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COMPARISON OF LAPLACE-ADOMIAN’S DECOMPOSITION METHOD AND
LAPLACE VARIATIONAL ITERATION METHOD IN NONLINEAR BOUSSINESQ

EQUATION

Joseph Bonazebi Yindoula1 and Grace Delesth Nganga

ABSTRACT. In this paper, we apply two techniques Laplace Decomposition Method
(LADM) and Laplace Variational Iteration Method (LVIM) to determine the ana-
lytical solution of Boussinesq Equation.

1. INTRODUCTION

A generalized Boussinesq equation

(1.1)
∂2u(x, t)

∂t2
= a

∂2

∂x2
[N(u(x, t) + bu(x, t)] +

∂4

∂x4
u(x, t) + f(x, t),

where N(u(x, t) is an arbitrary sufficiently differentiable function, with the condi-
tion that N(u(x, t) ̸= 0 to ensure nonlinearity and f(x, t) is given function.

The initial conditions are given in the form of

(1.2)


u(x, 0) = f(x)

∂u(x, 0)

∂t
= g(x)

.
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Equation (1.1) has been proposed as a model for the propagation of pulses along
a transmission line made up of a large number of LC circuits and as a model to
describe the vibrations of a dense one-dimensional network. However, in each of
these studies, Rosenau remarks that (1.1) is incorrectly posed,and additional as-
sumptions must be made about the non-linearity of N(u) [11]. A classification of
(1.1) is undertaken by applying both the Lie method and the unclassical method
of Bluman and Cole [8]. This class of nonlinear Boussinesq equation has already
been studied in some of the references ( [9], [10]). Clarkson and Kruskal [10] in-
troduced some similarity reduction of the Boussinesq equation. These reductions
in symmetry are obtained by the direct method. Using this method, the equa-
tion is reduced to the first, second and fourth Painlevé equations, which involves
no group theory techniques. Another important work to find exact solutions of
the Boussinesq equation is studied by Clarkson [9]. He said that the solutions to
this equation are obtained in two different ways: one of these, using the classical
and unconventional reductions of the equations to find the corresponding ordi-
nary differential equations, which are solvable in terms of the first, second and
fourth Painlevé equations. Exact solutions are generated from these ordinary dif-
ferential equations. The second way, he used further space-independent similarity
reductions of the Boussinesq equation. He also generated the second and fourth
Painlevé equations to find the exact solutions of the equation using these simi-
larity reductions. In [11], Clarkson and Priestly found conditions on N(u) such
that it allows symmetries, in particular those beyond translational symmetries of
independent variables. They used the classical Lie method, and the non-classical
method, to find these symmetries. Once the symmetries of (1.1) are found, they
find the associated reductions and test the differential equations, then solve the
equation. However, the application methods are not entirely straightforward [11].

In this paper, the nonlinear equation (1.1) with two cases of the nonlinear
term of N(u) which are given in [11], homogeneous or inhomogeneous, will
be treated more easily, faster and more elegantly by implementing the Laplace
method of Adomian decomposition and the variational iteration method ( [1],
[2], [3]) rather than the traditional methods for explicit solutions. In this article
we do not use any discounts or transformation to reduce the problem (1.1) to an
ordinary differential equation, a system of simpler partial differential equations or
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any linearization, perturbation scheme. The original nonlinear equation is directly
solvable preserving real physics and involving much less computation [3]. The de-
composition scheme is illustrated by studying problem (1.1) to calculate approxi-
mate solution to this problem. In addition, we also illustrate the self-cancellation
phenomena for problem (1.1) using the decomposition method.

2. DESCRIBING OF BOTH METHODS

2.1. The Laplace transform [2].

Let’s note the laplace transform by

(2.1) L(u(x, t)) =
∫ ∞

0

u(x, t)e−stdt.

From (1.1), we have:

(2.2)


L(∂u(x, t)

∂t
) = sL (u(x, t))− u(x, 0)

L(∂
2u(x, t)

∂t2
) = s2L (u(x, t))− su(x, 0)− ∂u(x, 0)

∂t

.

Let f and g be two functions then

(2.3)

 f(x) ∗ g(x) =
∫ x

0

f(x− t)g(t)dt

L (f(x) ∗ g(x)) = L (f(x))L (g(x))

.

2.2. Laplace-Adomian Decomposition method (LADM) ( [12–15]).

The LADM is the combination of the Laplace transform with the Adomian de-
composition method (ADM). This decomposition method was first introduced by
A. Suheil Khuri and has been used successfully to find the solution of differen-
tial equations. The important advantage of this method is to combine the two
powerful methods to obtain the exact solutions of linear or nonlinear equations.

Consider the functional equation

(2.4) Au = h,

where A represents a differential operator of a Hilbert space H, h a function given
in H and u the unknown function to be determined
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By asking

(2.5) A = L+R +N

equation (2.4) becomes

(2.6) Lu(x, t) +Ru(x, t) +Nu(x, t) = h(x, t).

By taking for example Ltt(.) =
∂2

∂t2
, u(x, 0) = f(x) and ut(x, 0) = g(x). By applying

the Laplace transform to (2.6) we get:

(2.7) L [Lu(x, t)] + L [Ru(x, t)] + L [Nu(x, t)] = L [h(x, t)] .

Using the differentiation property of the Laplace transform we get:

(2.8) s2L [u(x, t)]− sf(x)− g(x) + L [Ru(x, t)] + L [Nu(x, t)] = L [h(x, t)] ,

from where:

L [u(x, t)] =
f(x)

s
+

g(x)

s2
− 1

s2
L [Ru(x, t)]

− 1

s2
L [Nu(x, t)] +

1

s2
L [h(x, t)] .

(2.9)

We then look for the solution u(x, t) when it exists in the form of a series:

(2.10) u(x, t) =
+∞∑
n=0

un(x, t).

Non linear Nu(x, t) operator is also noted in a series polynomials

(2.11) Nu(x, t) =
+∞∑
n=0

An(x, t),

where An are special polynomials u0, u1, u2, · · · , un called Adomian polynomials
and defined by

(2.12) An =
1

n!

[
dn

dλn
N

(
+∞∑
n=0

λiui

)]
λ=0

, n = 0, 1, 2, · · · ,

where λ is a parameter used by "convenience".
By substituting (2.10) and (2.11) in (2.9), we become:
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+∞∑
n=0

[Lun(x, t)] =
f(x)

s
+

g(x)

s2
− 1

s2

+∞∑
n=0

[RLun(x, t)]

− 1

s2

+∞∑
n=0

[LAn(x, t)] +
1

s2
L[h(x, t)].

(2.13)

We obtain the Laplace - Adomian algorithm:

(2.14)


L [u0(x, t)] =

1

s
f(x) +

1

s2
g(x) +

1

s2
L [h(x, t)]

L [un+1(x, t)] = − 1

s2
L [Run(x, t)]−

1

s2
L [An(x, t)] ;n ≥ 0

.

By applying the inverse L−1 of the Laplace transform we obtain:

(2.15)


u0(x, t) = L−1

[
1

s
f(x) +

1

s2
g(x) +

1

s2
L [h(x, t)]

]
un+1(x, t) = −L−1

[
1

s2
L [Run(x, t)] +

1

s2
L [An(x, t)]

]
;n ≥ 0.

2.3. Laplace Variational Iteration method (LVIM) [16].

Consider the following nonlinear differential equation:

(2.16) Lu(t) +Nu(t) = f(t),

where L and N denote respectively the linear and nonlinear operators and by f(t)

the given analytical function.
To begin with, we must first of all given the correction functional. Therefore the

correction functional of the equation (2.16) is of the form

(2.17) un+1(t) = un(t) +

∫ t

0

λ(τ) (Lun(τ) +N
∼
un(τ)− f(τ))dτ,

τ ∈ [0, t] and n = 0, 1, 2, · · · , where λ is a Lagrange multiplier which can be
optimally identified by the theory of the calculus of variations, ũn is considered as
the restricted variation which means that δ ũn = 0 and δf(t) = 0.

Each step of the integration for the determination of the Lagrange multiplier λ̧ is
fundamentally complicated. Moreover, integration is fundamentally convolution
which motivates us to make use of the Laplace transformation.
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By then applying the Laplace transformation to the equation (2.17) we have:

(2.18) L (un+1(t)) = L (un(t)) + L
(∫ t

0

λ(s) (Lun(s) +N
∼
un(s)− f(s))ds

)
.

In general, the Lagrange multiplier λ̧ of the form λ = λ (t− s) Therefore the
relation (2.18) becomes:

(2.19) L (un+1(t)) = L (un(t)) + L
(∫ t

0

λ (t− s) (Lun(s) +N
∼
un(s)− f(s))ds

)
⇕

(2.20) L (un+1(t)) = L (un(t)) + L
(
λ (t) ∗ (Lun(t) +N

∼
un(t)− f(t))

)
⇕

(2.21) L (un+1(t)) = L (un(t)) + L
(
λ (t)

)
.L (Lun(t) +N

∼
un(t)− f(t))

To determine the optimal value of λ (t− s), we will first take the following vari-
ation un(t). So

(2.22)
δ

δun

L (un+1(t)) =
δ

δun

L (un(t)) +
δ

δun

L
(
λ (t)

)
.L (Lun(t) +N

∼
un(t)− f(t)),

which give

(2.23)
δ

δun

L (un+1(t)) =
δ

δun

L (un(t)) +
δ

δun

L
(
λ (t)

)
.L (Lun(t))

because δun = 0 et δf(t) = 0

In the case where the linear operator L is defined by: L = d
dt
(.) We will have

(2.24) L (Lun(t) = sL (Lun(t))− u0(t),

and so

(2.25) δL (Lun(t) = sL (Lδun(t))− δu0(t), δu0(t) = 0,

(2.26) δL (Lun(t) = sL (Lδun(t)) .

Thereby,

(2.27) δL (un+1(t)) = δL (un(t)) + L
(
λ (t)

)
.L (Lδun(t)),
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that is

(2.28) L (δun+1(t)) =
(
1 + L

(
λ (t)

))
L (Lδun(t)).

The extreme condition of un+1 requires that δun+1 = 0, which implies that
L (δun+1(t)) = 0 therefore,

(2.29)
(
1 + sL

(
λ (t)

))
L (Lδun(t)) = 0, L (δun(t)) ̸= 0,

so

(2.30) 1 + sL
(
λ (t)

)
= 0 =⇒ L

(
λ (t)

)
= −1

s
.

From this value of L
(
λ (t)

)
, we have the iteration formulation

(2.31) L (un+1(t)) = L (un(t))−
1

s
L (L (un(t)) +N (u(t))− f(t))

⇕

(2.32) un+1(t) = un(t)− L−1

(
1

s
L (L (un(t)) +N (u(t))− f(t))

)
.

3. TEST EXAMPLE

In this section, we present some examples with analytical solution to show the
efficiency of method described in previons section for solving equation (1.1)

3.1. Example 1.

Consider a nonlinear Boussinesq equation

(3.1)
∂2u(x, t)

∂t2
= −2

∂2

∂x2
(N(u(x, t)) + 3u(x, t)) +

∂4

∂x4
u(x, t),

with initial conditions

(3.2)


u(x, 0) = ex

∂u(x, 0)

∂t
= 2ex

,

where
N(u(x, t)) = ln (u(x, t)) .
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3.1.1. The Laplace Decomposition Method.

Applying the Laplace transform (denoted by L) we have

L (u(x, t)) =
1

s
u(x, 0) +

1

s2
∂u(x, 0)

∂t
− 2

s2
L
(

∂2

∂x2
(N(u(x, t))

)
− 6

s2
L
(

∂2

∂x2
(u(x, t))

)
+

1

s2
L
(

∂4

∂x4
u(x, t)

)
.

(3.3)

Using initial conditions Eqs (3.3) becomes

L (u(x, t)) =

(
1

s
+

2

s2

)
ex −

(
2

s2
L
(

∂2

∂x2
(N(u(x, t))

))
−
(

6

s2
L
(

∂2

∂x2
(u(x, t))

))
+

(
1

s2
L
(

∂4

∂x4
u(x, t)

))
.

(3.4)

Applying inverse Laplace transform we get

u(x, t) = (2t+ 1) ex − L−1

(
2

s2
L
(

∂2

∂x2
(N(u(x, t))

))
− L−1

(
6

s2
L
(

∂2

∂x2
(u(x, t))

))
+ L−1

(
1

s2
L
(

∂4

∂x4
u(x, t)

))
.

(3.5)

Since the principle of the method consists in giving the solution in the form of
an infinite series as defined in (2.10) and the nonlinear term N (u(x, t)) as defined
in (2.11). By replacing the relations (2.10) and (2.11) in (3.5) we have:

∞∑
n=0

un(x, t) = (2t+ 1) ex +
∞∑
n=0

(
−L−1

(
2

s2
L
(

∂2

∂x2
(An(x, t))

))
−L−1

(
6

s2
L
(

∂2

∂x2
(un(x, t))

))
+ L−1

(
1

s2
L
(

∂4

∂x4
un(x, t)

)))
.

(3.6)

The recursive relation is defined by

(3.7)



u0(x, t) = (2t+ 1) ex

un(x, t) = −v−1

(
2

s2
L
(

∂2

∂x2
(An(x, t))

))
− L−1

(
6

s2
L
(

∂2

∂x2
(un(x, t))

))
+ L−1

(
1

s2
L
(

∂4

∂x4
un(x, t)

))
.

For the nonlinear term
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(3.8)



A0(x, t) = ln (u0(x, t))

A1(x, t) =
u1(x, t)

u0(x, t)

A2(x, t) =
u2(x, t)

u0(x, t)
− 1

2

u2
1(x, t)

u2
0(x, t)

...

.

From the algorithm (3.7), the iterations are

(3.9)



A0(x, t) = ln ((2t+ 1)) + x

u1(x, t) = −5

3
t3ex − 5

2
t2ex

A1(x, t) = −5
t2 (2t+ 3)

12t+ 6

u2(x, t) =

(
5

12
t5 +

25

24
t4
)
ex =

50t5

5!
ex +

25t4

4!
ex

A2(x, t) = − 5

36

t4 (4t2 + 12t+ 15)

(2t+ 1)2

u3(x, t) = −125t6

6!
ex − 250t7

7!
ex

...

,

and we obtain, the series form of the approximate solution as

u(x, t)

= u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t) + · · ·

= 2tex + ex +−5

3
t3ex − 5

2
t2ex +

50t5

5!
ex +

25t4

4!
ex +−125t6

6!
ex − 250t7

7!
ex + · · ·

=

(
1− 5

2
t2 +

25t4

4!
− 125t6

6!
+ · · ·

)
ex +

(
2t− 5

3
t3 +

50t5

5!
− 250t7

7!
+ · · ·

)
ex

=

(
1− 5

2
t2 +

25t4

24
− 25

144
t6 + · · ·

)
ex +

(
2t− 5

3
t3 +

5

12
t5 − 25

504
t7 + · · ·

)
ex

u(x, t)

= cos
(√

5t
)
ex +

2
√
5

5
sin
(√

5t
)
ex.

(3.10)
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That is

(3.11) u(x, t) = ex

(
cos
(√

5t
)
+

2
√
5

5
sin
(√

5t
))

.

3.1.2. The LVIM.

The Laplace variational iteration correction functional will be constructed in the
following manner:

L (un+1(x, t)) = L (un(x, t)) + L
(∫ x

0

λ(t− s)

(
∂2un(x, s)

∂s2

+2
∂2

∂x2
(N(un(x, s) + 3un(x, s))−

∂4

∂x4
un(x, s)

)
ds

)
,

(3.12)

or equivalently, upon applying the properties of Laplace transform, we have

L (un+1(x, t)) = L (un(x, t)) + L
(
λ(t) ∗

(
∂2un(x, t)

∂t2

+2
∂2

∂x2

(
N (un(x, t) + 3un(x, t))−

∂4

∂x4
un(x, t)

))
= L (un(x, t)) + L

(
λ(t)

)
.L
(
∂2un(x, t)

∂t2

+ 2
∂2

∂x2

(
N (un(x, t) + 3un(x, t))−

∂4

∂x4
un(x, t)

)
.

(3.13)

Tanking the variation with respect to un(x, t) and making the above correction
functional stationary, noting that δun(x, t) = 0, we have

L (δun+1(x, t)) = L (δun(x, t)) + L
(
λ(t)

)
.
(
s2L (δun(x, t))

−sδun(x, 0)−
∂δun(x, 0)

∂t

)
.

(3.14)

Taking δun(x, 0) =
∂δun(x, 0)

∂t
= 0 we have

L (δun+1(x, t)) =
(
1 + s2L

(
λ(t)

))
L (δun(x, t)) .(3.15)

This implies that

(3.16) 1 + s2L
(
λ(t)

)
= 0,

that is
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(3.17) L
(
λ(t)

)
= − 1

s2
.

Substituting equation (3.17) into (3.13) yields the iteration scheme:

L (un+1(x, t)) = L (un(x, t))−
1

s2
L
(
∂2un(x, t)

∂t2
+ 2

∂2

∂x2
(N (un(x, t)

+3un(x, t))−
∂4

∂x4
un(x, t)

)
.

(3.18)

Applying inverse Laplace transform we get

un+1(x, t) = un(x, t)− L−1

(
1

s2
L
(
∂2un(x, t)

∂t2
+ 2

∂2

∂x2
(N (un(x, t)

+3un(x, t))−
∂4

∂x4
un(x, t)

))
.

(3.19)

We can use the initials conditions to select u0(x, t) = (2t+ 1) ex.Using this selec-
tion into the correction functional gives the following successive approximations
(3.20)

u0(x, t) = ex + 2tex

u1(x, t) =

(
1− 5

2
t2
)
ex +

(
2t− 5

3
t3
)
ex

u2(x, t) =

(
1− 5

2
t2 +

25

24
t4
)
ex +

(
2t− 5

3
t3 +

5

12
t5
)
ex

u3(x, t) =

(
1− 5

2
t2 +

25

24
t4 − 25

144
t6
)
ex +

(
2t− 5

3
t3 +

5

12
t5 − 25

504
t7
)
ex

...

un(x, t) =

(
1− 5

2
t2 +

25

24
t4 − 25

144
t6 + · · ·

)
ex

+

(
2t− 5

3
t3 +

5

12
t5 − 25

504
t7 + · · ·

)
ex

.

And so on for other approximations. The LVIM admis the use of

(3.21) u(x, t) = lim
n−→+∞

un(x, t).

This gives the following approximation solution
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u(x, t) =

(
1− 5

2
t2 +

25

24
t4 − 25

144
t6 + · · ·

)
ex

+

(
2t− 5

3
t3 +

5

12
t5 − 25

504
t7 + · · ·

)
ex

= ex
(
cos
(√

5t
))

+ ex

(
2
√
5

5
sin
(√

5t
))

.

(3.22)

Therefore, we obtain

(3.23) u(x, t) = ex

(
cos
(√

5t
)
+

2
√
5

5
sin
(√

5t
))

,

which is the exact solution this problem

3.1.3. Partial Conclusion.

We find that we have the same result in both approaches.

FIGURE 1. Numerical simulation of the solution of example 1 for x ∈
[0, 1] and t ∈

[
0, 2π√

5

]
.
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3.2. Example 2:

Consider the nonlinear Boussinesq equation

(3.24)
∂2u(x, t)

∂t2
= −2

∂2

∂x2

(
u3(x, t)− 1

2
u(x, t)

)
+

∂4

∂x4
u(x, t)

subject to the initial conditions:

(3.25)


u(x, 0) =

1

x
∂u(x, 0)

∂t
= − 1

x2

.

3.2.1. The LADM.

The equation (3.24) can be written

(3.26)
∂2u(x, t)

∂t2
=

∂2u(x, t)

∂x2
+

∂4u(x, t)

∂x4
− 2

∂2N(u(x, t))

∂x2

with

(3.27) N(u(x, t)) = u3(x, t).

Apply the Laplace transform with respect to the variable t of equation (3.24) we
obtain

L (u(x, t)) =

(
1

s

1

x
− 1

s2
1

x2

)
+

(
1

s2
L
(
∂2u(x, t)

∂x2

))
+

(
1

s2
L
(
∂4u(x, t)

∂x4

))
− 2

s2
L
(
∂2N(u(x, t))

∂x2

)
.

(3.28)

Applying the inverse Laplace transform gives us

u(x, t) =
1

x
− t

x2
+ L−1

(
1

s2
L
(
∂2u(x, t)

∂x2

))
+ L−1

(
1

s2
L
(
∂4u(x, t)

∂x4

))
− L−1

(
2

s2
L
(
∂2N(u(x, t))

∂x2

))
.

(3.29)

By substituting (2.10) and (2.11) in (3.29), we become
+∞∑
n=0

un(x, t) =
1

x
− t

x2
+

+∞∑
n=0

L−1

(
1

s2
L
(
∂2un(x, t)

∂x2

))
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+
+∞∑
n=0

L−1

(
1

s2
L
(
∂4un(x, t)

∂x4

))
−
∫ +∞

n=0

L−1

(
2

s2
L
(
∂2An(x, t)

∂x2

))
.(3.30)

Now, (3.30) gives the following algorithm:

(3.31)



u0(x, t) =
1

x

u1(x, t) = − t

x2
+ L−1

(
1

s2
L
(
∂2u0(x, t)

∂x2

))
+ L−1

(
1

s2
L
(
∂4u0(x, t)

∂x4

))
− L−1

(
2

s2
L
(
∂2A0(x, t)

∂x2

))
un+1(x, t) = L−1

(
1

s2
L
(
∂2un(x, t)

∂x2

))
+ L−1

(
1

s2
L
(
∂4un(x, t)

∂x4

))
− L−1

(
2

s2
L
(
∂2An(x, t)

∂x2

))
.

For the nonlinear term

(3.32)



A0 = u3
0

A1 = 3u2
0u1

A2 = 3u2
0u2 + 3u0u

2
1

A3 = u3
1 + 3u2

0u3 + 6u0u1u2.

From the algorithm (3.31), the iterations are:

u0(x, t) =
1

x
, A0 =

1

x3

u1(x, t) = − t

x2
+

t2

x3
, A1 =

3t2

x5
− 3t

x4

u2(x, t) = − t3

x4
+

t4

x5
+ 15

t4

x7
, A2 = 3

t2

x5
− 9

t3

x6
+ 6

t4

x7
+ 45

t4

x9

u3(x, t) = − t5

x6
+

t6

x7
− 15

t4

x7
− 21

5

t5

x8
+

308

5

t6

x9
+ 2250

t6

x11

A3 = −1

5

t3

x13

(
−50t3x4 − 1374t3x2 − 33 750t3 + 90t2x5

+513t2x3 − 45tx6 + 225tx4 + 5x7
)

(3.33)
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u4(x, t) = − t7

x8
+

t8

x9
+

21

5

t5

x8
− 308

5

t6

x9
− 2250

t6

x11
− 612

35

t7

x10

− 1782

7

t7

x12
+

1098

7

t8

x11
+

597 663

35

t8

x13
+ 921 375

t8

x15

...

(3.34)

Afterwards

u(x, t)

= u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t) + · · ·

=

(
1

x
− t

x2
+

t2

x3
− t3

x4
+

t4

x5
− t5

x6
+

t6

x7
− t7

x8
+

t8

x9
+ · · ·

)
+ 15

t4

x7
− 15

t4

x7
− 21

5

t5

x8
+

21

5

t5

x8
+

308

5

t6

x9
− 308

5

t6

x9

+ 2250
t6

x11
− 2250

t6

x11
− 612

35

t7

x10
− 1782

7

t7

x12
+

1098

7

t8

x11

+
597663

35

t8

x13
+ 921 375

t8

x15
+ · · · = 1

x+ t

+ −612

35

t7

x10
− 1782

7

t7

x12
+

1098

7

t8

x11
+

597 663

35

t8

x13
+ 921 375

t8

x15
+ · · ·︸ ︷︷ ︸

small terms

.

(3.35)

That is

(3.36) u(x, t) =
1

x+ t
− small terms.

From where

(3.37) u(x, t) =
1

x+ t
,

which is the exact solution of (3.24) and (3.25).

3.2.2. The Laplace Variational Iteration Method.

The correction functional for (3.24) reads

un+1(x, t) = un(x, t) +

∫ x

0

λ(t− s)

(
∂2un(x, s)

∂s2

+2
∂2

∂x2

(
u3
n(x, s)−

1

2
un(x, s)

)
− ∂4

∂x4
un(x, s)

)
ds.

(3.38)
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By applying the Laplace transformation to (3.38) we have:

L (un+1(x, t)) = L (un(x, t)) + L
(∫ x

0

λ(t− s)

(
∂2un(x, s)

∂s2

+2
∂2

∂x2

(
u3
n(x, s)−

1

2
un(x, s)

)
− ∂4

∂x4
un(x, s)

)
ds

)
= L (un(x, t)) + L

(
λ(t) ∗

(
∂2un(x, t)

∂t2

+2
∂2

∂x2

(
u3
n(x, t)−

1

2
un(x, t)

)
− ∂4

∂x4
un(x, t)

))
= L (un(x, t)) + L

(
λ(t)

)
.L
(
∂2un(x, t)

∂t2
+ 2

∂2

∂x2

(
u3
n(x, t)

−1

2
un(x, t)

)
− ∂4

∂x4
un(x, t)

)
.

(3.39)

By taking the variation relative to un on a:

δL (un+1(x, t)) = δL (un(x, t)) + L
(
λ(t)

)
.L
(
δ
∂2un(x, t)

∂t2

+2
∂2

∂x2

(
δu3

n(x, t)−
1

2
δun(x, t)

)
− ∂4

∂x4
δun(x, t)

)
.

(3.40)

with δu(x, t) = 0 we have

L (δun+1(x, t)) = L (δun(x, t)) + L
(
λ(t)

)
.
(
s2L (δun(x, t))

−sδun(x, 0)− δ
∂un(x, 0)

∂t

)(3.41)

⇕

(3.42) L (δun+1(x, t)) =
(
1 + s2L

(
λ(t)

))
L (δun(x, t))

because δun(x, 0) = δ
∂un(x, 0)

∂t
= 0.

By taking the stationary correction functional one obtains

(3.43) 1 + s2L
(
λ(t)

)
= 0.

That is

(3.44) L
(
λ(t)

)
= − 1

s2
.
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Substituting this value of the Lagrangian multiplier into functional (3.38) gives
the iteration

L (un+1(x, t)) = L (un(x, t))−
1

s2
L
(
∂2un(x, t)

∂t2

+2
∂2

∂x2

(
u3
n(x, t)−

1

2
un(x, t)

)
− ∂4

∂x4
un(x, t)

)(3.45)

⇕

un+1(x, t) = un(x, t)− L−1

(
1

s2
L
(
∂2un(x, t)

∂t2

+2
∂2

∂x2

(
u3
n(x, t)−

1

2
un(x, t)

)
− ∂4

∂x4
un(x, t)

))
.

(3.46)

The given initial values admit the use

(3.47) u0(x, t) =
1

x
− 1

x2
t.

Using (3.46) we obtain the following successive approximations:

(3.48)



u1(x, t) =
1

x
− 1

x2
t+

1

x3
t2 − 1

x4
t3 + small terms

u2(x, t) =
1

x
− 1

x2
t+

1

x3
t2 − 1

x4
t3 +

1

x5
t4 − 1

x6
t5 + small terms

u3(x, t) =
1

x
− 1

x2
t+

1

x3
t2 − 1

x4
t3 +

1

x5
t4 − 1

x6
t5 +

t6

x7
− t7

x8

+
t8

x9
+ small terms

...

un(x, t) =
1

x
− 1

x2
t+

1

x3
t2 − 1

x4
t3 +

1

x5
t4 − 1

x6
t5 +

t6

x7
− t7

x8
+

t8

x9
+ · · ·

,

and in a closed form by

(3.49) u(x, t) =
1

x+ t
.

3.2.3. Partial Conclusion.

We end up with the same solutions using the Laplace Adomian method and the
Laplace variational iteration method
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FIGURE 2. Numerical simulation of the solution of example 2 for x ∈
[0, 4] and t ∈ [0, 4]

4. CONCLUSION

The main objective of this work is to conduct a comparative study between
the LADM method and the LVIM method. Both methods are powerful and ef-
ficient methods that both give higher accuracy approximations and closed form
solutions if they exist. An important conclusion can be drawn here. The LVIM
method gives several successive approximations using iteration of the correction
functional. However, the LADM method provides the components of the exact
solution where these components must follow the summation given in (2.10).
Furthermore, the LVIM method requires the evaluation of the Lagrange multiplier,
while LADM requires the evaluation of the A domian polynomials, which mostly
require tedious algebraic calculations. It is interesting to note that, unlike the
successive approximations obtained by LVIM, the A domian polynomials are not
taken into account, successive obtained by LVIM, LADM provides the solution in
successive components that will be summed to obtain the serial solution. Most im-
portantly, LVIM reduces the computational volume by not requiring the A domian
polynomials, making the iteration straightforward and simple. However, LADM
requires the use of A domian polynomials for nonlinear terms, which requires
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more extensive work. For nonlinear equations that appear frequently to express
nonlinear phenomena, the LVIM method facilitates the computational work and
gives the solution quickly compared to the LADM method.
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