence

P 5(0) = R5(t0) +R′(t4)
(P (t3)

Q(t3)
(Q(t3)− 1) + P ′(t3)

P (t2)

Q(t2)
(Q(t2)− 1)

+ P ′(t3)P
′(t2)

P (t1)

Q(t1)
(Q(t1)− 1)

)
(mod 52).

(2.4)

From (2.2) and (2.3) it follows R′(t4) ̸= 0 (mod 5). Now, according to this, condi-
tion (2.1) and (2.4) we conclude that R satisfies condition (2) of Theorem 1.1, so
R is ergodic. □
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Remark 2.1. Let P (x) = anx
n+an−1x

n−1+. . .+a1x+1. If we introduce the notations∑
i∈1+4N

ai = A1,
∑

i∈2+4N

ai = A2,
∑

i∈3+4N

ai = A3,
∑
i∈4N

ai = A4,

then, according [7, Proposition 4.2], we have six classes of transitive polynomials
modulo 5. Hence, the third condition from previous Theorem for all six classes , can
be written in the following way:

4
(
1− 1

Q(3)

)
+ 3P ′(3)

(
1− 1

Q(2)

)
+ 2P ′(2)P ′(3)

(
1− 1

Q(1)

)
̸= 0 (mod 25),

if A1 ≡ 1, A2 ≡ 0, A3 ≡ 0, A4 ≡ 0 (mod 5);

3
(
1− 1

Q(4)

)
+ 4P ′(4)

(
1− 1

Q(2)

)
+ 2P ′(2)P ′(4)

(
1− 1

Q(1)

)
̸= 0 (mod 25),

if A1 ≡ 4, A2 ≡ 4, A3 ≡ 3, A4 ≡ 0 (mod 5),

4
(
1− 1

Q(2)

)
+ 2P ′(2)

(
1− 1

Q(3)

)
+ 3P ′(2)P ′(3)

(
1− 1

Q(1)

)
̸= 0 (mod 25),

if A1 ≡ 1, A2 ≡ 3, A3 ≡ 3, A4 ≡ 0 (mod 5),

2
(
1− 1

Q(4)

)
+ 4P ′(4)

(
1− 1

Q(3)

)
+ 3P ′(3)P ′(4)

(
1− 1

Q(1)

)
̸= 0 (mod 25),

if A1 ≡ 1, A2 ≡ 4, A3 ≡ 2, A4 ≡ 0 (mod 5),

3
(
1− 1

Q(2)

)
+ 2P ′(2)

(
1− 1

Q(4)

)
+ 4P ′(2)P ′(4)

(
1− 1

Q(1)

)
̸= 0 (mod 25),

if A1 ≡ 4, A2 ≡ 2, A3 ≡ 2, A4 ≡ 0 (mod 5),

2
(
1− 1

Q(3)

)
+ 3P ′(2)

(
1− 1

Q(4)

)
+ 4P ′(2)P ′(3)

(
1− 1

Q(1)

)
̸= 0 (mod 25),

if A1 ≡ 0, A2 ≡ 0, A3 ≡ 3, A4 ≡ 0 (mod 5).

Example 1. Let P (x) = 2x7+3x6+5x5+5x4+3x3+2x2+x+1. This is an isometric
polynomial, transitive modulo 5 and it satisfies conditions

i) P (i) = i+ 1 za i ∈ {0, 1, 2, 3, 4},
ii) P 5(0) = 0 (mod 25),

iii) P ′(0)P ′(1)P ′(2)P ′(3)P ′(4) = 1 (mod 5).

Function R(x) =
2x7 + 3x6 + 5x5 + 5x4 + 3x3 + 2x2 + x+ 1

Q(x)
would be ergodic if the

polynomial Q(x) satisfies conditions of Theorem 2.1. One of the polynomials which
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satisfies these conditions is Q(x) = 10x4 + 5x2 + 1. Hence, the function R(x) =
2x7 + 3x6 + 5x5 + 5x4 + 3x3 + 2x2 + x+ 1

10x4 + 5x2 + 1
is ergodic.

The next result is in the case when the numerator is not transitive modulo 5.

Theorem 2.2. Let P be an isometric polynomial on Z5. Assume that P is not transi-
tive modulo P and let 2 ≤ i ≤ 4 be a fixed number such that

(i) P (k) = (k + 1)i (mod 5), 0 ≤ k ≤ 4 and
(ii) P ′(0)P ′(1)P ′(2)P ′(3)P ′(4) = i (mod 5).

Then R =
P

Q
is ergodic if the polynomial Q(x) satisfies conditions

(1) Q(Z5) ⊆ i+ 5Z5,
(2) Q′(x) = 0 (mod 5), for all x ∈ Z5,

(3) 1 +
4∑

s=0

l4−s

is

s∏
j=1

P ′(t5−j) ̸= 0 (mod 5), where lk ∈ {0, . . . , 4} satisfy P (k) =

(k + 1 + 5lk)Q(k) (mod 25).

Proof. From (i) and (1) it follows that

R(x) = x+ 1 (mod 5) (∀x ∈ Z5),

so R satisfies condition (1) of Theorem 1.1. According to condition (2) we have

R′ =
P ′(x)

Q′(x)
(mod 5), wherence using condition (1) we get that for all x ∈ Z5

(2.5) R′(x) =
P ′(x)

i
(mod 5).

Now, according to (ii) we have

R′(0)R′(1)R′(2)R′(3)R′(4) =
P ′(0)P ′(1)P ′(2)P ′(3)P ′(4)

i5
= 1 (mod 5),

so R satisfies third condition of Theorem 1.1. We should now show that second
condition of Theorem 1.1 is also satisfied i.e. R5(0) ̸= 0 (mod 25).
Now, since P (k) = (k + 1)i (mod 5) = (k + 1)Q(k) (mod 5), we have, that for all
k ∈ {0, . . . 4} there is lk ∈ {0, . . . 4} such that

P (k) = (k + 1 + 5lk)Q(k) (mod 25),
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so R(k) = k+1+5lk (mod 25), for all k ∈ {0, . . . 4}. Applying [15, Formula (2.4)]
on the function R for k = 1 and ts = s, s ∈ {0, . . . 4} we have

R5(0) = R(t4) +
4∑

s=1

(R(t4−s)− t5−s)
s∏

j=1

R′(t5−j) (mod 25)

= R(t4) +
4∑

s=1

(t4−s + 1 + 5lt4−s − t5−s)
s∏

j=1

R′(t5−j) (mod 25).

For s ∈ {1, . . . , 4}, t5−s ∈ {1, . . . 4}, so t5−s = t4−s+1. It follows that R(t4) = 5+5l4,
so we have

R5(0) = 5 + 5l4 + 5
4∑

s=1

l4−s

s∏
j=1

R′(t5−j) (mod 25)

= 5 + 5
4∑

s=0

l4−s

s∏
j=1

R′(t5−j) (mod 25),

where first product is taken to be 1 when s = 0. The result follows now from (3)

and (2.5). □

Example 2. Let P (x) = 2+3x+x3+4x5+4x7. This polynomial satisfies conditions

from previous Theorem. One of the polynomials Q(x) such that the function R =
P

Q
is ergodic would be Q(x) = 2 + 5x4.
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