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ON TOPOLOGY OF CENTROSYMMETRIC MATRICES WITH APPLICATIONS

Selcuk Koyuncu, Cenap Ozel1, and Majed Albaity

ABSTRACT. In this work, we investigate the algebraic and geometric properties of
centrosymmetric matrices over the positive reals. We show that the set of cen-
trosymmetric matrices, denoted as Cn, forms a Lie algebra under the Hadamard
product with the Lie bracket defined as [A,B] = A ◦ B − B ◦ A. Furthermore,
we prove that the set Cn of centrosymmetric matrices over R+ is an open con-
nected differentiable manifold with dimension ⌈n2

2 ⌉. This result is achieved by

establishing a diffeomorphism between Cn and a Euclidean space R⌈n2

2 ⌉, and by
demonstrating that the set is both open and path-connected. This work provides
insight into the algebraic and topological properties of centrosymmetric matrices,
paving the way for potential applications in various mathematical and engineering
fields.

1. INTRODUCTION

A centrosymmetric matrix is a square matrix that exhibits symmetry with respect
to its center. Formally, an n× n matrix A is centrosymmetric if and only if:

Ai,j = An+1−i,n+1−j for all 1 ≤ i, j ≤ n.

In other words, the elements of a centrosymmetric matrix are symmetric with
respect to the center of the matrix. Here is a 3× 3 centrosymmetric matrix A:
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a11 a12 a13

a21 a22 a21

a13 a12 a11

 .

In this matrix, the elements are symmetric with respect to the center element
a22. Specifically, aij = a(n+1−i,n+1−j) for n = 3. Further, here is a 4 × 4 centrosym-
metric matrix A, 

a11 a12 a13 a14

a21 a22 a23 a24

a24 a23 a22 a21

a14 a13 a12 a11

 .

The symmetry is centered around the 2 × 2 block formed by elements a22, a23,
a32, and a33. Specifically, the centrosymmetric property holds such that aij =

a(n+1−i,n+1−j) for n = 4. The Hadamard product, denoted by ◦, is an element-wise
multiplication operation on matrices of the same size. Given two n×n matrices A
and B, their Hadamard product C = A ◦B is defined as:

(1.1) Ci,j = Ai,j ·Bi,j for all 1 ≤ i, j ≤ n.

The Hadamard product is commutative, associative, and distributive over matrix
addition.

Centrosymmetric matrices have been widely studied due to their unique proper-
ties and various applications in mathematics, physics, and engineering. In partic-
ular, their symmetries and geometric properties make them suitable for problems
involving signal processing, control theory, and optimization, among others. De-
spite their extensive use in the literature, the algebraic and topological properties
of centrosymmetric matrices have not been fully explored, and their potential as a
Lie algebra under the Hadamard product has not been extensively investigated.

The Hadamard product, an element-wise multiplication of matrices, is a crucial
operation in several applications, such as image processing and data analysis. The
study of the algebraic properties of centrosymmetric matrices under the Hadamard
product may unveil new insights that could be leveraged in these applications.

In the presented work, we aim to fill this gap in the literature by exploring the
algebraic and topological properties of the set of centrosymmetric matrices over
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the positive reals, excluding zero. We demonstrate that the set of centrosymmet-
ric matrices forms a Lie algebra under the Hadamard product and establish that
the set is an open connected differentiable manifold with dimension ⌈n2

2
⌉. This

result is achieved by showing that the set is both open and path-connected, and
by constructing a bijection between the space of centrosymmetric matrices and a
Euclidean space.

The set of n×n centrosymmetric matrices is a subset of the space of all matrices,
which is a vector space and can be considered a differentiable manifold. Due to
the centrosymmetry constraint, we only have ⌈n2

2
⌉ independent elements (each

element and its corresponding centrosymmetric counterpart). Let’s denote the
space of n × n centrosymmetric matrices as Cn. We can establish a bijection Φ :

R⌈n2

2
⌉ → Cn, where R⌈n2

2
⌉ is a Euclidean space. For a given n× n centrosymmetric

matrix A with elements Aij, the bijection is defined as follows:

Φ(a1,1, . . . , ai,j, . . . , an,n) = A,

where ai,j = Ai,j for 1 ≤ i ≤ j ≤ n. The centrosymmetry constraint is automati-
cally satisfied because An+1−i,n+1−j = an+1−i,n+1−j = ai,j = Ai,j for 1 ≤ i ≤ j ≤ n.

The mapping Φ is smooth, as it is a simple linear transformation between the
elements of the Euclidean space ⌈n2

2
⌉ and the space of centrosymmetric matrices

Cn. Furthermore, the inverse mapping Φ−1 : Cn → R⌈n2

2
⌉ is also smooth, as it corre-

sponds to a linear transformation from the space of centrosymmetric matrices back
to the Euclidean space. Since the mapping Φ and its inverse Φ−1 are both smooth,
the set of centrosymmetric matrices can be considered a differentiable manifold.
The remainder of this work is organized as follows. In Section 2, we prove that
the set of centrosymmetric matrices forms a Lie group under the Hadamard prod-
uct. In Section 3, we prove that the set of centrosymmetric matrices forms a Lie
algebra under the Hadamard product. Finally, we include some applications of
Centrosymmetric matrices in Section 3 and discussing possible future research di-
rections.

2. LIE GROUP OF CENTROSYMMETRIC MATRICES

Let A and B be two n × n centrosymmetric matrices with non-zero elements
such that Aij = an+1−i,n+1−j and Bij = bn+1−i,n+1−j for all i, j.
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Theorem 2.1. The set Cn of centrosymmetric matrices over R+ is Lie group under
Hadamard product.

Proof. In order to prove that the set Cn of centrosymmetric matrices over R+ is
a Lie group, we need to show that it satisfies the four properties of a Lie group:
closure, associativity, identity, and inverse.

Closure: Let A,B ∈ Cn be centrosymmetric matrices. We want to show that
their Hadamard product C = A ◦ B is also centrosymmetric. Recall that a matrix
is centrosymmetric if its elements satisfy aij = a(n+1−i,n+1−j). Similarly, for ma-
trix B, bij = b(n+1−i,n+1−j). Now, let’s consider the Hadamard product of A and
B: C = A ◦ B =⇒ cij = aij · bij. We want to show that cij = c(n+1−i,n+1−j).
Using the centrosymmetric property of A and B, we can write: c(n+1−i,n+1−j) =

a(n+1−i,n+1−j) · b(n+1−i,n+1−j). As aij = a(n+1−i,n+1−j) and bij = b(n+1−i,n+1−j), we can
substitute these values into the expression above: c(n+1−i,n+1−j) = aij · bij. Com-
paring this with the definition of cij, we obtain cij = c(n+1−i,n+1−j). This proves
that the Hadamard product of two centrosymmetric matrices A and B is also cen-
trosymmetric, thus satisfying the closure property.

Associativity: Associativity means that for any matrices A,B,C ∈ Cn, we have
(A◦B)◦C = A◦(B◦C). Let’s prove this by showing that the i-th, j-th entry of both
sides of the equation are equal. Recall that the Hadamard product of two matrices
is an element-wise operation. For any matrices A,B,C ∈ Cn, their elements are
denoted as aij, bij, and cij, respectively. Now, let’s consider the left-hand side of
the equation, (A ◦B) ◦ C:

(1) Calculate the Hadamard product of A and B, which results in a new matrix
D with elements dij = aij · bij.

(2) Calculate the Hadamard product of the resulting matrix D and C, which
results in a matrix E with elements eij = dij · cij.

Now, let’s consider the right-hand side of the equation, A ◦ (B ◦ C):

(1) Calculate the Hadamard product of B and C, which results in a new matrix
F with elements fij = bij · cij.

(2) Calculate the Hadamard product of A and the resulting matrix F , which
results in a matrix G with elements gij = aij · fij.
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To show the associativity, we need to prove that eij = gij. Let’s start by substituting
the definitions of eij and gij:

(2.1) eij = dij · cij = (aij · bij) · cijgij = aij · fij = aij · (bij · cij).

Now, due to the associativity of multiplication of real numbers, we can rewrite eij

and gij as:

eij = aij · (bij · cij), gij = aij · (bij · cij).

As we can see, eij = gij, which means that the Hadamard product is associative
for centrosymmetric matrices: (A ◦B) ◦ C = A ◦ (B ◦ C).

Identity element: The identity property states that there exists an identity ele-
ment I ∈ Cn, such that for any A ∈ Cn, the Hadamard product of A and I results
in A. In other words, A ◦ I = A. For the Hadamard product, the identity element
is a matrix with all elements equal to 1. Let’s construct the identity matrix I ∈ Cn
with all elements equal to 1. We also need to show that I is centrosymmetric.

To prove that I is centrosymmetric, we need to show that iij = i(n+1−i,n+1−j).
Since all elements of I are equal to 1, we have

1 = iij = i(n+1−i,n+1−j).

Now, let’s show that the Hadamard product of any centrosymmetric matrix A ∈ Cn
and the identity matrix I results in A. Recall that the Hadamard product is an
element-wise operation

(A ◦ I)ij = aij · iij.

Since iij = 1 for all elements of the identity matrix I, we have

(A ◦ I)ij = aij · 1 = aij.

Therefore, the Hadamard product of A and I results in A:

A ◦ I = A.

This proves the identity property for the Hadamard product of centrosymmetric
matrices.

Inverse element: The inverse property states that for any centrosymmetric ma-
trix A ∈ Cn, there exists an inverse matrix A−1 ∈ Cn such that the Hadamard
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product of A and A−1 results in the identity matrix I. In other words, A ◦A−1 = I.
First, let’s construct the inverse matrix A−1 element-wise as follows:

(A−1)ij =
1

aij
.

We also need to show that A−1 is centrosymmetric. To do that, we need to demon-
strate that (A−1)ij = (A−1)(n+ 1− i, n+ 1− j). Given that A is centrosymmetric,
we know that aij = a(n+1−i,n+1−j). Thus, we have

(A−1)ij =
1

aij
=

1

a(n+1−i,n+1−j)

= (A−1)(n+1−i,n+1−j).

Now, let’s show that the Hadamard product of any centrosymmetric matrix A ∈ Cn
and its inverse A−1 results in the identity matrix I. Recall that the Hadamard
product is an element-wise operation

(A ◦ A−1)ij = aij · (A−1)ij.

Using the definition of the inverse matrix A−1, we obtain

(A ◦ A−1)ij = aij ·
1

aij
= 1.

Since (A ◦ A−1)ij = 1 for all elements, we have

A ◦ A−1 = I.

This proves the inverse property for the Hadamard product of centrosymmetric
matrices. Considering that the Hadamard product is an element-wise operation
involving simple multiplication and division, it possesses the necessary smoothness
properties. Therefore, the set of centrosymmetric matrices with non-zero elements
forms a Lie group under the Hadamard product. □

Theorem 2.2. The set Cn of centrosymmetric matrices over R+ is an open connected
differentiable manifold with dimension ⌈n2

2
⌉.

Proof.
1. Open: The set Cn of centrosymmetric matrices over R+ is an open set, as it

is a subset of Rn×n where every entry in the matrix is in R+. For any point in this
space, we can find an open ball around it in which every other point also belongs
to Cn. Hence, Cn is open.
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2. Connected: The set Cn of centrosymmetric matrices over R+ is path-connected.
To show this, consider any two centrosymmetric matrices A and B in Cn. Define a
path between A and B as γ(t) = (1− t)A+ tB for 0 ≤ t ≤ 1. Since both A and B

are centrosymmetric, it follows that γ(t) is also centrosymmetric for all t. More-
over, all entries in γ(t) are nonzero and positive, as both A and B have entries in
R+, and 0 ≤ t ≤ 1. Thus, Cn is connected.

3. Differentiable manifold: The set Cn of centrosymmetric matrices over R+

can be considered a differentiable manifold because it can be smoothly embedded
into the space of all matrices, which is a vector space and, therefore, a differ-
entiable manifold. Due to the centrosymmetry constraint, we only have ⌈n2

2
⌉ in-

dependent elements (each element and its corresponding centrosymmetric coun-
terpart). We can establish a bijection Φ : R⌈n2

2
⌉ → Cn, where R⌈n2

2
⌉ is a Euclidean

space. For a given n×n centrosymmetric matrix A with elements Aij, the bijection
is defined as follows:

Φ(a1,1, . . . , ai,j, . . . , an,n) = A;

where ai,j = Ai,j for 1 ≤ i ≤ j ≤ n. The centrosymmetry constraint is automati-
cally satisfied because An+1−i,n+1−j = an+1−i,n+1−j = ai,j = Ai,j for 1 ≤ i ≤ j ≤ n.
Moreover, all entries in Φ are in R+, and the function is smooth with smooth
inverse. Since the space Cn is open, connected, and smoothly embedded into a
differentiable manifold, it is itself a differentiable manifold. Therefore, the set Cn
of centrosymmetric matrices over R+ is an open connected differentiable manifold
with dimension ⌈n2

2
⌉. □

3. LIE ALGEBRA OF CENTROSYMMETRIC MATRICES

A Lie algebra is a vector space with a binary operation called the Lie bracket,
which satisfies bilinearity, alternativity, and the Jacobi identity. Let’s verify these
properties for the set of centrosymmetric matrices with the given Lie bracket defi-
nition:

1. Bilinearity: For any centrosymmetric matrices A, B, and C, and scalars α

and β, we have:

[αA+ βB,C] = (αA+ βB) ◦ C − C ◦ (αA+ βB)

= α(A ◦ C) + β(B ◦ C)− α(C ◦ A)− β(C ◦B) = α[A,C] + β[B,C].
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2. Alternativity: For any centrosymmetric matrix A,

[A,A] = A ◦ A− A ◦ A = 0.

3. Jacobi identity: For any centrosymmetric matrices A, B, and C,

[A, [B,C]] + [B, [C,A]] + [C, [A,B]]

= [A, (B ◦ C − C ◦B)] + [B, (C ◦ A− A ◦ C)] + [C, (A ◦B −B ◦ A)]

= (A ◦ (B ◦ C − C ◦B)− (B ◦ C − C ◦B) ◦ A)

+ (B ◦ (C ◦ A− A ◦ C)− (C ◦ A− A ◦ C) ◦B)

+ (C ◦ (A ◦B −B ◦ A)− (A ◦B −B ◦ A) ◦ C)

= (A ◦B ◦ C − A ◦ C ◦B −B ◦ C ◦ A+ C ◦B ◦ A)

+ (B ◦ C ◦ A−B ◦ A ◦ C − C ◦ A ◦B + A ◦ C ◦B)

+ (C ◦ A ◦B − C ◦B ◦ A− A ◦B ◦ C +B ◦ A ◦ C)

= 0.

Since the Lie bracket [A,B] = A ◦ B − B ◦ A satisfies bilinearity, alternativity, and
the Jacobi identity, the set of centrosymmetric matrices with this Lie bracket can
be considered a Lie algebra.

Theorem 3.1. Let Cn be the set of centrosymmetric matrices of size n × n over R+.
Then the Lie algebra gn of centrosymmetric matrices under the Hadamard product
has dimension ⌈n2

2
⌉. There exists a basis Bn for gn that can be constructed from

centrosymmetric matrices with a single non-zero entry in the upper triangular part
(including the diagonal), as well as the corresponding symmetric entry in the lower
triangular part.

Proof. Let Cn be the set of centrosymmetric matrices of size n× n over R+, and let
gn be the Lie algebra of centrosymmetric matrices under the Hadamard product.

First, we need to show that the dimension of the Lie algebra gn is ⌈n2

2
⌉. Note

that for a square matrix of size n× n, there are ⌈n2

2
⌉ entries in either the upper or

lower triangular part, including the diagonal.
Now, to construct a basis for gn, we create a set of centrosymmetric matrices

such that each matrix has a single non-zero entry in the upper or lower triangular
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part (including the diagonal) and the corresponding symmetric entry in the oppo-
site triangular part. This results in a set of ⌈n2

2
⌉ centrosymmetric matrices, which

we will denote it as Bn.
We claim that Bn is a basis for gn. To prove this, we need to show that the

elements of Bn are linearly independent and span the space of centrosymmetric
matrices. First, consider any two distinct elements Bi, Bj ∈ Bn. Since each basis
element has a single non-zero entry in the upper or lower triangular part and its
symmetric counterpart in the opposite triangular part, the only way for a linear
combination of Bi and Bj to be equal to the zero matrix is when the coefficients of
the linear combination are zero. This implies that the elements of Bn are linearly
independent.

Next, let A be an arbitrary centrosymmetric matrix in Cn. Then we decompose A

into a linear combination of the basis elements in Bn by assigning the non-zero en-
tries in the upper or lower triangular part of A to the corresponding basis elements.
Since any centrosymmetric matrix can be decomposed in this way, the elements of
Bn span the space of centrosymmetric matrices. Therefore, the Lie algebra gn has
a basis of dimension ⌈n2

2
⌉. The basis Bn is constructed from centrosymmetric ma-

trices with a single non-zero entry in the upper or lower triangular part (including
the diagonal), as well as the corresponding symmetric entry in the opposite trian-
gular part. Since the elements of Bn are linearly independent and span the space
of centrosymmetric matrices, Bn forms a basis for the Lie algebra gn. □

The exponential map for a Lie group, denoted as exp : gn → Cn, maps an
element from the Lie algebra to the Lie group. For this specific case, since we
are working with the Hadamard product, the exponential map can be defined
element-wise as follows:

(3.1) exp(A) =


ea11 ea12 · · · ea1n

ea21 ea22 · · · ea2n

...
... . . . ...

ean1 ean2 · · · eann

 ;

where A = (aij) ∈ gn is a centrosymmetric matrix. To show that this map is indeed
the exponential map for the Lie algebra gn under the Hadamard product, we need
to verify a few properties: To show smoothness, we can check the differentiability
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of the exponential function with respect to each entry aij of the matrix A. The
exponential function is known to be infinitely differentiable for any real argument,
and its derivatives are continuous. For any matrix entry aij, the derivative of eaij

with respect to aij is:
∂eaij

∂aij
= eaij ;

which is continuous. Since the exponential function is differentiable and contin-
uous for every entry of the matrix A, the exponential map exp(A) is smooth for
centrosymmetric matrices under the Hadamard product. For the identity element
In ∈ gn with

In =


0 0 · · · 0

0 0 · · · 0
...

... . . . ...
0 0 · · · 0

 ,

We can compute the exponential map as follows:

exp(In) =


e0 e0 · · · e0

e0 e0 · · · e0

...
... . . . ...

e0 e0 · · · e0

 =


1 1 · · · 1

1 1 · · · 1
...

... . . . ...
1 1 · · · 1

 .

This result shows that the exponential map satisfies the identity property for cen-
trosymmetric matrices under the Hadamard product.

For any A ∈ gn, the inverse of exp(A) in the Lie group Cn is given by exp(−A).
This is because exp(A) ◦ exp(−A) = exp(A − A) = exp(0) = I. Near the identity
element, the exponential map is a local diffeomorphism. This means that, in a
neighborhood of the identity element, the exponential map is a smooth, invertible
map between gn and Cn. Let us show this using the following centrosymmetric
matrix A ∈ gn, where n = 3 for simplicity.

Example 1.

A =

1 2 1

3 4 3

1 2 1
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Now, we can compute the exponential map of A, denoted by exp(A) as follows:

exp(A) =

e1 e2 e1

e3 e4 e3

e1 e2 e1

 .

The determinant of eA is
det(eA) = 0

and trace of A is:

tr(A) =
3∑

i=1

aii = 6.

Consequently, det(eA) is not equal to etr(A) for the matrix A.

The adjoint representation of a Lie algebra is a representation of the Lie algebra
on itself. In our case, we consider the Lie algebra Cn of centrosymmetric matrices
under the Hadamard product, with the Lie bracket defined as [A,B] = A◦B−B◦A.
The adjoint representation is a linear mapping, denoted by Ad : Cn → End(Cn),
where End(Cn) represents the set of endomorphisms on the Lie algebra Cn. For
a given centrosymmetric matrix X ∈ Cn, the adjoint representation maps X to a
linear transformation AdX : Cn → Cn defined as:

AdX(Y ) = [X, Y ] = X ◦ Y − Y ◦X,

where Y ∈ Cn. The adjoint representation acts on the Lie algebra itself and can be
used to study the structure and properties of the Lie algebra, including its Lie sub-
algebras and automorphism groups. In the context of centrosymmetric matrices
under the Hadamard product, the adjoint representation can help us understand
the relationships between the centrosymmetric matrices and their interactions un-
der the Hadamard product and the Lie bracket.

We will provide an example illustrating the adjoint representation in the context
of centrosymmetric matrices. Suppose we have the following 3× 3 centrosymmet-
ric matrices:

(3.2) X =

a b a

c d c

a b a

 and Y =

e f e

g h g

e f e

 .
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The adjoint representation AdX : Cn → Cn for the matrix X is defined as:

(3.3) AdX(Y ) = [X, Y ] = X ◦ Y − Y ◦X.

Let’s compute the adjoint representation AdX(Y ) as follows:

(3.4)

AdX(Y ) =

a b a

c d c

a b a

 ◦

e f e

g h g

e f e

−

e f e

g h g

e f e

 ◦

a b a

c d c

a b a



=

ae bf ae

cg dh cg

ae bf ae

−

ae bf ae

cg dh cg

ae bf ae

 =

0 0 0

0 0 0

0 0 0

 .

In this particular example, the adjoint representation AdX(Y ) resulted in a zero
matrix. The adjoint representation can help us understand the relationships be-
tween centrosymmetric matrices and their interactions under the Hadamard prod-
uct and the Lie bracket, providing insights into the structure and properties of the
Lie algebra Cn.

4. APPLICATION INVOLVING CENTROSYMMETRIC MATRICES AND THEIR PROPERTIES

UNDER THE HADAMARD PRODUCT

In quantum information theory, centrosymmetric matrices can be useful when
dealing with certain classes of quantum states or operations that exhibit symmetry.
For instance, let us consider a specific example involving a two-qubit system and
the concept of quantum entanglement.

Suppose we have a two-qubit system in the following mixed state, represented
by a density matrix ρ:

ρ =
1

4


1 0 0 1

0 1 1 0

0 1 1 0

1 0 0 1


This density matrix is centrosymmetric, and its structure indicates that the two

qubits are in a partially entangled state. To analyze the entanglement properties
of this state, we can calculate the entanglement entropy, which is a measure of the
entanglement between the two qubits.
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The entanglement entropy can be calculated by first computing the reduced
density matrix of one of the qubits, which is obtained by tracing out the other
qubit from the original density matrix. In this example, we can calculate the
reduced density matrix ρA of the first qubit as follows:

ρA = TrB(ρ) =

(
1
2

0

0 1
2

)
The entanglement entropy is then given by the von Neumann entropy of the

reduced density matrix:

S(ρA) = −Tr(ρA log2 ρA) = −1

2
log2(

1

2
)− 1

2
log2(

1

2
) = 1.

In this example, the centrosymmetric structure of the density matrix allowed us to
easily calculate the entanglement entropy of the two-qubit system. The properties
of centrosymmetric matrices under the Hadamard product and their geometric
properties can help analyze and manipulate such quantum states more efficiently.
Now, let us consider another example in quantum information theory involving a
three-qubit system in a mixed state. The density matrix ρ representing this state is
a 8× 8 centrosymmetric matrix presented as follows:

ρ =
1

8



1 0 0 0 0 0 0 1

0 1 0 0 0 0 1 0

0 0 1 0 0 1 0 0

0 0 0 1 1 0 0 0

0 0 0 1 1 0 0 0

0 0 1 0 0 1 0 0

0 1 0 0 0 0 1 0

1 0 0 0 0 0 0 1


.

The centrosymmetric structure of the density matrix suggests that the three-qubit
system exhibits some form of symmetry or correlation between its qubits. To fur-
ther analyze the entanglement properties of this state, we can calculate the re-
duced density matrices of the individual qubits or any pair of qubits by tracing out
the other qubits from the original density matrix.
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For example, to calculate the reduced density matrix ρAB of the first two qubits,
we can trace out the third qubit as follows:

ρAB = TrC(ρ) =
1

4


1 0 0 1

0 1 1 0

0 1 1 0

1 0 0 1

 .

By analyzing the reduced density matrix, we can compute various entanglement
measures to quantify the entanglement between the first two qubits or between
any qubit and the rest of the system. Consider a linear time-invariant (LTI) system
with the following input-output relationship:

y(t) =

∫ ∞

−∞
h(τ)x(t− τ), dτ ;

where x(t) is the input, y(t) is the output, and h(τ) is the impulse response function.
Suppose we have observations of the input and output signals at discrete time

points t1, t2, . . . , tN . Then, We can create a centrosymmetric Toeplitz matrix H

representing the impulse response:

H =


h0 h1 · · · hN−1

h1 h0 · · · hN−2

...
... . . . ...

hN−1 hN−2 · · · h0

 .

The input-output relationship can be approximated as:

y = Hx;

where x = [x(t1), x(t2), . . . , x(tN)]
T and y = [y(t1), y(t2), . . . , y(tN)]

T .

If the system exhibits symmetric behavior, then the centrosymmetric Toeplitz
matrix H can be used to represent the system. The properties of the Hadamard
product, as well as the geometric structure of centrosymmetric matrices, can be
utilized to simplify the identification process or develop new identification algo-
rithms for symmetric systems. Let us investigate the impact of noise on the identi-
fication process. The system’s input-output relationship can be represented by

(4.1) y = Hx+ n;
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where n is the noise vector.
In order to minimize the impact of noise on the identification process, we take

advantage of the centrosymmetric structure of the Toeplitz matrix H. One possi-
ble approach is to use regularization techniques, such as Tikhonov regularization,
which introduces a penalty term based on the centrosymmetric structure of the
matrix:

(4.2) min
x

||Hx− y||22 + λ||Lx||22;

where L is a linear operator that captures the centrosymmetric structure, and λ

is a regularization parameter that balances the trade-off between fitting the data
and enforcing the centrosymmetric structure. By exploiting the centrosymmetric
structure and the properties of the Hadamard product, we can develop efficient
algorithms for estimating the impulse response function x and improving the ro-
bustness of the identification process in the presence of noise.
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