

Advances in Mathematics: Scientific Journal **12** (2023), no.11, 963–976 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.12.11.3

AN INTRO TO δ_d -FUZZY GRAPHS

J. Jeromi Jovita¹, O. Uma Maheswari, and N. Meenal

ABSTRACT. Graph is a easy way to represent the real life situation. Graph is a combination of Points and Lines. In network analysis, the degree of a point plays a prominent role in Graph Theory. The degree of a point is the number of connections it has with the other points in the point set. Among the degrees of all the points in graph G^* , the minimum value is denoted by $\delta(G^*)$. In this article, a new abstraction of fuzzy graph is initiated by combining the parameters, degree of a point and minimum degree of the graph and termed it is as δ_d -fuzzy graphs. Order and Size on δ_d -fuzzy graphs were studied and Handshaking Lemma were explained with illustration. Idea on δ_d -regular fuzzy graph were interpreted using the theorems. Also operations on graphs such as union, intersection, complement, cartesian product, Tensor Product, Corona are extended for δ_d -fuzzy graphs.

1. INTRODUCTION

A graph is a set of points and lines. The lines between points will form a model of relations using graphical representation. [14] Fuzzy set theory was proposed by Prof. Zadeh which has been efficiently used to model many real world problems, which are uncertain. In a crisp graph, the members of the sets takes a single value of 0 or 1. For this reason, the uncertainities of real world problems

¹corresponding author

²⁰²⁰ Mathematics Subject Classification. 05C72, 05C07, 03E72, 05C12.

Key words and phrases. Minimum Degree of a Point, Fuzzy Graph, Cartesian Product, Tensor Product.

Submitted: 11.10.2023; Accepted: 26.10.2023; Published: 28.11.2023.

J. Jeromi Jovita, O. Uma Maheswari, and N. Meenal

don't work properly. But the fuzzy set provides its element to have the grade of membership within the range from 0 to 1. A concept of fuzzy graph was introduced by [10]Rosenfeld and some operations are discussed by [2] Mordeson and Nair, they also defined the complement of fuzzy graph. Also, Venugopalam [13] discussed Operations on Fuzzy Graphs. Further these operations are also studied by [11, 12] Sunitha and Vijayakumar. Later [7–9] Nagoorgani examined the properties of degree, regular, irregular, order and size of fuzzy graphs and also compared the relationship between these parameters. Let $G^*(P,L)$ be a simple graph with point set P and line set L. [1] In graph theory, relations can be modeled in to graph for better understanding. The number of points in a graph G^* is known as order and is denoted by $\rho(G^*)$ and the number of lines in G^* is known as size is denoted by $\tau(G^*)$. The sequence of distinct consecutive points followed by distinct consecutive lines is called Path. The closed path is known as Cycle. The degree of a point p_i is defined as the number of lines that are incident to that point and is denoted by $deq(p_i)$. If the degree of every point is same, then it is a regular graph, otherwise it is irregular. If the degree of all points in a graph are three, then it is cubic. If every point is connected to all other distinct points, then it is called complete graph.

2. δ_d -Fuzzy graph

Definition 2.1. Let $FG_{\delta_d} : (\sigma_{\delta_d}, \mu_{\delta_d})$ be a δ_d -fuzzy graph with the membership function of point set σ_{δ_d} and membership function of line set μ_{δ_d} under the crisp graph $G^* : (P, L)$ were defined by,

$$\sigma_{\delta_d}(p_i) = \frac{\delta(G^*)}{\deg(p_i)}; \ \forall \ p_i \in P(G^*) \text{ and}$$
$$\mu_{\delta_d}(p_i p_j) = \begin{cases} \min\{\sigma_{\delta_d}(p_i), \sigma_{\delta_d}(p_j)\}; \ \text{if } p_i p_j \in L(G^*)\\ 0; \text{ Otherwise.} \end{cases}$$

Definition 2.2. The Order $O(FG_{\delta_d})$ and Size $S(FG_{\delta_d})$ of δ_d -fuzzy graph under the crisp graph $G^* : (P, L)$ is defined as,

$$\rho_{\delta_d} = O(FG_{\delta_d}) = \sum_{p_i \in P(G^*)} \sigma_{\delta_d}(p_i) \text{ and } \tau_{\delta_d} = S(FG_{\delta_d}) = \sum_{p_i p_j \in L(G^*)} \mu_{\delta_d}(p_i p_j).$$

Definition 2.3. The degree of a point in δ_d -fuzzy graph is denoted by $\deg_{\delta_d}(p_i)$ and it is defined by,

$$\deg_{\delta_d}(p_i) = \sum_{\substack{p_i p_j \in P(G^*) \\ p_i \neq p_j}} \mu_{\delta_d}(p_i p_j); \ \forall \ p_i \in P(G^*).$$

Definition 2.4. The FG_{δ_d} fuzzy graph is said to be δ_d -complete fuzzy graph, if $\deg_{\delta_d}(p_i) = \rho_{\delta_d} - 1; \forall p_i \in P(G^*).$

Definition 2.5. The FG_{δ_d} fuzzy graph is said to be δ_d -regular fuzzy graph, if $\deg_{\delta_d}(p_i) = k$; $\forall p_i \in P(G^*)$ where k is a constant.

Definition 2.6. The total degree of a point on δ_d -fuzzy graph is denoted by $tdeg_{\delta_d}$ and it is defined as,

$$tdeg_{\delta_d}(p_i) = \deg_{\delta_d}(p_i) + \sigma_{\delta_d}(p_i); \ \forall \ p_i \in P(G^*).$$

Illustration 2.1. Consider a δ_d -fuzzy graph given in Figure 1 with Point set $P(G^*) = \{p_1, p_2, p_3, p_4, p_5, p_6, p_7, p_8\}$.

FIGURE 1.

The degree of all the points are given by,

$$\deg(p_2) = \deg(p_5) = \deg(p_6) = \deg(p_7) = \deg(p_8) = 3;$$
$$\deg(p_3) = 5; \deg(p_1) = 2 = \deg(p_4).$$

Thus $\delta(G^*) = 2$. The membership value of point sets are obtained by, $\sigma_{\delta_d}(p_i) = \frac{\delta(G^*)}{\deg(p_i)}$; $\forall p_i \in P(G^*)$. $\sigma_{\delta_d}(p_1) = 1 = \sigma_{\delta_d}(p_4)$; $\sigma_{\delta_d}(p_2) = \sigma_{\delta_d}(p_5) = \sigma_{\delta_d}(p_6) = \sigma_{\delta_d}(p_7) = \sigma_{\delta_d}(p_6) = \sigma_{\delta_d}(p_6) = \sigma_{\delta_d}(p_6) = \sigma_{\delta_d}(p_7) = \sigma_{\delta_d}(p_6) = \sigma_{\delta_d}(p_6) = \sigma_{\delta_d}(p_7) = \sigma_{\delta_d}(p_6) = \sigma_{\delta_d}(p$

 $\sigma_{\delta_d}(p_8) = 0.6; \ \sigma_{\delta_d}(p_3) = 0.4.$ The membership value of the Line set are obtained as by Definition 2.1 are, $\mu_{\delta_d}(p_1p_2) = \mu_{\delta_d}(p_1p_5) = \mu_{\delta_d}(p_2p_6) = \mu_{\delta_d}(p_4p_8) = \mu_{\delta_d}(p_5p_6) = \mu_{\delta_d}(p_6p_7) = \mu_{\delta_d}(p_7p_8) = 0.6; \ \mu_{\delta_d}(p_2p_3) = \mu_{\delta_d}(p_3p_5) = \mu_{\delta_d}(p_3p_7) = \mu_{\delta_d}(p_3p_4) = \mu_{\delta_d}(p_3p_8) = 0.4.$

The order and size of $FG\delta_d$ fuzzy graph are given by, $\rho_{\delta_d}(FG_{\delta_d}) = \sum_{p_i \in P(G^*)} \sigma_{\delta_d} = 5.4$ and $\tau_{\delta_d}(FG_{\delta_d}) = \sum_{p_i p_j \in E(G^*)} \mu_{\delta_d}(p_i p_j) = 0.6(7) + 0.4(5) = 6.2$ respectively. The degree of δ_d -fuzzy graph are, $\deg_{\delta_d}(p_1) = 1.2$; $\deg_{\delta_d}(p_2) = 1.6 = \deg_{\delta_d}(p_7) = \deg_{\delta_d}(p_8)$; $\deg_{\delta_d}(p_3) = 2$; $\deg_{\delta_d}(p_4) = 1$; $\deg_{\delta_d}(p_5) = 1.8 = \deg_{\delta_d}(p_6)$.

Theorem 2.1. Let ρ_{δ_d} and τ_{δ_d} be the order and size of δ_d -fuzzy graph under the crisp graph G^* with order ρ and size τ respectively, then $\rho_{\delta_d} \leq \rho$ and $\tau_{\delta_d} \leq \tau$.

Proof. By Definition 2.1, $\rho_{\delta_d} = \sum_{p_i \in P(G^*)} \sigma_{\delta_d} = \sum_{p_i \in P(G^*)} \frac{\delta(G^*)}{\deg(p_i)}$. And by Definition 2.4, the complete point has the maximum degree of $\rho_{\delta_d} - 1$. Thus, $\rho_{\delta_d} \leq \sum_{p_i \in P(G^*)} \frac{\rho - 1}{\rho - 1} \leq 1 + 1 + \ldots + 1$ (ρ times). Therefore $\rho_{\delta_d} \leq \rho$.

Similarly, $\tau_{\delta_d} = \sum_{p_i p_j \in L(G^*)} \mu_{\delta_d}(p_i p_j) = \sum_{p_i p_j \in L(G^*)} \min\{\sigma_{\delta_d}(p_i), \sigma_{\delta_d}(p_j)\}$. Since the maximum membership value of a point is 1. This implies $\tau_{\delta_d} \leq 1 + 1 + \ldots + 1$ (τ times). Thus, $\tau_{\delta_d} \leq \tau$.

Theorem 2.2. Equality Theorem of Theorem 2.1 Let $FG_{\delta_d} : (\sigma_{\delta_d}, \mu_{\delta_d})$ be δ_d -fuzzy graph with order ρ_{δ_d} and size τ_{δ_d} corresponding to a crisp graph of order ρ and size τ respectively, then $\rho_{\delta_d} = \rho$ and $\tau_{\delta_d} = \tau$ if and only if G^* is a regular graph.

Proof. Suppose $\rho_{\delta_d} = \rho$, then by Definition 2.2, $\rho_{\delta_d} = \sum_{p_i \in P(G^*)} \frac{\delta(G^*)}{\deg(p_i)} = \rho$. This happens only if $\deg(p_i) = \delta(G^*) = \min\{\deg(p_i)/p_i \in P(G^*)\}$, which implies that G^* is a regular graph. Conversely, if G^* is regular graph, then, the degree of every points are equal to some constant (say m). Thus, $\deg(p_i) = \min\{\deg(p_i)/p_i \in P(G^*)\} = \delta(G^*)$. Then, $\rho_{\delta_d} = \sum_{p_i \in P(G^*)} \frac{\delta(G^*)}{\deg(p_i)} = \sum_{p_i \in P(G^*)} \frac{m}{m} = \sum_{p_i \in P(G^*)} 1 = 1 + 1 + \ldots + 1 \ (\rho \text{ times}) = \rho$. Also, let $\tau_{\delta_d} = \tau$, By Definition 2.2 of δ_d -fuzzy graph, $\tau_{\delta_d} = \sum_{p_i p_j \in L(G^*)} = \tau$ only if minimum degree is equal to the degree of every point in a graph G^* , which implies that G^* is a regular graph. Conversely if G^* is a regular graph, then $\deg(p_i) = \min\{\deg(p_i)/p_i \in P(G^*)\}$.

This implies
$$\tau_{\delta_d} = \sum_{p_i p_j \in L(G^*)} \mu_{\delta_d}(p_i p_j) = \sum_{p_i p_j \in L(G^*)} \min\{\sigma_{\delta_d}(p_i), \sigma_{\delta_d}(p_j)\} = 1 + 1 + \dots + 1(\tau \text{ times}) = \tau.$$

Theorem 2.3. Bounds on Order and Size of δ_d -fuzzy graph. Let FG_{δ_d} be a δ_d -fuzzy graph of order ρ_{δ_d} and size τ_{δ_d} , corresponding to non-isolated connected simple graph G^* with order ρ and size τ , then $2 \le \rho_{\delta_d} \le \rho$ and $1 \le \tau_{\delta_d} \le \tau$.

Proof. Let us assume minimum degree sequence of non-isolated connected simple graph G^* on δ_d -fuzzy graph, which is, K_2 with deg ree sequence $\{1, 1\}$. Thus the order, $\rho_{\delta_d} = \sum_{p_i \in P(G^*)} \sigma_{\delta_d}(p_i) = \frac{1}{1} + \frac{1}{1} = 2$ and size, $\tau_{\delta_d} = \sum_{p_i p_j \in L(G^*)} \tau_{\delta_d}(p_i p_j) = 1$. The upper bound is obvious from Theorem 2.2. This completes the proof.

Proposition 2.1. Let FG_{δ_d} be δ_d -fuzzy graph corresponding to a crisp graph G^* : (P, L), then $\deg_{\delta_d}(p_i) \leq \deg(p_i) \forall p_i \in P(G^*)$.

Proof. By Definition 2.3,
$$\deg_{\delta_d}(p_i) = \sum_{p_i p_j \in L(G^*)} \mu_{\delta_d}(p_i p_j) = \sum \min\{\sigma_{\delta_d}(p_i), \sigma_{\delta_d}(p_j)\} = \sum_{p_i p_j \in L(G^*)} 1 \le \deg(p_i).$$

Lemma 2.1. Let FG_{δ_d} be δ_d -fuzzy graph under the crisp graph $G^* : (P, L)$, then the sum of the degree of every point of FG_{δ_d} is equal to twice the size of $FG\delta_d$.

Illustration 2.2. From the illustration 2.1, for the FG_{δ_d} graph given in Figure 1. Sum of degree of all points=1.2+1.6+2+1+1.6+1.8+1.6+1.6=12.4.

Twice the size of $FG\delta_d$ fuzzy graph= $2 \times 6.2 = 12.4$. Hence Lemma 2.1, holds.

Lemma 2.2. Let FG_{δ_d} be a δ_d -fuzzy graph under the crisp graph G^* : (P, L), then the sum of total degree of all points is equal to sum of twice the size of FG_{δ_d} and order of FG_{δ_d} .

Lemma 2.3. According to Definition 2.6, $tdeg_{\delta_d}(p_i) = deg_{\delta_d}(p_i) + \sigma_{\delta_d}(p_i); \forall p_i \in P(G^*).$

$$\begin{split} & \text{Sum of all points in } FG\delta_d \text{ fuzzy graph} = \sum_{\substack{p_i p_j \in L(G^*) \\ p_i p_j \in L(G^*)}} \mu_{\delta_d}(p_i p_j) + \sum_{\substack{p_i \in P(G^*) \\ p_i \in P(G^*)}} \sigma_{\delta_d}(p_i) = 2\pi_{\delta_d}(FG_{\delta_d}) + \rho_{\delta_d}(FG\delta_d). \end{split}$$

Illustration 2.3. For the FG_{δ_d} graph given in Figure 1, the total degree of all points are obtained by, $tdeg_{\delta_d}(p_1) = 2.2 = tdeg_{\delta_d}(p_2) = tdeg_{\delta_d}(p_7) = tdeg_{\delta_d}(p_8)$;

 $tdeg_{\delta_d}(p_3) = 2.4 = tdeg_{\delta_d}(p_5) = 2.4 = tdeg_{\delta_d}(p_6); tdeg_{\delta_d}(p_4) = 2.$ Sum of all total degrees of all points in $FG\delta_d = 2.2 + 2.2 + 2.4 + 2 + 2.2 + 2.4 + 2.2 + 2.2 = 17.8.$

 $2\tau_{\delta_d}(FG\delta_d) + \rho_{\delta_d}(FG_{\delta_d}) = 2(6.2) + 5.4 = 12.4 + 5.4 = 17.8$. Thus the Lemma holds.

3. Regular δ_d -fuzzy graph

Definition 3.1. If degree of every point is equal to some constant(m) in δ_d -fuzzy graph, under the crisp graph G^* , then it is known to be m-regular δ_d -fuzzy graph.

Definition 3.2. If total degree of every point is equal to some constant (m_1) in δ_d -fuzzy graph, under the crisp graph G^* , then it is known to be m_1 -totally regular δ_d -fuzzy graph.

Theorem 3.1. Let FG_{δ_d} be a δ_d -fuzzy graph under the crisp graph G^* , if σ_{δ_d} is constant, then FG_{δ_d} is δ_d -regular fuzzy graph and δ_d -totally regular fuzzy graph.

Proof. Suppose FG_{δ_d} is not totally fuzzy graph. Then, $tdeg_{\delta_d}(p_i) \neq tdeg_{\delta_d}(p_j)$; $\forall p_i, p_j \in P(G^*)$. This implies $deg_{\delta_d}(p_i) + \sigma_{\delta_d}(p_i) \neq deg_{\delta_d}(p_j) + \sigma_{\delta_d}(p_j)$. Since σ_{δ_d} is constant. $\implies deg_{\delta_d}(p_i) \neq deg_{\delta_d}(p_j)$ which is contradiction. Thus we conclude that FG_{δ_d} is δ_d -regular fuzzy graph.

Conversely, let FG_{δ_d} be a δ_d -regular fuzzy graph. Then $\deg_{\delta_d}(p_i) = \deg_{\delta_d}(p_j)$; $\forall p_i, p_j \in P(G^*)$. This implies, $\deg_{\delta_d}(p_i) + \sigma_{\delta_d}(p_i) = \deg_{\delta_d}(p_j) + \sigma_{\delta_d}(p_j)$. Since σ_{δ_d} is constant. This becomes $tdeg_{\delta_d}(p_i) = tdeg_{\delta_d}(p_j)$, which proves that FG_{δ_d} is δ_d -totally regular fuzzy graph. \Box

Illustration 3.1. Consider a δ_d fuzzy graph in Figure 2, with Point set $P(G^*) = \{p_1, p_2, p_3, p_4, p_5\}$.

The degree of each points are $\deg(p_i) = 3 \forall p_i \in P(G^*)$. Thus $\delta(G^*) = 3$. The membership value of point sets are obtained by, $\sigma_{\delta_d}(p_i) = \frac{\delta(G^*)}{\deg(p_i)}$; $\forall p_i \in P(G^*)$. Also $\sigma_{\delta_d}(p_i) = 1$; $\forall p_i \in P(G^*)$. The membership value of Line set are obtained as by Definition 2.1 are, $\mu_{\delta_d}(p_ip_j) = 1$; $\forall p_ip_j \in L(G^*)$. The degree of δ_d -fuzzy graph are, $\deg_{\delta_d}(p_1) = 3$; $\forall p_i \in P(G^*)$. Since the degree of every points in δ_d -fuzzy graph are equal. Thus FG_{δ_d} is 3-regular δ_d -fuzzy graph.

FIGURE 2.

4. Operations on δ_d -fuzzy graphs

Definition 4.1. Let $FG_{\delta_{d_1}} : (\sigma_{\delta_{d_1}}, \mu_{\delta_{d_1}})$ and $FG_{\delta_{d_2}} : (\sigma_{\delta_{d_2}}, \mu_{\delta_{d_2}})$ be two δ_d -fuzzy graph under the crisp graph $G_1^* : (P_1, L_1)$ and $G_2^* : (P_2, L_2)$ respectively. The union of two δ_d -fuzzy graphs $FG_{\delta_{d_3}}$ are defined as,

$$\sigma_{\delta_d}(p_i) = (\sigma_{\delta_{d_1}} \cup \sigma_{\delta_{d_2}})(p_i) = \begin{cases} \sigma_{\delta_{d_1}}(p_i); p_i \in P(G_1^*) - P(G_2^*) \\ \sigma_{\delta_{d_2}}(p_i); p_i \in P(G_2^*) - P(G_1^*) \\ \max\{\sigma_{\delta_{d_1}}(p_i), \sigma_{\delta_{d_2}}(p_i)\}; p_i \in P(G_1^*) \cap P(G_2^*) \end{cases}$$
$$\mu_{\delta_d}(p_i p_j) = (\mu_{\delta_{d_1}} \cup \mu_{\delta_{d_2}})(p_i p_j) = \begin{cases} \mu_{\delta_{d_1}}(p_i p_j); p_i p_j \in L(G_1^*) - L(G_2^*) \\ \mu_{\delta_{d_2}}(p_i p_j); p_i p_j \in L(G_2^*) - L(G_1^*) \\ \max\{\mu_{\delta_{d_1}}(p_i p_j), \mu_{\delta_{d_2}}(p_i p_j)\}; p_i p_j \in L(G_1^*) \cap L(G_2^*) \end{cases}$$

Illustration 4.1. Consider the two δ_d -fuzzy graphs $FG_{\delta_{d_1}}$ and $FG_{\delta_{d_2}}$ given in Figure 3(a) and 3(b). Then the union of these two δ_d -fuzzy graphs is given in Figure 3(c).

Remark 4.1. The graph FG_{δ_d} given in Figure 3(c). is not a δ_d -fuzzy graph. Since according to the definition of the node membership function σ_{δ_d} of δ_d -Fuzzy Graph, $\sigma_{\delta_d}(p_2) = \frac{\delta_d(G^*)}{\deg(p_2)} = \frac{2}{4} = 0.5 \neq 1$. Thus the union of two δ_d -fuzzy graphs $FG_{\delta_{d_1}}$ and

J. Jeromi Jovita, O. Uma Maheswari, and N. Meenal

FIGURE 3.

 $FG_{\delta_{d_2}}$ need not be a δ_d -fuzzy graph, but it is a fuzzy graph and call it as pseudo δ_d -fuzzy graph.

Definition 4.2. Let $FG_{\delta_{d_1}} : (\sigma_{\delta_{d_1}}, \mu_{\delta_{d_1}})$ and $FG_{\delta_{d_2}} : (\sigma_{\delta_{d_2}}, \mu_{\delta_{d_2}})$ be two δ_d -fuzzy graph under the crisp graph $G_1^* : (P_1, L_1)$ and $G_2^* : (P_2, L_2)$ respectively. The intersection of two δ_d -fuzzy graphs $FG_{\delta_{d_4}}$ are defined as,

$$\sigma_{\delta_{d}}(p_{i}) = (\sigma_{\delta_{d_{1}}} \cap \sigma_{\delta_{d_{2}}})(p_{i}) = \begin{cases} \min\{\sigma_{\delta_{d_{1}}}(p_{i}), \sigma_{\delta_{d_{2}}}(p_{i})\}; p_{i} \in P(G_{1}^{*}) \cap P(G_{2}^{*}) \\ 0; otherwise \end{cases}$$
$$\mu_{\delta_{d}}(p_{i}p_{j}) = (\mu_{\delta_{d_{1}}} \cap \mu_{\delta_{d_{2}}})(p_{i}p_{j}) = \begin{cases} \min\{\mu_{\delta_{d_{1}}}(p_{i}p_{j}), \mu_{\delta_{d_{2}}}(p_{i}p_{j})\}; p_{i}p_{j} \in L(G_{1}^{*}) \cap L(G_{2}^{*}) \\ 0; otherwise \end{cases}$$

Illustration 4.2. For the two δ_d -fuzzy graphs $FG_{\delta_{d_1}}$ and $FG_{\delta_{d_2}}$ given in Figure 3(a) and 3(b), the intersection of these two δ_d -fuzzy graph $FG_{\delta_{d_4}}$ is given in Figure 4.

Remark 4.2. The graph $FG_{\delta_{d_4}}$ given in Figure 4, is not a δ_d -fuzzy graph. Since according to the Definition of the node membership function σ_{δ_d} of δ_d -fuzzy graph, $\sigma_{\delta_d}(p_2) = \frac{\delta_d(G^*)}{\deg(p_2)} = \frac{1}{1} = 1$. Thus the intersection of two δ_d -fuzzy graphs $FG\delta_{d_1}$ and $FG\delta_{d_2}$ is not a δ_d fuzzy graph, but it is a fuzzy graph called pseudo δ_d -fuzzy graph.

FIGURE 4.

Definition 4.3. Let $FG_{\delta_{d_1}}$: $(\sigma_{\delta_{d_1}}, \mu_{\delta_{d_1}})$ and $FG_{\delta_{d_2}}$: $(\sigma_{\delta_{d_2}}, \mu_{\delta_{d_2}})$ be two δ_d -fuzzy graph under the crisp graph G_1^* : (P_1, L_1) and G_2^* : (P_2, L_2) respectively. Assume $P(G_1^*) \cap P(G_{*2}) = \phi$. The join of two δ_d -fuzzy graphs with points and lines are given by $P(G^*) = P(G_1^*) \cup P(G_2^*)$ and $L(G^*) = L(G_1^*) \cup L(G_2^*) \cup L(G')$, where L(G') is the set of all lines joining points of points $P(G_1^*)$ with points of $P(G_2^*)$ is defined as,

$$\sigma_{\delta_d}(p_i) = (\sigma_{\delta_{d_1}} + \sigma_{\delta_{d_2}})(p_i) = \sigma_{\delta_{d_1}}(p_i) \cup \sigma_{\delta_{d_2}}(p_i), \ \forall \ p_i \in P(G_1^*) \ \text{and} \ p_j \in P(G_2^*)$$

$$\mu_{\delta_d}(p_i p_j) = (\mu_{\delta_{d_1}} + \mu_{\delta_{d_2}})(p_i p_j)$$

=
$$\begin{cases} (\mu_{\delta_{d_1}}(p_i p_j) \cup \mu_{\delta_{d_2}})(p_i p_j); & \forall \ p_i p_j \in L(G_1^*) \cup L(G_2^*) \\ \max\{\sigma_{\delta_d}(p_i), \sigma_{\delta_d}(p_j); if(p_i, p_j) \in L(G') \end{cases}$$

Illustration 4.3. Consider the two δ_d -fuzzy graphs, given in Figure 5(a) and 5(b). Then the join of two δ_d -fuzzy graphs. $FG_{\delta_{d_{\tau}}}$ is given in Figure 5(c).

Remark 4.3. The graph $FG_{\delta_{d_7}}$ given in Figure 5(c) is not a δ_d -fuzzy graph. Since according to the definition of the node membership function σ_{δ_d} of δ_d - fuzzy graph, $\sigma_{\delta_d}(q_1) = \frac{\delta_d(G^*)}{\deg(q_1)} = \frac{3}{6} = 0.5 \neq 1$. Thus the join of two δ_d -fuzzy graphs $FG_{\delta_{d_5}}$ and $FG_{\delta_{d_6}}$ need not be a δ_d -fuzzy graph, but it is a fuzzy graph known as pseudo δ_d -fuzzy graph.

Definition 4.4. Let $FG_{\delta_{d_1}}$: $(\sigma_{\delta_{d_1}}, \mu_{\delta_{d_1}})$ and $FG_{\delta_{d_2}}$: $(\sigma_{\delta_{d_2}}, \mu_{\delta_{d_2}})$ be two δ_d -fuzzy graph under the crisp graph G_1^* : (P_1, L_1) and G_2^* : (Q_2, L_2) respectively. Then the cartesian product '×' of two δ_d -fuzzy graphs with points and lines are given by $P(G^*) = P(G_1^*), Q(G_2^*)$ and $L(G^*) = \{(p_1, q_1)(p_2, q_2)/p_1 = p_2, and(q_1, q_2) \in L(G_2^*) \text{ or } q_1 = q_2, and(p_1, p_2) \in L(G_1^*)\}$ is defined as,

$$\sigma_{\delta_d}(p_i q_j) = (\sigma_{\delta_{d_1}}(p_i), \sigma_{\delta_{d_2}}(q_j)) = \min\{\sigma_{\delta_{d_1}}(p_i), \sigma_{\delta_{d_2}}(q_j)\}$$

J. Jeromi Jovita, O. Uma Maheswari, and N. Meenal

FIGURE 5.

$$\mu_{\delta_d}(p_i p_j) = (\mu_{\delta_{d_1}} \times \mu_{\delta_{d_2}})(p_i p_j)$$

$$= \begin{cases} \max\{\sigma_{\delta_{d_1}}(p_1), \mu_{\delta_{d_2}}(q_1 q_2)\}; if p_1 = p_2 \text{ and } (q_1 q_2) \in L(G_2^*) \\ \max\{\mu_{\delta_{d_1}}(p_1 p_2), \sigma_{\delta_{d_2}}(q_1)\}; if q_1 = q_2 \text{ and } (p_1 p_2) \in L(G_1^*) \end{cases}$$

Illustration 4.4. Consider the two δ_d -fuzzy graphs $FG_{\delta_{d_8}}$ and $FG_{\delta_{d_9}}$ given in Figure 6(a) and 6(b). Then the cartesian product of these two δ_d -fuzzy graphs $FG_{\delta_{d_{10}}}$ is given in Figure 6(c).

Remark 4.4. The graph FG_{δ_d} given in Figure 6(c). is not a δ_d -fuzzy graph. Since according to the definition of the node membership function σ_{δ_d} of δ_d -fuzzy graph, $\sigma_{\delta_d}(p_1, q_1) = \frac{\delta_d(G^*)}{\deg(p_1, q_1)} = \frac{2}{3} = 0.6 \neq 0.5$. Thus the cartesian product of two δ_d -fuzzy graphs $FG_{\delta_{d_1}}$ and $FG_{\delta_{d_2}}$ need not be a δ_d -fuzzy graph, but it is a fuzzy graph known as pseudo δ_d -fuzzy graph.

AN INTRO TO δ_d -FUZZY GRAPHS

FIGURE 6.

Definition 4.5. Let $FG_{\delta_{d_1}}$: $(\sigma_{\delta_{d_1}}, \mu_{\delta_{d_1}})$ and $FG_{\delta_{d_2}}$: $(\sigma_{\delta_{d_2}}, \mu_{\delta_{d_2}})$ be two δ_d -fuzzy graphs under the crisp graph G_1^* : (P_1, L_1) and G_2^* : (Q_2, L_2) respectively. Then the tensor product ' \otimes ' of two δ_d -fuzzy graphs are defined as,

 $(\sigma_{\delta_{d_1}} \otimes \sigma_{\delta_{d_2}})(p_i q_j) = \max\{\sigma_{\delta_{d_1}}(p_i), \sigma_{\delta_{d_2}}(q_j)\}; (p_i, q_j) \in P(G_1^*) \times Q(G_2^*)$

and

$$(\mu_{\delta_{d_1}} \otimes \mu_{\delta_{d_2}})((p_1q_1), (p_2q_2)) = \max\{\mu_{\delta_{d_1}}(p_1p_2), \mu_{\delta_{d_2}}(q_1q_2)\},\$$

for all $p_1 = p_2$, $q_1q_2 \in L(G_2^*)$, $q_1 = q_2$ and $p_1p_2 \in L(G_1^*)$.

Illustration 4.5. Consider the two δ_d -fuzzy graphs $FG_{\delta_{d_8}}$ and $FG_{\delta_{d_9}}$ given in Figure 6(a) and 6(b). Then the tensor product of these two δ_d -fuzzy graphs $FG_{\delta_{d_10}}$ is given in Figure 6(c).

Remark 4.5. The graph FG_{δ_d} given in Figure 7(c). is not a δ_d -fuzzy graph. Since according to the definition of the node membership function σ_{δ_d} of δ_d -fuzzy graph, $\sigma_{\delta_d}(p_2, q_1) = \frac{\delta_d(G^*)}{\deg(p_2, q_1)} = \frac{1}{2} = 0.5 \neq 1$. Thus the tensor product of two δ_d -fuzzy graphs $FG_{\delta_{d_{11}}}$ and $FG_{\delta_{d_{12}}}$ need not be a δ_d -fuzzy graph, but it is a fuzzy graph known as pseudo δ_d -fuzzy graph.

FIGURE 7.

Definition 4.6. Let FG_{δ_d} : $(\sigma_{\delta_d}, \mu_{\delta_d})$ be δ_d -fuzzy graph corresponding to a crisp graph G^* : (P, L). The complement of δ_d -fuzzy graph $FG\delta_d^c$ is defined as, $\sigma_{\delta_d}^c(p_i) = \sigma_{\delta_d}(p_i)$, $\forall p_i \in P(G^*)$ and $\mu_{\delta_d}^c(p_i p_j) = \begin{cases} \min\{\sigma_{\delta_d}(p_i), \sigma_{\delta_d}(p_j)\}; if p_i p_j \notin L(G^*) \\ 0; p_i p_j \in L(G^*) \end{cases}$

Illustration 4.6. For the δ_d -fuzzy graph $FG_{\delta_{d_{14}}}$ given in Figure 8(a), its complement is given in Figure 8(b).

Remark 4.6. The complement of $FG\delta_{d_{14}}$ fuzzy graph is not $\delta_{d_{14}}$ -fuzzy graph but, it is a fuzzy graph called pseudo δ_d -fuzzy graph.

5. CONCLUSION

A new concept of δ_d -fuzzy graph is defined using the degree of the point set and minimum degree of a crisp graph. Also the Handshaking lemma is confined with illustrations is confined in this article. Theorems based on regular δ_d -fuzzy graph

and totally regular δ_d -fuzzy graph were explained with some examples. Also, some operations like union, intersection, join, cartesian product, complement, tensor product were defined and it is also shown that the δ_d -fuzzy graph obtained using these operations need not be a δ_d -fuzzy graph and it is known as pseudo δ_d -fuzzy graph. To find the domination number for δ_d -fuzzy graphs are considered to be the future work.

REFERENCES

- [1] A. Chellaram Malaravan, A. Wilson Baskar: *A note on graph and its complement with specified properties: Radius, diameter, center, and periphery*, Discrete Mathematics, Algorithms and Applications, Vol.11, No.2 2019.
- [2] J.N. Mordeson, S. Premchand Nair: *Fuzzy Graphs and Fuzzy Hypergraphs*, Physica-verlag, Heidelberg, 2000.
- [3] N. Meenal: *A First Look at Eccentric Fuzzy Graph*, International Journal of Research and Analytical Reviews, **6**(1) (2019), 188-194.
- [4] N. Meenal, J. Jeromi Jovita: *On Regular Inverse Eccentric Fuzzy Graph*, Applications and Applied Mathematics: An International Journal(AAM), **17** (3) (2022), 119-128.
- [5] N. Meenal, J. Jeromi Jovita: *A First Look at Inverse Eccentric Fuzzy Graph*, AIP conference Proceedings, **2828**(1) (2023), art. no. 020001.
- [6] N. Meenal, M. Parimaladevi: An Intro to d_{δ} Fuzzy Graphs, Presented at International Conference on Wavelet Analysis and Graph Theory, in 15th and 16th September 2022, under communication.
- [7] A. Nagoor Gani, M. Basheer Ahamed: *Order and Size in Fuzzy Graph*, Bulletin of Pure and Applied Sciences, **22E**(1) (2003), 145-148.

- [8] A. Nagoorgani, V.T. Chandrasekaran: *A first look at Fuzzy Graph Theory*, Allied publishers Pvt. Ltd. 2010.
- [9] A. Nagoor Gani, S.R. Latha: *On Irregular fuzzy graph*, Applied Mathematical Sciences, **6**(11) (2012), 517-523.
- [10] A. Rosenfeld: *Fuzzy Graphs*, In: L.A. Zadeh, K.S.Fu, M. Shimura., Eds., Fuzzy sets and their Applications, Academic Press, 77-95, 1975.
- [11] M.S. Sunitha, A.A. Vijayakumar: *Characterization of Fuzzy Trees*, Information Sciences, 113 (1999), 293-300.
- [12] M.S. Sunitha, A. Vijaya Kumar: *complement of a Fuzzy Graph*, Indian Journal of Pure and Applied Mathematics, **33**(9) (2013), 1451-1464.
- [13] D. Venugopalam, N. Maruthi Kumari, M. Vijaya Kumar: *Operations on Fuzzy Graphs*. South Asian Journal of Mathematics **3**(5) (2013), 333-338.
- [14] L. Zadeh: Fuzzy sets, Information and Control, 8 (1965), 338-353.

DEPARTMENT OF MATHEMATICS J. J. COLLEGE OF ARTS AND SCIENCE(A), (AFFILIATED TO BHARATHIDASAN UNIVERSITY) SIVAPURAM, PUDUKKOTTAI, INDIA-622 422. *Email address*: jeromijovita@gmail.com

DEPARTMENT OF MATHEMATICS J. J. COLLEGE OF ARTS AND SCIENCE(A), (AFFILIATED TO BHARATHIDASAN UNIVERSITY) SIVAPURAM, PUDUKKOTTAI, INDIA-622 422. *Email address*: ard_uma@yahoo.com.sg

DEPARTMENT OF MATHEMATICS GOVERNMENT ARTS AND SCIENCE COLLEGE (AFFILIATED TO BHARATHIDASAN UNIVERSITY), PUDUKKOTTAI, TAMILNADU, INDIA 622 001 Email address: meenal_thillai@rediffmail.com