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ON A SPECIAL CLASS OF SCHWARTZ FUNCTIONS

Milutin Obradović and Nikola Tuneski

ABSTRACT. In this paper we study functions ω(z) = c1z+c2z
2+c3z

3+ · · · analytic
in the open unit disk D and such that |ω′(z)| ≤ 1 for all z ∈ D. For these functions
we give estimates (sometimes sharp) for the following moduli: |c3 − c1c2|, |c1c3 −
c22|, and |c4 − c22|.

1. INTRODUCTION AND DEFINITIONS

For a function ω, analytic in the open unit disk D = {z : |z| < 1} and of the form

(1.1) ω(z) = c1z + c2z
2 + c3z

3 + · · · , (c1, c2, . . . ∈ C)

we say that is Schwartz function if |ω(z)| < 1, z ∈ D. We denote by B0 the class of
all such functions.

In his paper [4], Zaprawa gave many different inequalities for the coefficients
c1, c2, . . . for the functions of the class B0.

In this paper we study the class of functions B′
0 of type (1.1) such that |ω′(z)| ≤ 1

for all z ∈ D. Since

(1.2) zω′(z) = c1z + 2c2z
2 + 3c3z

3 · · · ,
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and |zω′(z)| = |z| · |ω′(z)| ≤ |z| < 1, z ∈ D, it means that zω′(z) belongs to B0.
Also, since ω(z) =

∫ z

0
ω′(z)dz, then |ω(z)| ≤

∫ |z|
0

|ω′(z)| d|z| ≤ |z| < 1 for all z ∈ D,
i.e., ω ∈ B0. So, |ω′(z)| ≤ 1, z ∈ D, is a sufficient condition for ω ∈ B0, i.e., B′

0 is
subclass of the class B0.

For the functions from B′
0 we try to find properties for the coefficients c1, c2, c3, . . .

that correspond to the properties for the functions from B0.
For our considerations we will need the next lemma originating from [1].

Lemma 1.1. Let ω ∈ B0 is given by (1.1). Then

(1.3)

|c1| ≤ 1, |c2| ≤ 1− |c1|2,

|c3| ≤ 1− |c1|2 − |c2|2
1+|c1| ,

|c4| ≤ 1− |c1|2 − |c2|2.

We showed that when ω given by (1.1) is in B0, then zω′(z) is in B′
0. Thus,

Lemma 1.1, together with (1.2), directly brings

Lemma 1.2. Let ω ∈ B′
0 is given by (1.1). Then

|c1| ≤ 1, |c2| ≤
1

2

(
1− |c1|2

)
,

|c3| ≤
1

3

(
1− |c1|2 −

4|c2|2

1 + |c1|

)
,

|c4| ≤
1

4

(
1− |c1|2 − 4|c2|2

)
.

(1.4)

2. MAIN RESULTS

We begin with partly sharp estimate of the modulus |c3−c1c2| for functions from
B′
0 with expansion (1.1).

Theorem 2.1. If ω ∈ B′
0 is of form (1.1), then

(2.1) |c3 − c1c2| ≤


1
48
(1 + |c1|) [9|c1|2 − 16|c1|+ 16] , 0 ≤ |c1| ≤ 4

7

5
6
|c1|(1− |c1|2), 4

7
≤ |c1| ≤ 1

.

The estimate is sharp for |c1| = 0 and for 4
7
≤ |c1| ≤ 1.
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Proof. For ω ∈ B′
0 and ω given by (1.1) we apply the inequalities (1.4):

|c3 − c1c2| ≤ |c3|+ |c1||c2| ≤
1

3

(
1− |c1|2 −

4|c2|2

1 + |c1|

)
+ |c2||c2|

= − 4

3(1 + |c1|)
|c2|2 + |c1||c2|+

1

3
(1− |c1|2).

If we consider the last expression as a function of |c2|, 0 ≤ |c2| ≤ 1
2
(1− |c1|2), then

we easily obtain the estimate given by (2.1), depending on its maximum which
in the case 0 ≤ |c1| ≤ 4

7
is attained for |c2| = 3

8
|c1|(1 + |c1|) lying in the interval(

0, 1
2
(1− |c1|2)

)
, and in the case 4

7
≤ |c1| ≤ 1 is attained for |c2| = 1

2
(1− |c1|2).

For |c1| = 0 and for 4
7
≤ |c1| ≤ 1 the result is sharp with extremal functions

ω1(z) =
1
3
z3 and

ω2(z) =

∫ z

0

|c1|+ z

1 + |c1|z
dz = |c1|z +

1

2
(1− |c1|2)z2 −

1

3
|c1|(1− |c1|2)z3 + · · · ,

respectively. □

Remark 2.1. Theorem 2.1 brings:

ω ∈ B′
0 ⇒ |c3 − c1c2| ≤

1

3
,

while
ω ∈ B0 ⇒ |c3 − c1c2| ≤ 1

follows from [4].

Similarly as Theorem 2.1 we can prove the next theorem.

Theorem 2.2. If ω ∈ B′
0 is of form (1.1) and µ ∈ C, then

(2.2) |c3 − µc1c2| ≤


1
48
(1 + |c1|) [9|µ|2|c1|2 − 16|c1|+ 16] , 0 ≤ |c1| ≤ 1

1+3/4|µ|(
1
3
+ 1

2
|µ|

)
|c1|(1− |c1|2), 1

1+3/4|µ| ≤ |c1| ≤ 1
.

The estimate is sharp for |c1| = 0, and for 1
1+3/4|µ| ≤ |c1| ≤ 1 when µ is nonnegative

real number. The extremal functions are ω1 and ω2, respectively (ω1 and ω2 as defined
in the proof of Theorem 2.1).

For µ = 2 in Theorem 2.2 we receive
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Corollary 2.1. If ω ∈ B′
0 is of form (1.1). Then

|c3 − 2c1c2| ≤


1
12
(1 + |c1|) [9|c1|2 − 4|c1|+ 4] , 0 ≤ |c1| ≤ 2

5

4
3
|c1|(1− |c1|2), 2

5
≤ |c1| ≤ 1

.

The estimate is sharp for |c1| = 0 and for 2
5
≤ |c1| ≤ 1, with extremal functions ω1

and ω2, respectively (ω1 and ω2 as defined in the proof of Theorem 2.1).

Next, for the modulus |c1c3 − c22| we have the following sharp estimate.

Theorem 2.3. If ω ∈ B′
0 is of form (1.1), then the following estimate is sharp

(2.3) |c1c3 − c22| ≤
1

42
(1− |c1|2)(3 + |c1|2), 0 ≤ |c1| ≤ 1.

Proof. Using Lemma 1.2 we have

|c1c3 − c22| ≤ |c1||c3|+ |c2|2

≤ |c1| ·
1

3

(
1− |c1|2 −

4|c2|2

1 + |c1|

)
+ |c2|2

=
1

3
|c1|(1− |c1|2) + |c2|2 ·

3− |c1|
3(1 + |c1|)

≤ 1

3
|c1|(1− |c1|2) +

3− |c1|
3(1 + |c1|)

· 1
4
(1− |c1|2)2

=
1

12
(1− |c1|2)(2 + |c1|2).

The equality in (2.3) is obtained for the function ω2(z) given in Theorem 2.1,

ω2(z) =

∫ z

0

|c1|+ z

1 + |c1|z
dz = |c1|z +

1

2
(1− |c1|2)z2 −

1

3
|c1|(1− |c1|2)z3 + · · · .

□

Remark 2.2. From (2.3) we have taht for every 0 ≤ |c1| ≤ 1,

|c1c3 − c22| ≤
1

12

(
3− 2|c1|2 − |c1|4

)
≤ 1

4
.

Remark 2.3. As it is shown in [2], for the class U of functions f(z) = z + a2z
2 +

a3z
3 + · · · defined by the condition∣∣∣∣∣

(
z

f(z)

)2

f ′(z)− 1

∣∣∣∣∣ < 1, z ∈ D,
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we have

(2.4)
z

f(z)
= 1− a2z − zω(z),

where ω ∈ B′
0 and ω(z) = c1z + c2z

2 + · · · . From (2.4) we can express the coeffi-
cients a3, a4, and a5, of the function f , depending on a2, c1, c2,, c3,. . . . After some
calculations we receive

|H3(1)(f)| =
∣∣c1c3 − c22

∣∣ ≤ 1

4
,

where H3(1)(f) is the Hankel determinant of third order (see [3]) and that result
is the best possible. This property was the inspiration to study the class B′

0 as a
continuation of the study of the class B0 in [4].

Similarly as in Theorem 2.2 we get

Theorem 2.4. If ω ∈ B′
0 is of form (1.1) and µ ∈ C, then

(2.5)

|c1c3 − µc22| ≤


1
3
|c1|(1− |c1|2), |µ| ≤ 4

3
|c1|

1+|c1|

1
12
[3|µ|+ 2(2− 3|µ|)|c1|2 − (4− 3|µ|)|c1|4] , |µ| ≥ 4

3
|c1|

1+|c1|

.

Finally, for the modulus |c4 − c22| we have

Theorem 2.5. If ω ∈ B′
0 is of form (1.1), then

(2.6) |c4 − c22| ≤
1

4
(1− |c1|2)

and the estimate is sharp as the function

ω(z) =

∫ z

0

|c1|+ z3

1 + |c1|z3
dz = |c1|z +

1

4
(1− |c1|2)z4 −

1

6
|c1|(1− |c1|2)z6 + · · · .

shows.

Proof. Using Lemma 1.2, we easily get

|c4 − c22| ≤ |c4|+ |c2|2 ≤
1

4
(1− |c1|2 − 4|c2|2) + |c2|2 =

1

4
(1− |c1|2).

□
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