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STRUCTURE OF A RING IN WHICH EVERY ELEMENT IS SUM OF 3, 4 OR 5
COMMUTING TRIPOTENTS

Kumar Napoleon Deka! and Helen K. Saikia

ABSTRACT. In this paper we show if R be a ring in which every element is sum
of three commuting tripotents then for every k € R we have (k — 3)(k — 2)%(k —
1)2k2(k + 1)2(k + 2)%(k + 3) = 0, if every element of R is sum of four commuting
tripotents then for every k € R we have (k—4)(k—3)(k—2)%(k—1)2k*(k+1)?(k+
2)2(k + 3)(k + 4) = 0, if every element of R is sum of five commuting tripotents
then for every k € R we have (k—5)(k —4)(k — 3)2(k — 2)3(k — 1)3k*(k + 1)3(k +
2)3(k+3)%(k+4)(k+5) = 0. Then we discuss the properties of these type of ring.
Finally we find the general structure of a ring in which every element is sum of n
commuting tripotents and discuss the properties of it.

1. INTRODUCTION

There are many works done by various authors on the rings which are the sum
of idempotents,tripotents, and nilpotents.In the paper [2]the authors discuss the
ring in which every element is a sum of two commuting tripotents and their related
properties and show that the elements satisfy the identity 2® = z*. In the paper
[2]], the authors discuss the rings in which every element is a sum of an idempotent
and tripotent that commute. Again in the paper [3] the author discusses the ring
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in which every element is the sum of n tripotents and a nilpotent which commute
each other, also he showed that in this type of ring (2n+1)! is nilpotent for 1 < n <
7 and R is such type of ring then R = (Ry) X (Ry) x ... x (R,,) where 2,3,...,pn
are primes not greater than (2n + 1),1 < n < 7, each R; has the property that p;
is nilpotent and a? — a is nilpotent for every a € R; [3]]. Also in each R;, J(R;)
is nil, and R;/J(R;) is subdirect product of fields isomorphic to F,, [3[]. Again
in the paper [4] the author shows some properties related to the ring in which
every element is a sum of a nilpotent and three tripotents that commute with one
another. In the paper [5] the authors discuss the ring in which every element is the
sum of a nilpotent and two tripotents(that commute one another) and denoted it
by (strong) SNTT-ring. The author [5] shows that If R is strong SNTT- ring then
R=A@ B C, where A is zero or A/J(A) is Boolean with J(A) is nil, B is zero
or B/J(B) is subdirect product of Zs;s with J(B) nil, C is zero or C/J(C) is a
subdirect product of Zs’s with J(C') nil, J(R) is nil and R/J(R) has the identity
2% = x, a® — a is nilpotent for all a € R [5].

It is very useful for knowing the properties of a ring if we know the structure
(especially the equation followed by each element of the ring )of the ring. So in
this paper, we are mainly concerned about the structure of the ring. Firstly we
find the structure for the ring in which the element is the sum of 3,4,5 commuting
tripotents. Then we find the general structure for the ring in which every element
is the sum of n commuting tripotents. And finally, we discuss the properties of
these types of rings.

2. PRELIMINARIES

All rings consider here are ring with unity. The Jacobson radical is denoted by
J(R) for a ring R. Also, all the units of a ring R are denoted by U(R). Again the
Chinese Remainder Theorem states "Let R be ring and /.J be ideals in R such that
I + J = R then there exists a ring isomorphism R/(INJ) = R/I x R/J”. Also,
the Bezout identity states that if « and b be integers with g.c.d d then there exist
integers x and y such that az + by = d.

If a ring R is a sum of n commuting tripotents we denote it by S7™. So the ring
in which every element is a sum of 3,4,5 commuting tripotents are ST, ST*, ST°
respectively.
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3. RINGS IN WHICH EVERY ELEMENT IS DIFFERENCE OF A TRIPOTENTS AND AN
IDEMPOTENT WHICH COMMUTE EACH OTHER

Proposition 3.1. ] Ifin a ring R every element is every element sum of an idempotent
and tripotent that commute with each other then they satisfy the equation

(z° —7)(x —2) = 0.

Proof. Suppose = € R. Then Je, f € Rwith e? = ¢, f2 = f and ef = fe, such that
r=e+f.now (2° —x)(x—2) = {(e+ f)* — (e+ )} e+ f—2) = Bef +3ef?)(e+
f) —6ef?—6ef =3ef +3ef?+3ef? + 3ef —6ef? —6ef = 0. O

In paper [2] the authors called this type of ring as strong SIT (Sum of idempo-
tent and tripotent) that commute with each other)ring and shows the following
properties.

Theorem 3.1. [2]. The following are equivalent for a ring R.

(1) Ris a strong SIT-ring.
(2) R has the identity 25 = 2%,
(3) R is one of the following types.
(a) R/J(R) is Boolean and U(R) is a group of exponent 2.
(b) R is subdirect product of Z;.
(c) R= A x B,where A/J(A) is Boolean with U(A) a group of exponent
2, and B is a subdirect product of Zj’s.

Using the condition 2° = 2* of the above Theorem 3.1 [2] and using the Propo-
sition 2.1 we can find that every element of a strong SIT ring satisfies some equa-
tions which are 225 = 223, 42* = 422 and finally 82° = 8x. As SIT ring defined in
the paper [2] we can defined DTI ring in which every element is difference of a
tripotent and an idempotent. It is called strong DTI ring if every element can be
expressed as difference of a tripotent and an idempotent that commute each other.

Proposition 3.2. If in a ring R every element is difference of a tripotent and an
idempotent that commute with each other then they satisfy the equation

(% —z)(z +2) = 0.
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Proof. Suppose z € R. Then Je, f € Rwithe? = ¢, f3 = f and ef = fe such that
v = f—e Now (5" —a)(w+2) = {(f— ) — (f — )} e+ f —2) = (—3ef* +
3ef)(f —e+2)=—=3ef + 3ef? —6ef?+3ef? —3ef + 6ef = 0. O

Lemma 3.1. If R be ring with 2 = f — ¢, where e*> = ¢, f3 = f, then 24 = 0 in R.

Proof From 2 = f — e we have ef = fe. Then from Proposition 2.2 we have
(22 —2)(2+2) = 0= 24 =0 (putting k¥ = 2 in the equation). O

Lemma 3.2. Ring R be ring with unity is (strong) DTI-ring, if, and only if, R =
Ry X Ry, where Ry, Ry are (strong)DTI-rings with 23 = 0in R; and 3 = 0 in R,.

Proof. Using Lemma 2.1 we have 24=0=- 2> x 3 = 0. Then by Chinese Remainder
Theorem we get the required result. O

Proposition 3.3. A ring R with unity is (strong)DIT ring if, and only if, it is a
(strong)SIT ring.

Proof. Let R be a (strong) DTI-ring ring. Let & € R,as R is a ring so —k € R so
de, f € Rwith e? = e, f3 = f such that —k = f — e = k = — f + e which is sum of
a tripotent and an idempotent as (—f)? = — f, e*> = e. So R is (strong) SIT ring.
Conversely suppose R is a (strong) SIT ring. Let ¥ € R. Now —k € R so
Jde,f € Rwithe* = ¢, f2 = fsuchthat -k = f +e¢ =k = (—f) — e which is a
difference of a tripotent and an idempotent. Therefore R is (strong)DTI-ring. [

Using the Proposition 3.1 and Proposition 3.2 we get a strong SIT/DTI rings

satisfy the equation z° = 3.

Proposition 3.4. In a strong DTI/SIT ring R, we have n® = 0,2n? = 0¥n € Nil(R).

Proof. We get a strong DTI/SIT ring satisfy 2° = 23Vz € R. Therefore n® — n? =
0=n3n?>—-1)=0= n®=0Vn € Nil(R) as n®> — 1 € U(R). Again we have
nt2)n*—n)=0=n+t2nn*—-1)=0= n+2n=0= (n+2)n*=0=
2n% = 0Vn € Nil(R) as (n*> — 1) € Nil(R). O
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4. RING IN WHICH EVERY ELEMENT IS SUM OF 3,4,5 COMMUTING TRIPOTENTS

Proposition 4.1. If the ring R is a ST? ring then for every k € R we have (k—2)(k —
Dk(k+1)(k+2)=0.

Proof Fork € R,3e, f € Rwithe® = e, f3 = f,ef = fesuchthat k = e+ f. Clearly
ke = ek, kf = fk.

Now, k* = e+ f +3ef(e+ f) = k + 3kef which implies k3 — k = 3kef. Therefore
B —k=(k*—1(e+ f)=3ef(e+ f) = 3(e*f + ef?). Multiply it by e*f? we have
(B = 1)(e3f2 + e2f3) = 3(e*f2 + 3 f1) = (K* — 1)(ef? + €*f) = 3(e*f + ef?) =
(B —4)(ef* +e2f) = 0= (K* —){3(ef?+e*f)} =0= (K> —4)(k* — k) =0 =
(k—2)(k—1)k(k+1)(k+2) =0. O

In the paper [2] the authors show that in the ring R in which every element is
sum of two commuting tripotents, satisfy the equation 2® = 2* and the following

Theorem 5.2. [2]. The following are equivalent for a ring R.

(1) Every element of R is sum of two commuting tripotents.

(2) R = Ry X Ry x Rs, where Ry is zero or Ry/J(R;) is Boolean with U(R;) is
a group of exponent 2, R, is zero or subdirect product of Z3’s, and Rj3 is zero
or a subdirect product of Z’s.

Clearly putting k& = 3 in the equation (k — 2)(k — 1)k(k + 1)(k + 2) = 0 of the
Proposition 2.3 we get 120 = 23 x 3 x 5 = 0 and we get the same result as Theorem
5.2 [2]].

Proposition 4.2. If the ring R is a ST° ring then for every k € R we have
(k—3)(k—2)%(k —1)*k*(k + 1)*(k +2)*(k +3) = 0.

Proof For k € R,3f,g,h € Rwith f2 = f, ¢ = g,h®> = h; fg = gf, gh = hg,hf =

fhsuchthat k = f + g+ h. Clearly kf = fk, kg = gk, kh = hk Now,

(4.1) K —k=3{fg(f +9)+gh(g+h) + hf(h+ f)} + 6fgh.

Therefore, (k* — k) fgh = 3{f2¢*h(f+g) + f2gh*(g+h)+ f2gh*(h+ [)} +6f*¢*h* =
3(fg*h + f2gh + fg*h + f2gh + fgh?®) 4+ 6f2g?h* = 3fgh.2(f + g+ h) + 6f2¢*h? =
6k fgh + 6f2g2h2, which implies (k;3 — k;)fgh = 6kfgh+ 6f2gzh2 = (k3 —T7k)fgh =
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9f%9*h* = (K> —T7k) f2g°h* = 6 fgh = (k° —Tk)? fgh = 6{(k* —Tk) f*g*h*} = 6% fgh
(4.2) = {(k* = Tk)* — 6} fgh =0
Multiplying (4.1) by {(k® — 7k)? — 6*} and using (4.2) we have
(4.3) (K — B){(k* — 7k)* — 6°} = 3{(k* — Tk)* — 6°}
{f9(f +9)+ghlg+h)+hf(h+ f)}.
Now,
(k* — k){(k* = Tk)* = 6%} fg
=3{(k* = Tk)* = 6°H{f°g* + f?¢°} = 3{(K* — Tk)* = 6*H{ fg(f + 9)}.
Similarly, we have
(k° = k){(k* — Tk)* — 6 }gh = 3{(k® — Tk)* — 6*}{gh(g + h)}
(k* — k){(k* = Th)* — 6°}hf = 3{(k* = Tk)* — 6°H{hf(h + [)}
Adding and using (4.3) we have
(k* — k){(k* — Tk)* = 6°}(fg + gh + hf)
= 3{(k* = Tk)* = 6*H{fg(f +9) + gh(g + h) + hf(h+ f)}

(4.4) = (K —k){(+ —7k)* = 6°}(fg + gh+ hf) = (k> — k){(K* — Tk)* — 6°}.
Multiply (4.4) by f, g, h respectively and using (4.2) we have

(k% = k){(K* = Tk)* = 6*}(f*g + 1f?) = (K* = R){(K* = Th)* — 6*}f

(k* — k){(k* = Tk)* = 6°}(fg" + g°h) = (k* — K){(k* — Tk)* — 6"}g

(K* — B){(K* — Tk)* — 6°}(gh® + h*f) = (K* — kK){(K® — Tk)* — 6°} h.
Adding all these and using (4.3) we get

(k> — B){(k® — Tk)* = 6°}{ fg(f + g) + gh(g + h) + hf(h + f)}
= (k> = k){(K* = Tk)* = 6*}(f + g+ h)

= (K= B)[B{(K* = Tk)*> = 6*}{fg(f + g) + gh(g + h) + hf(h+ [)}]
= 3(K* — k){(k* — Tk)* — 6*}k
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(k° = B)[(K° = k){(k* = Tk)* — 6°}] = 3k(K® — k){(k° — Th)* — 6%}
k(k3 — E){(k* = Tk)? = 62}(k* —1-3) =0

k(k* — 4) (k> — k){(k* — Tk)* - 6*} =0

(k=3)(k—2)%(k —1)*k*(k+1)*(k+2)*(k+3) =0

Putting k = 4 in the above equation we have 2% x 3* x 52 x 7= 0.

Proposition 4.3. If the ring R is a ST* then for every k € R we have

(k—4)(k — 3)(k — 2)2(k — 1)%k*(k + 1)2(k + 2)2(k + 3)(k + 4) = 0.

Proof For k € R,3e,f,g,h € Rwith €® = e,f% = f,¢° = g,h® = h;ee;

983

ejeise;,e; € {e, f,g,h} such that k = e+ f 4+ g+ h.Clearly ke = ek, kf = fk, kg =
gk, kh = hk. Now,

(4.5)

+h* e+ f+9)} +6(efg+ fgh+ ghe +efg)

= KB -k=3) S (f+g+h)+6) efg.

cyc cyc

Multiplying (4.5) by efgh we have

(k* — k)efgh =3 € fgh(f+g+h)+6) _ef’q’h’

cyc cyc

= (K —k)efgh=3efgh(3e+3f +3g+3h)+6> ef’g°h’

cyc

= 9kefgh + 6Zef2g2h2

cyc

= (K —10k)efgh =6 ef’g’h’

cyc

= (K —k)(efgh)>=6> e’ f'¢’h* =6 e’fgh = (6k)efgh

cyc cyc

= (k° —10k)(efgh)’ = (6k)*(efgh)’

=+ P+ +0+3{(f+g+h)+f(g+h+e)+ g (h+e+[)
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(4.6) = (k* — 10k)’efgh = 6k{(k* — 10k)(efgh)*} = 6k{(6k)efgh}
(4.7) = {(k* — 10k)* — (6k)*}efgh = 0.
Now multiplying (4.5) by (k* — 10k)* — (6k)? we have
(K* — k){(K* — 10k)* — (6k)*}
= 3{(k* — 10k)” — (6K)*} > e*(f + g+ h) + 6{(k* — 10k)* — (6K)*} > _efg.

cyc cyc

Now multiplying the above equation by fgh and using (4.6) we have
(k* — k){(k® — 10k)* — (6k)*} fgh
= 3{(k* — 10k)* — (6k)*} fgh(3e + 2f + 2g + 2h)
+6{(k* — 10k)* — (6k)*}(fgh)*
= (k* — k){(¥* — 10k)* — (6k)*} fgh
— G{(K® — 10k)” — (6k)*} fgh + 6{(K® — 10k)* — (6k)*}(fgh)?
= (k* = Tk){(k’ = 10k)* — (6k)*} fgh = 6{(k’ — 10k)* — (6k)*}(fgh)*
(k* — 7hk)[6{(k* — 10k)* — (6k)*}(fgh)*] = 6*{ (k" — 10k)* — (6k)*} fgh

(K — Tk)[(° — TR){(k® — 10k)* — (6k)*} fgh]
(4.8) = 6*{(k* — 10k)*> — (6k)*} fgh

= {(k* —7k)* — 6°}{(k® — 10k)*> — (6k)*} fgh = 0.

Similarly for others (i.e if we take any three distinct permutation{e;, e;, e} of
{e, f,g,h}). Now multiplying by {(k* — 7k)? — 6°}{(k* — 10k)* — (6k)*} and using
(4.6) and (4.7), we have

(K — k){(k* — 7k)? — 62} {(k® — 10k)? — (6k)?}
(4.9) = 3{(k® — 7k)* — 6*}{(K* — 10k)* — (6k)*}{D _e*(f + g+ h)}

cyc

Now multiplying (4.8) by f¢ and using (4.6) and (4.7) we have
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(k* — k){(k* — Tk)* — 6" H{ (k" — 10k)* — (6k)*} fg
(4.10) = 3{(k° = 7k)* — 6*H{(k* — 10k)* — (6k)*Hfo(f + 9)}-
Similarly for the others(i.e if we take any two distinct permutation {e;,e;} of
{e, f,g,h}). Now multiplying(4.8) by ¢ we have
(K — B){(K* — Tk)* — 6*}{(k® — 10k)* — (6k)*}e
=3{(k* = Th)* — 6" H{(K* — 10k)* — (6k)*He(f + g+ h) + €*(f* + ¢ + h")}
=3{(k* — 7k)* — 6°}{(k* — 10k)* — (6k)*}{e(e + f + g+ h)
+e¥(fP+ g7+ —e?)}
=3k{(K* — Tk)* — 6°}{(k* — 10k)* — (6k)*}e + 3{(K* — Tk)* — 6%}
AR = 10k)* — (6k)*He(f* + g* + h* — )}

= (k* — 4k){(K* — Tk)* — 6*}{(k* — 10k)* — (6k)*}¢?
(4.11) =3{(k’ - Tk)* — *}H{(k* — 10K)* — (6k)*He(f* + g° + h?) — e}
Similarly we get the results for f, g, h. Adding all these and using (4.8) we get
(K — 4k){ (K> — Tk)? — 6 H{ (K" — 10k)* — (6k)*} ) _ €?

cyc

=3{(k* — Tk)* — 6> }{(K* — 10k)* — (6k)*}{D _e(f* + >+ h*) = > e}

cyc cyc

=3{(k* — Tk)* — 6> }{(K* — 10k)* — (6K)*} > _e(f*+g° + 1?)

—3{(k* — 7k)* — 6°}{(k* — 10k)* — (6k)*}k
=(k* = k){(K* = Th)* — 6*}H{(K° — 10k)* — (6k)*}

—3{(k* — Tk)* — 62 }{(k* — 10k)* — (6k)*}k
=(k% — 4k){(k* — Tk)? — 6*}{(K* — 10k)? — (6K)?}.

Now multiplying the above equation by }_ e we have

cyc

(K* = 4k){(K* = Tk)* = 6 H{(K* — 10k)* — (6k)°HD_ e*HD e}

cyc cyc



986 K.N. Deka and H.K. Saikia

= (k% — 4k){(K* — Tk)* — 6*}{(k* — 10k)* — (6k)*}k

= (K — 4k){(K* — Tk)* — 6*}{(k® — 10k)* — (6k)*}{D _*(f + g+ h)}

+ (k* — 4k){(K® — Tk)? — 6*}{(k® — 10k)? — (6k)*}k
= (k% — 4k){(K* — Tk)* — 6*}{(k* — 10k)* — (6k)*}k
= (K — 4k){(K* — Tk)* — 6*}{(k* — 10k)* — (6k)*}{D _e*(f+g+h)} =0

cyc

= (K —4k)[B{(K* — 7k)* — 6 H{(k* — 10K)* — (6k)*}{D_e*(f +g+h)}] =

cyc

Using (4.8) we have
(K* — 4k)(K* — B){(K* — Tk)* — 6°}{(k* — 10k)* — (6k)*} =0
= (k—4)(k—3)(k—2)*(k — 1)?k*(k + 1)*(k +2)*(k + 3)(k +4) = 0.

Putting & = 5 in the above equation we have 2! x 37 x 51 x 73 = (. O

Proposition 4.4. If the ring R is a ST ring then for every k € R we have
(k=5)(k —4)(k —3)2(k —2)*(k — 1)*k*(k + 1)3(k + 2)3(k + 3)*(k + 4)(k +5) = 0.
Proof. Forevery k € R3e; € R, €} = e;e;ej = eje;, 1 >0, j > 5suchthatk = Z?:l €.
Now,
4.12) kS —k :326%(62—1—63—1—64—{—65) +6Z€1€2€3.
cyc cyc
Multiplying (4.11) by ejeseseqe5 we have
(k® — k)ereseseses = 3ereqeseses.d(er +ex +es3+eq+e5) +6 Z 6%6%6%6465
cyc
=12kejeqezeqses + 6 Z e%e%egeieg = 12kejesezeqes + 3( 6162636465 Z eqes)

cyc cyc

= (k3 — 13k)ejeqezeqes = 3(6162636465)2{k2 — (Z e?)}

cyc
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= (k® — 13k)(e1eaese4e5)? = (3k* — 15)ee0ese4es
= (k® — 13k)eiegeseses = (3k* — 15)(ereseseqes)?

= (I-CS — 13]{7)26162636465 = (3]'6’2 — 15){(1{?3 — 13]{7)(6162636465)2}

= (3]{32 — 15)26162636465

(4.13) = {(k* - 13k)* — (3k? — 15)*}eienezeqes = 0.
Now multiplying (4.11) by {(k® —13k)? — (3k? — 15)?}e,eqe3¢4 and using (4.12) we
have
(K* — k){(k* — 13k)* — (3k* — 15)*}ejeqesey
={(k* — 13k)? — (3k* — 15)*}{3eiesese4(3e1 + 3eg + 3es + ey + 3es)

+6ereaezes( D | ereaes)}

cyc

={(k* — 13k)* — (3k” — 15)*}{9ke1ezeses + berereses()  erezes)}

cyc
= (k% — 10k){(k* — 13k)* — (3k* — 15)*}ereqesey
=6{(k* — 13k)” — (3k* — 15)"}erezeses(D _ ereaes)

cyc
= (k* — 10k){(k® — 13k)? — (3k* — 15)*}(e1eqe3e4)?
=6k{(k* — 13k)* — (3k* — 15)*}ereqesey
= (K* —10k)*{(K* — 13k)? — (3k* — 15)?}ereze3e4
=6k[(k* — 10k){(k*> — 13k)* — (3k* — 15)*}(e1e0e3e4)]
= 6k.6k{(k® — 13k)* — (3k* — 15)*}eienesey

(4.14) = {(k* — 10k)* — (6k)*}{(k* — 13k)? — (3k* — 15)*}ereqeseq = 0.
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Similarly for the other distinct permutations e;ejeie; of {e1, 2, €3, €4, €5} We get
the result. Now multiplying (4.11) by {(k* — 10k)? — (6k)*}{(k* — 13k)* — (3k* —
15)?}e;jezes and using (4.12) and (4.13) we have

(K* — B){(K* — 10k)* — (6k)*}{(k* — 13k)* — (3k* — 15)*}ereqes
= 3{(k* — 10k)* — (6k)*}{(K* — 13k)* — (3k* — 15)*}
{edeges(eq +e3 + ey +e5) +ereses(er + ez +eq +es)
+ 616263(61 +est+eqs+es)}
+ 6{(k* — 10k)? — (6k)*}{(k* — 13k)* — (3k* — 15)*}eleres
= 3{(k* — 10k)* — (6k)*}{(K® — 13k)* — (3k* — 15)*}
- ereges(2er + 2eq + 2e3 + 2e4 + 2e5) + 6{(k* — 10k)* — (6k)*}
Ak — 13k)% — (3k* — 15)%}(e1e9e3)?
= 6k{(k* — 10k)* — (6k)*}{(K® — 13k)* — (3k* — 15)*}eseze3
+ 6{(k* — 10k)? — (6k)*}{ (k* — 13k)* — (3k* — 15)*}(e1e0e3)?
= (K = TE){(K® — 10k)* — (6k)*}{(k* — 13k)? — (3k* — 15)*}eeqes
= 6{(k* — 10k)* — (6k)*}{(K* — 13k)* — (3k* — 15)*}(e1e0e3)?
= (K — 7k)[6{(k* — 10k)* — (6k)*}{(K® — 13k)* — (3k* — 15)*}(e1e0e3)?]
= 6*{(k® — 10k)* — (6k)*}H{(k* — 13k)* — (3k* — 15)*}esees

= (K> = 7k)[(K* — TE){(K* — 10k)* — (6k)*}{(k* — 13k)* — (3k* — 15)*}e1eqes]
= 62{(k® — 10k)* — (6k)*}{ (k> — 13Kk)? — (3k* — 15)*}ereqes

= {(K* —7k)* - 6°}{(k* — 10k)* — (6k)*}
(4.15) {(K* — 13k)? — (3k* — 15)*}ejeqe3 = 0.
Similarly for the other distinct permutations e;e;ej, of {e1, e, €3, €4, €5} We get the

result. Now we multiply (4.11) by {(k* — 7k)? — 6*}{(k* — 10k)* — (6k)?}{(k® —
13k)% — (3k? — 15)*}e1e, and using (4.12),(4.13),(4.14) we have
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(K> — k){(K* — Tk)* — 6*}{(k* — 10Kk)* — (6k)*}{(k* — 13k)* — (3k* — 15)*}e1e,
=3{(k* — Tk)* — 6*}{(k* — 10k)* — (6k)*}{(k* — 13k)* — (3k* — 15)?}

. {Z 6%(62 + €3 + €4 + 65)}6162

cyc

= 3{(k* — Tk)? — 6*}{(K® — 10k)? — (6k)*}{ (k> — 13k)* — (3k* — 15)*}e1eak

= (K —4k){(K® — 7k)* — 6*}{(k* — 10k)* — (6k)*}
{(k* — 13k)* — (3k* — 15)*}erea = 0
Similarly for the other distinct permutations e;e; of {eq, 3, €3, e4, €5} we get the re-
sult. Now multiplying (4.11) by (k3 —4k){(k*—7k)?—62}{ (k3 —10k)? — (6k)? }{ (k3 —
13k)? — (3k* — 15)?} and using (4.14) we have
(K* — k) (k* — 4k){(K* — Tk)* — 6°}{(k* — 10k)? — (6k)*}
Ak —13k)* — (3k* — 15)*} =0
= (k—5)(k—4)(k—3)*(k —2)*(k — 1)%k*
(k+ 1%k +2)°(k+3)*(k+4)(k+5)=0

which we required. Now putting k = 6 in the above we have 22 x310x54x 73 x 11 =
0. 0]

5. RING IN WHICH EVERY ELEMENT IS SUM OF n COMMUTING TRIPOTENTS

Now the simple question arises that "Is it possible to find the structure of a ring
in which every element is sum of n(n > 2) commuting tripotents?". the answer
is clearly affirmative for n = 2,3,4,5. The answer is also affirmative for n in
which n > 5 but they are multiplied by a arbitrary numeric constant(The structure
equations are not monic). Now to find the structure we have to use some lemma
which are given below.

Lemma 5.1. If e is a tripotent which is commutative with k(ek = ke) and m,n € N
then we get the following conditions.
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(D) (e2+e)?=2(e*+e)and (e +e)" = 2" 1(e* L e)..

2 (e+e)k—j7—e)=(k—7j—1)(e*+e).

3) (e2—e)k—j—e)=(k—j+1)(e* —e).

@ {(k—m)—e}{(k—m+1)—c}2.. . {(k—m+j)—e}itr.. {(k—1)—

(

eyim(k—e)mtr{(k+1)—e}m+2 . {(k+j)—e}m+i+t . {(k+n)—e}mtnti(e?+

b= (k—m—1)"k—m)2.. . (k—m+j— 1) . (k—2)m(k—

it fimez (k4 f — 1)t (k4 — 1) 2505 G (g2 g,

G) {(k—m)— e} {(k—m+1)—e¥z. {(k—m+j) —edirr . {(k—1)—
etim(k—e)imet{(k+1)—e}im+2 . {(k+j)—e}imtitt . {(k+n)—e}imtn+(e?—
)= = (k—m e 1) (k—m+ 2. (k—m+j+ D) kin(k
1)ims1 (k4 2)imtz (k4 + 1)imttt | (k+mn 4 1)iment1 2505 57162 _e)

—_
~—

Proof.
(1) We have (e?+e)? = e'+2e3+¢ = 2(e*+e). Therefore (e?+e¢)" = 2" (e?+e).
(2) Wehave (e +e)(k—j—e)=(k—j)(e*+e)—(e+e*) = (k—j—1)(e* +e).
Therefore (e? — e)” = 2" 1(e? — ¢).
(3) We have (¢ —¢)(k—j—e) = (k—j)(e*—e)+(—e+e?) = (k—j+1)(e* —e).
(4) Using the above conditions (1),(2),(3) clearly we get the result.
(5) Using the above conditions (1),(2),(3) clearly we get the result.

O

Using the above lemma we can get a different structure of the rings in which
every element is a sum of 3,4,5 commuting tripotents. And also we can get the
structure of the rings in which every element is a sum of n(n > 6) commuting
tripotents. Firstly, we find the new structure of the rings in which every element
isn = 3,4,5,6,7,8 commuting tripotents, then by induction we find the general
structure.

Proposition 5.1. For a ring R the following conditions are satisfied:
(1) If the ring R is ST? ring then for every k € R we have (k — 3)(k — 2)(k —
DE*(k+1)(k+2)(k+3)2° = 0.
(2) If the ring R is a ST* ring then for every k € R we have (k — 4)(k — 3)(k —
2)(k — 1)?k*(k + 1)%(k + 2)(k + 3)(k + 4)2"* = 0.
(3) If the ring R is ST ring then for every k € R we have (k — 5)(k — 4)(k —
3)(k —2)*(k — 1)?K*(k + 1)2(k + 2)*(k + 3)(k + 4)(k + 5)2%° = 0.
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(4) If the ring R is a ST® ring then for every k € R we have (k — 6)(k — 5)(k —
4)(k=3)2(k—2)*(k—=1)k*(k+1)*(k+2)?(k+3)*(k+4)(k+5)(k+6)2** = 0.

(5) Ifthe ring R is a ST" then for every k € R we have (k —7)(k —6)(k —5)(k —
4)2(k=3)2(k—23(k— 1Pk (k+ 12 (k+2)%(k+3)*(k+4)*(k+5)(k+6)(k+
7)265 =,

(6) If the ring R is a ST® then for every k € R we have (k —8)(k—17)(k —6)(k —
5)2(k — 4)%(k — 3)3(k — 2)*(k — D%k + D) (k + 2)3(k + 3)*(k + 4)%(k +
5)%(k 4+ 6)(k + 7)(k + 8)2% = 0.

Proof. Suppose k =Y e; where e} = ¢; is sum of n commuting tripotents. Then
k—e;j =>" e —ej;is sum of n — 1 commuting tripotents. We consider this e;
as e. Therefore if k is sum of n commuting tripotents then k — e is sum of n — 1
commuting tripotents. Also we denote ) ", ¢; by > e.

(1) We get from Proposition 4.1 that if £ is sum of 2 commuting tripotents
then it satisfies (k — 2)(k — 1)k(k + 1)(k + 2) = 0. Now if & is sum of 3
commuting tripotents then k£ — e is sum of 2 commuting tripotents. Then
using Proposition 4.1 we have

(k—e—2)k—e—1)k—e)(k—e+1)(k—e+2)=0
=(k—-2—-e)k—1—-¢e)k—e)k+1—e)(k+2—¢)=0.
Now multiplying the above equation by (e* + ¢)° and (e? — ¢)° respectively
and using the Lemma 5.1 we have
(k—=2—e)(k—1—e)(k—e)(k+1—e)(k+2—¢)(e’*+e)
= (k—3)(k—2)(k — 1)k(k+1)2°""(e* +¢) = 0.
And (k—2—-¢e)(k—1—-¢e)(k—e)(k+1—¢€)(k+2—¢)(e* —e)®* = (k—
Dk(k+1)(k+2)(k
(k=3)(k—2)(k—Dk(k+1)(k+2)(k+3)2°" (e +¢) =0
(k—=3)(k—2)(k — Dk(k+1)(k+2)(k+3)2° (e —e) = 0.

+3)2°71(e? — €) = 0. Using the above equations we get
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Therefore taking difference of the above 2 equations , then taking sum
all over the elements we have

(k—3)(k—2)(k — Dk(k+1)(k+2)(k +3)2°e =0
(k= 3)(k —2)(k — Dk(k+ 1)(k+2)(k+3)2°()_e) =0
(k= 3)(k—2)(k — D)k*(k+ 1)(k + 2)(k + 3)2° = 0.

The above proof we can write in compact form and in the later proof(for
n =4,5,6,7,8), we proof like this.
n=3k=3" e;el=c¢
(k—3)(k—2)(k — Dk(k+1)2°(e*+¢) =0
(k —Dk(k+1)(k+2)(k+3)2°" e —e) =0
S (k=3)(k—=2)(k—Dk(k+1)(k+2)(k+3)2°c =0
= (k—3)(k—2)(k— 1)k*(k+1)(k+2)(k+3)2° =0

(2) n =4 k:—zz L€ €l = ¢
(k—4)(k=3)(k—2)(k—1)?k(k+ 1)(k+2)(k+ 3)2°" 1 (e? +e) =0
(k—2)(k— Dk(k+1)2(k+2)(k+3)(k+4)2°" 2 —e) =0
S(k—=4)(k=3)(k—2)(k—1)%k(k+ 1)%(k +2)(k + 3)(k +4)2°Te =0

= (k—4)(k—3)(k—2)(k — 1)*k*(k + 1)*(k +2)(k + 3)(k +4)2%e =0

(3) n=5; k—zl Lenel =e;
(k—=5)(k—4)(k—=3)(k—2)2(k—1)2k*(k+1)(k+2)(k+3)213T1271(e2 -¢) = 0
(k —3)(k —2)(k — 1)k*(k + 1)2(k + 2)*(k + 3)(k + 4)23T127 (2 —e) = 0
(B =5)(k—4)(k—3)(k—2)2(k —1)*k*(k + 1)?(k + 2)*(k + 3)(k + 4)(k +
5)213+12¢ =
= (k—=5)(k—4)(k—3)(k—2)*(k—1)2k3(k+1)*(k+2)?(k+3)(k+4) (k+5)2%° =
0.

@D n==6k= ZZ Lenel =e;
(k —6)(k —5)(k —4)(k —3)%(k — 2)%(k — 1)3k*(k + 1)*(k + 2)(k + 3)(k +
4)2%+17-1(2 4 ¢) =
(k—4)(k = 3)(k — 2)(k — 1)2k*(k + 1)3(k + 2)%(k + 3)%(k + 4)(k + 5)(k +
6)25HT-1(e2 —¢) = 0
So(k=6)(k—=5)(k—4)(k—3)*(k —2)*(k —1)%k*(k+1)3(k +2)*(k + 3)*(k +
4)(k +5)(k + 6)2%t17e = (
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= (k—6)(k—5)(k—4)(k—3)2(k — 2)2(k — 1)3k3(k +1)3(k +2)2(k + 3)2(k +
D(k+5)(k+6)222 =0
B)n="T; k—zl Lenel =e;
(k—7)(k—6)(k —5)(k — 4)2(k — 3)2(k — 2)3(k — 1)3k3(k + 1)2(k + 2)2(k +
3)(k +4)(k +5)(k +6)2272 7 (e? +¢) = 0
(k—5)(k —4)(k — 3)(k — 2)2(k — 1)2k3(k + 1)3(k + 2)3(k + 3)2(k 4+ 4)%(k +
5)(k +6)(k +7)2#2t281(e2 —e) =0
L (E=T)(k=6)(k—5)(k—4)*(k = 3)*(k —2)*(k — 1)’k (k + 1)*(k +2)°(k +
3)2(k: +4)%(k +5)(k + 6)(k + 7)2**"23¢ = 0
= (k=T)(k—6)(k—5)(k—4)2(k—3)2(k — 2)3(k — 1)3k*(k +1)3(k + 2)3(k +
3)2(k + 4)2(k + 5)(k + 6)(k + 7)205 = 0
(6) n—8,k—zl Lenel =e;
(k—8)(k—T7)(k —6)(k — 5)2(k — 4)2(k — 3)3(k — 2)3(k — 1)*k3(k + 1)3(k +
2)3(k 4+ 3)%(k + 4)(k +5)(k + 6)265T39"1 (2 + ¢) = 0
(k—6)(k —5)(k — 4)(k — 3)2(k — 2)2(k — 1)3k3(k + 1)*(k + 2)3(k + 3)3(k +
A2(k + 5)2(k + 6)(k + 7) (k + 8)267+30-1(e2 — ¢) = 0
" (k—=8)(k—T)(k—6)(k—5)2(k—4)*(k—3)3(k —2)3(k — D)3 (k + 1)*(k +
2)3(k +3)%(k +4)%(k +5)%(k + 6)(k + 7)(k + 8)26°3% = 0
= (k—8)(k—T)(k—6)(k—5)2(k—4)2(k —3)3(k — 2)3(k — 1)*k*(k + 1)*(k +
2)3(k+3)3(k+4)*(k +5)*(k+6)(k+ 7)(k +8)2% =0

O

By viewing the above 6 forms (n = 3, 4,5, 6,7, 8) we are going to find the general
form.

Proposition 5.2. The following conditions are true for a ring R

(1) If every element of a ring R is sum of n(= 2m + 1),m > 1 commuting
tripotents then for every k € R we have {k — (2m + 1)}{k — 2m}{k — (2m —
1)}k — (2m —2)}2{k — (2m—3) Y2 {k — (2m— )} {k — (2m —5)} {k — (2m —
6)} {k—C2m—-7)} .. {k—2m—25) P Hk—2m—2-1) PP . {k—{2m—
(2m—2)} " {k—{2m—(2m—1)}}"{k+(2m—2m)}" " {k+{2m—2(m—1)—
Iy k+{2m—=2(m—1)}}"{k+{2m—2(m—2)—1}}" " Hk+{2m —2(m—
2t {k+(2m =25 - D) PTHE+2m—25) P {k+(2m—3) P {k+

2m(m+2)(2m—1)

(2m — 2)¥2{k + (2m — 1)k + 2m}{k + (2m + 1) }23@m-n+ 250 g
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(2) If every element of a ring R is sum of n(= 2m + 2),m > 1 commuting
tripotents then for every k € R we have {k — (2m + 2)}{k — 2m + 1) {k —
2mHk — (2m — 1)}*{k — (2m — 2)}*{k — (2m — 3)}*{k — (2m — 4)}3{k —
(2m—5)} k- 2m—6)}{k—2m—7)}°.. {k—(2m—25)) V" H{k— (2m —
2j— )P dk—{2m—(2m—2)}}™{k—{2m— (2m—1)}}" " {k+ (2m —
2m) "k + {2m —2(m — 1) — 13}k + {2m — 2(m — 1)} }{k + {2m —
20m —2) —1}}™k+{2m—2(m—2)}} . {k+ (2m — 25 — )Pk +
(2m—25) P {k+(2m=3)}3{k+(2m—2)}*{k+ (2m—1)}*{k+2m}{k+

m(2m+1)(2m+5)

2m+ D)Hk+ 2m +2)}2mt =35 =0.

Proof. From Proposition 5.1 clearly we can see the result is true for n = 3,4, 5,6, 7,
8,(n =2m+ 1/2m + 2,m > 1). Suppose the result is true for n = 2m + 1. We
have to prove the result for n = 2m = 2.2m + 3(If we take the result is true for
n = 2m+ 2, then we have to prove the result for n = 2m + 3, 2m + 4;the procedure
is same, so we prove the result for 1st case). Then by induction the result is true
vn € N. Let k = >.7"" ¢, where ¢ = ¢;. Then k is sum of (2m + 2) tripotents.
Therefore k — e is sum of (2m + 1) commuting tripotents(assumations as used in
the proof of the Proposition 5.1). Therefore we have {k — (2m + 1) —e}{k —2m —
eHk—(2m—1)—e}{k—(2m—2) —e}*{k— (2m —3) —e}*{k— (2m —4) —e}*{k —
(2m—>5)—e}3{k—(2m—6)—e}Hk—2m—T)—e}*.. {k—(2m —2j) —e} Tk —
(2m—2j—1)—e} ™ {k—{2m—(2m—2)} —e}™{k—{2m—(2m—1)} —e}™{k =+
(2m —2m) —e}™ H{k+{2m—2(m—1) =1} —e}™{k+{2m —2(m—1)} —e}™{k +
{2m—2(m—2)—1} —e}™" Hk+{2m—-2(m—-2)} —e}™ 1 .. {k+(2m—25—1) —
e HE+ (2m —25) —epPH L {k+ (2m —3) —e}*{k+ (2m —2) — e}*{k + (2m —
1) — e}k +2m — e} {k + (2m + 1) — el3@m-n+2E=Rem=
Now multiply the above equation by

(62 4 6)2+4(1+2+...+m)+(m+1) — (62 4 e)2m2+3m+3

and (e? — e)2"’ 3143 and using the Lemma 5.1 we get {k — (2m + 2)H{k — (2m +
DHk=2mMHk—2m—1){k—2m—2)}*{k—(2m—3)}*{k—(2m—4)}}{k—(2m—
S)PME—(2m—6)}* .. . {k—C2m—25+ )Pk —(2m—25) P .. {k—3}"{k—
2}k — 1} ek + 13k + 2}k + 3}k + 2m — 25 — 2)P Tk +
(2m—2j—1) P {k+(2m—4)2{k+ (2m —3)}*{k+ (2m—2)}H{k+2m—1}{k+
2m+}2<2m2+3m+3>+3<2m—1>+w—1(62 +e)=0.
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And, {k—2m}{k—(2m—1)}H{k—(2m—2)H{k—(2m—3)}*{k—(2m—4) }*{k—(2m—
5) 13 {k—(2m—6){k—2m—7)}*{k—2m—8)}*.. {k—(2m—2j—1) P {k—(2m—
2) P Ak = 1Rk + 1R+ 23k + 3Pk + 4y B+ 5 R+
(2m—25) P HE+( 2m =27+ 1) P {k+(2m—2)}2{k+ (2m — 1)} {k+2m}{k+
(2m + 1) HE + (2m + 2)12@m*+3m+3)13@m-1)4 2E9Em=t 12 _ ) _

Using above 2 equations we have {k — (2m + 2)}{k — (2m + 1)}{k — 2m}{k —
(2m — 1)}k — 2m = 2)}{k — (2m = 3)}P{k — 2m — 4)}*{k — (2m — 5)}{k —
(2m—6)} .. {k—2m—2j+ )P HE - 2m —25) Pk -3}k —2}"{k —
Lymtgmll + 13k + 2}k + 3} {k+ (2m — 25 — 2) PPk + (2m — 25 —
HPH AR+ 2m—4)P{k+(2m—3)P{k+(2m—2)}*{k+2m—1}*{k+2m+}{k+
(2m + 1)}k + (2m + 2)}2@m+3m3)+32m—1) 2EBEn o102 4 o) ),

And, {k — (2m+2)}H{k— 2m+ D) Hk—2m}H{k— (2m —1)}*{k — (2m —2)}*{k —
(2m — 3)P{k — 2m — )Pk — 2m -5}k — 2m —6)}*.. . {k — (2m — 25 +
Pk —©2m—25) P {k =3}k =2y {k— 1} kb + 1} Yk + 23k +
3y Ak + (2m — 25 —2)PTHE + 2m — 25 — DPT LR+ 2m — 4) Pk +
(2m — 3)}3{k + 2m — 2)}2{k + 2m — 1}2{k + 2m+Hk + 2m + D}k + 2m +
2) }2(2m™+3m+3)+3(2m—1)+ 2EERERL 1 (2 _ oy — ),

Subtracting the above 2 equations we have {k — (2m + 2)}{k — 2m + 1) }{k —
2mi{k — (2m — 1)}*{k — 2m — 2)}2{k — 2m — 3)}}{k — (2m — 4)}3{k — (2m —
S E—2m—6)} .. {k—C2m -2+ )Pk —2m —25) P {k =3} {k -
2}k — 1} ek 4+ 1y Y e 2y e+ 3} {k+ (2m—25 — 2) Pk + (2m —
25 — Pk 4+ 2m —4) Bk + 2m = 3) 3 {k + 2m — 2)}*{k + 2m — 1}*{k +
om Hk + (2m + 1)}k + (2m + 2)}2@m*+3m+3)+32m-1)4 2memfEnsl . ()

Taking the summation over e we get {k — (2m +2)}{k — (2m + 1) }{k —2m}{k —
(2m — 1)}k — 2m = 2)}{k — (2m = 3)}*{k — 2m — 4)}*{k — (2m — 5)}{k —
(2m —6)} .. {k—(2m—2j + DV Tk — (2m —2j) .. {k — 3} {k — 2} {k —
1yttt i 1yt U e+ 23k + 3™ . {k+ (2m — 25 — 2) Pk + (2m — 25 —
D AR+ 2m =) P{k+(2m—3)P{k+(2m—2)}*{k+2m—1}*{k+2m+}{k+
(2m + 1) Hk + (2m + 2)o0m+ =5

Hence the result is true for n = 2m + 2. For n = 2m + 3, as we get the structure
for the ring R in which each element is sum of (n = 2m + 2) commuting tripotents.
So by the same procedure as above we get the result. So by induction we get the
result. O



996 K.N. Deka and H.K. Saikia

Clearly there are another possible forms for a ring in which every element is
sum of n commuting tripotents. Considering z® = z* for the ring in which every
element is sum of two commuting tripotents, we can get another form of a ring in
which every element is sum of n commuting tripotents. Combining all the forms
we get a better equivalent for the ring. Let us 1st take the form for the ring in
which every element is a sum of three commuting tripotents. For this we use some
lemma which are given below.

Lemma 5.2. [6]. Let p be a prime. The following are equivalent for a ring R:

(1) p € Nil(R) and a” — a is nilpotent for all a € R.
(2) J(R)isnil and R/J(R) is a subdirect product of Z,’s.

Lemma 5.3. [2]. Let a € R. If a®> — a is nilpotent, then there exists a monic
polynomial 6(¢) € Z(t) such that 6(a)? = 6(a) and a — (a) is nilpotent.
Proposition 5.3. If the ring R is a ST? ring with 3*> = 0 then the following conditions
are satisfied.

(1) Forevery x € Rwe have 2° = 23, (2® — 1) = 0,3(2®* —x) = 0and 3 € J(R).

(2) For every n € Nil(R) we have n*> = 0,3n = 0.

(3) R/J(R) is subdirect product of Zs’s. J(R) is nil with 52 = 0;3j = 0Vj € J(R)

and ij = —jiVi,j € J(R).
(4) U(R) is a group of exponent 6 and 3u* = 3Vu € U(R).

Proof.

(1) Here 3> = 0. Letx € Rsox = f+ g+ h such that f3 = f, g% = g,h® =
h.fg = gf.gh = hg.hf = fh. Now 2* — o = 3[,. fo(f + g) + 2/fgh].
Therefore (2° — 2)* = 0,3(2® — 2) = 0. Again (2°)° = [z +3{3_,,. fo(f +
g) +2fgh}]? = 2° = 2% as 9 =0.

(2) Let n € Nil(R). Therefore (1 — n?) € U(R). Now (n®* —n)> = 0 =
n*(n* —1)2 = 0. Asn?—1 € U(R) son? = 0. Again 3(n®> —n) = 0 =
3n(n?*—1)=0= 3n=0.

(3) Using Lemma 3.5 we have J(R) is nil and R/J(R) is subdirect product
of Zy’s. Let j € J(Ry) so —j € J(R) (As J(R) is the intersection of all
right/left maximal ideal). Therefore (1 — j) € U(R) and {1 — (—j)} €
U(R)= 147 € U(R) as J(R) is nil. Now (52 — j)? =0 = j2(j — 1)?(j +



RING IN WHICH EVERY ELEMENT IS SUM OF 3, 4 OR 5 TRIPOTENTS 997

1) =0. Asj—1,7+1 € U(R) so j* = 0 which imply J(R) is nil of
order 2. Again 3j(j2 — 1) = 0 = 35 = 0. Again for 7,5 € J(R) we have
(i+7)=0=E+ij+ji+5>=0=ij =—ji.

4 Letu € UR). Now ) =v® = w3(uf - 1) =0=u -1=0=u =1
as u®> € U(R). So U(R) is group of exponent 6. Also 3(u® —u) = 0 =
Bu(u* —1)=0= 3u?*=3asu € U(R).

U

Proposition 5.4. If the ring R is a ST? ring then R =~ Ry x Ry x R3 x R, where

- R, is gero or ST? ring with 2% = 0.

- Ry is zero or ST? ring with 3*> = 0. R, has the identity 2° = 23, (23 — z)? =
0,3(z® — x) = OVz € Ry. For every n € Nil(R,) we have n?> = 0,3n = 0.
Ry/J(Ry) is a subdirect product of Zs’s. For every j € J(Ry) we have j? =
0,3j =0andij = —jifori,j € J(Ry). U(Rs) is a group of exponent 6 and
3u? = 3Vu € U(Ry).

- Rj3 is zero or a subdirect product of Z5’s.

- Ry is zero or a subdirect product of Z;’s.

Proof. Putting k = 4 in (k — 3)(k — 2)(k — 1)k*(k + 1)(k + 2)(k + 3)2° = 0 in the
Propositon 5.1 for the ST ring we have 2! x 32 x5x 7 = 0. Again from Proposition
4.2 we have 2% x 3* x 52 x 7= 0. Taking g.c.d of 2!' x 32 x5 x 7,28 x 3* x 52 x 7
we get 28 x 3?2 x 5 x 7 = 0. So using Chinese Remainder Theorem we get a more
reduced form which is R = (585) x (585) x (£F) x (£%).

Now clearly R = Ry x Ry x Ry x Ry where Ry = £ Ry =~ I Ry~ KL Ry~ K
Clearly R, is ST? ring with 2% = 0.
Suppose R, # 0. As R, is ST? ring with 3% = 0 so by Proposition 4.3 we get the
result. Suppose Rs # 0.Here 5 = 0 in Rs. If £ = 0 in Ry, then putting k = f+g+h
where f, g, h are commuting tripotents. Then 0 = k° = f5+¢°+h° +5P(f,g,h) =
f+ g+ h = k where P(f,g,h) is a function of f,g,h. Hence Rj; is a reduced
ring, so R3 is a subdirect product of the domains { R, }. But R, has only the trivial
tripotents 0, 1, —1, we infer that R, = {—2,—1,0,1,2}. As5 = 01in R,, R, = Zs.
Hence, R3 is a subdirect product of Zs’s. Suppose R, # 0. Here 7 = 0 in R3. If
k* = 0 in Ry, then putting k = f + g + h where f, g, h are commuting tripotents.
Then 0 = k" = fT+¢"+h"+7P(f,9,h) = f + g+ h = k.Hence R, is a reduced
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ring, So R, is a subdirect product of the domains { R, }. But R, has only the trivial
tripotents 0, 1, —1, we infer that R, = {-3,—-2. — 1,0,1,2,3}. But 7 =0 in R,, so
R, = Z. Therefore ,R, is a subdirect product of Z’s. O

Proposition 5.5. If R is a ST* ring then R = R, x Ry x R3 X Ry where

- Ry is zero or ST* ring with 2'° = 0.

- Ry is zero or ST* ring with 3° = 0; R, has the identity (z* —z)% = 0,3%(23 —
1) = OVz € Ry. For every n € Nil(Ry) we have n® = 0;3'n = 0. Ry/J(Ry)
is subdirect product of Z3’s. For every j € J(Ry) we have j° = 0,3%j = 0. For
U(Ry) is group of exponent 2 x 3° and 3*u? = 3* for every u € U(Ry).

- Rs is zero or ST* ring with 5* = 0; R3 has the identity (k° — k)? = 0;5(k° —
k) = 0. For every n € Nil(Ry) we have n* = 0;5n = 0. R3/J(R3) is subdirect
product of Zs’s. For every i,j € J(R3) we have j> = 0,55 = 0,ij = —ji.
U(R3) is group of exponent 2 x 5 = 10 and 5u* = 5 for every u € U(R3).

- R, is zero or Ry is subdirect product of Z.

Proof. From Proposition 4.3, For a ST* ring we have 2'° x 37 x 5% x 73 = 0. Again
from Proposition 5.1, For a ST ring R we have (k —4)(k —3)(k —2)(k — 1)?k*(k +
1)2(k + 2)(k + 3)(k + 4)2'3 = 0VEk € R, Putting k = 5 we get 2% x 3% x 5% x 7 = 0.
Now taking g.c.d of 21 x 37 x 5% x 73 and 2% x 35 x 52 x 7 we get 219 x 35 x 52 x 7 =
0. So using Chinese Remainder Theorem we get a more reduced form which is
R = (5it5) % (555) % (555) % (75)-

Now clearly R =~ Ry X Ry X Ry x Ry where Ry & =, Ry = £ Ry =~ fL
R, = ﬁ. Clearly R, is a ST* ring with 2! = (.

Suppose R, # 0. Here 3° = 0in R,. Let k € R, so we can write k = Zf‘:l e el =
e eie; = ejeist,j € {1,2,3,4}. Now k* — k = 3P where P = P(ey, ez, €3,¢4) is @
function of ey, e, €3, €4. Therefore (k* — k)°> = 0,3*(k* — k) = 0 Vk € R,.

Now for every n € Nil(Ry) we have 1 — n* € U(R,) where o € N. Now for
n € Nil(Ry), (n®> —n)>=0=n’(n>—-1)°=0=n°=0. Also 3'(n® —n) =0 =
3nn?—-1)=0=3n=0.

Now k3 —k is nilpotent for all k¥ € R,. So by using Lemma 5.3 we have Ry/J(R;)
is subdirect product of Z3’s and J(Ry) is nil.
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Now for j € J(R,) we have —j € J(R,). Therefore 1—j,1+j € U(Ry) as J(Ry) is
nil. Now (j3—4)° =0 = j5(j—1)°(j+1)> = 0= j> = 0as (j—1)°, (j+1)° € U(Ry).
Again 34 (3 — ) =0=3%(j+1)(j—1)=0=3% =0as (j—1),(j+ 1) € U(Ry).

Let u € U(Ry). Now (u® —u)® =0 = *u? -1 =0= (v*-1)° =0 =
u?—1 =n = u® = 1+n where n € Nil(Ry).Now (u?)*” = (1+n)¥ =1+
3°n + 35(3;71)712 + 35(35731')2(3572) nd + 35(3571)5’;;2)(3573)714 =1las3*n=0,n" =0 for
n € Nil(Ry). Therefore U(R,) is a group of exponent 2 x 3°. Again for u € U(Ry)
we have 3*(u® —u) = 0 = 3tu(u® — 1) = 0 = 3%? = 3%

Suppose R3 # 0. Here 5% = 0 in Ry.Let k € Ry so we can write k = >+ ¢;; ¢ =
e eie; = ejeist,j € {1,2,3,4}. Now k> — k = 5P where P = P(ey, ez, €3,¢4) is a
function of ey, €5, 3, e4. Therefore (k* — k)* = 0;5(k° — k) = 0.

Now for every n € Nil(Ry) we have 1 — n* € U(Ry) where @ € N. Now
n?(n* —1)2=0=n?=0. Also 5n(n* — 1) =0 = 5n = 0.

Now k5 — k is nilpotent for all k¥ € R3. So by using Lemma 5.3 we have R3/J(R3)
is subdirect product of Z5’s and J(R3) is nil.

Now for j € J(R3) we have 452 € J(R3). So 1 — 521+ 52 € U(R3) as J(R3) is
nil. Now (5° — 7)* =0 = j*(1 — 7*)*(1 + 7*)* = 0 = 42 = 0. Again for i, j € J(R3)
we have (i + )2 = 0 = ij = —ji.Again 5(j5 — j) = 0 = 5j(j4 — 1) = 0 = 5j = 0.

Let u € U(R3). We have (u® —u)? =0 = v*(u' - 1) =0= (u* - 1)2=0=
ut —1=n e Nil(R3). Nowvu? = (1)’ = (1+n)’=1+5n=1lasn?>=0;5n=0
for every n € Nil(R). So U(R3) is group of exponent 4 x 5 = 20.

Suppose R, # 0.Here 7 = 0 in Rs.If k> = 0 in R,, then putting k = 3.\, ¢;
where ¢;,i = 1,2,3,4 are commuting tripotents. Then 0 = k" = ef + el + e} +

el + TP(e1, e, e3,€4) = €1 + €5 + €3 + €4 = k. Hence R, is a reduced ring, so R,
is a subdirect product of the domains {R,}. But R, has only the trivial tripotents
0,1,—1, we infer that R, = {-3,—-2. —1,0,1,2,3}. But 7 = 0 in R,, so R, = Z.
Therefore ,R, is a subdirect product of Z-’s. O

Proposition 5.6. If Ris a ST® ring then R = Ry x Ry x Ry x Ry x Rs where

- R, is zero or ST® with 2*' = 0.

- Ry is zero or ST® with 3% = 0; R, has the identity (k3 — k)% = 0;3°(k* — k) =
OVk € Ry. For every n € Nil(R) we have n® = 0,3°n = 0. Ry/J(Ry) is
subdirect product of Zs’s. For every j € J(R,) we have j¢ = 0,3%j = 0..
U(R) is a group of exponent 2 x 35 and 3°u? = 3° for every u € R,
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- Rjis zero or ST® ring with 5° = 0. Rj has identity (k°—k)* = 0;5%(k° —k) =
OVk € Rs. For every n € Nil(R) we have n® = 0,5°n = 0. Ry/J(R»)
is subdirect product of Zs’s. For every j € J(R3) we have j3 = 0,5% = 0.
U(R3) is a group of exponent 4 x 5* = 100 and 5*u* = 5% for every u € U(R3).

- Ry is zero or ST® ring with 72 = 0. Ry has identity (k" —k)? = 0;7(k" — k) =
OVk € Ry. R4/J(Ry) is subdirect product of Z;’s. For every n € Nil(Ry)
we have n?> = 0,7n = 0. For every j € J(R4) we have j?> = 0,7j = 0 and
ij = —jiforalli,j € J(Ry). Ry/J(Ry) is subdirect product of Z7’s. U(Ry) is
a group of exponent 6 x 7 = 42 and Tu® = 7 for every u € U(R,)

- Rs is zero or subdirect product of Z;.

Proof. From Proposition 4.4 we have 22! x 310 x 5% x 7 x 11 = 0. Again from
Proposition 5.1 , For a ST° ring we have (k —5)(k —4)(k — 3)(k — 2)*(k — 1)%k3(k +
1)2(k +2)%(k +3)(k+4)(k + 5)2% = 0Vk € R. Putting k = 6 we get 210 x 3% x 53 x
72 x 11 = 0. Now taking g.c.d of 22! x 319 x 5% x 73 x 11 and 2%° x 3% x 5% x 7% x 11
we get 22! x 3% x 5% x 72 x 11 = 0. So by using Chinese Remainder theorem we get
a reduced form which is R = (5iz) X (5t=) % (555) % (5) % (145).

Now clearly R = Ry X Ry x R3 x Ry x R; where Ry = Hl=, Ry = & Ry = L
Ry = £ Clearly R, is a ST® ring with 22! = 0.

Suppose R, # 0. Here 36 = 0in Ry. Let k € R, so we can write k = Y e;; €3 =
e eie; = eje; i, j € {1,2,3,4,5}. Now k3 — k = 3P where P = P(eq, e, e3,€4, €5) 18
a function of ey, ey, 3, 4, e5. Therefore (k3 — k)% = 0,3°(k® — k) = 0 Vk € R..

Now for every n € Nil(Ry) we have 1 — n* € U(Ry) where a € N. Now
(n* —n)®=0= nmn?—-1)?2=0= n®=0. Again 3°n(n* — 1) = 0 = 3’n = 0.
Using the Lemma 5.2 we have R,/.J(Ry) is subdirect of Z3’s and J(Rs) is nil.

Now for j € J(R,) we have —j € J(Ry). Therefore 1—j, 1+j € U(Rz) as J(Ry) is
nil. Now (53 —5)° = 0= 3G —-1)°(+1) =0= 5=0as (j—1)% (j+1)° € U(Ry).
Again 3°(j2 —j) =0=3%(+1)(j—1)=0=3%=0as (j—1),(j +1) € U(Ry).

Let u € U(Ry). Now (v —u) =0 = v*(u? - 1) =0= (*-1)° =0 =
u? —1=n¢€ Nil(Ry). (u®)* = (1+n)* =1+ 3n+ 36(3;71)712 + 36(36731.)2(3672)713 +
36(36*1)5’;;2)(36*3) nt + 36(36*1)(365f42'?5§36*3)(36*4) n® =1 as 3°n = 0,n% = 0. Therefore
U(R,) is a group of exponent 2 x 3°. Again 3%u(u? — 1) = 0 = 3%u? = 3°.
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Suppose Rz # 0. Here 52 = 0 in Rs.Let k € R3 so we can write k = Zf’zl e;; el =
e eie; = eje;i, j € {1,2,3,4,5}. Now k* — k = 5P where P = P(ey, eq, €3, €4, €5) iS
a function of ey, ey, €3, €4, 5. Therefore (k5 — k)3 = 0;5%(k® — k) = OVk € Rs.

Now for every n € Nil(Ry) we have 1 — n* € U(Ry) where @ € N. Now
(n® —n)?=0=n3n*-1)3=0= n®=0. Again 5*n(n* — 1) = 0 = 5*n = 0.

Using Lemma 5.2 we have R;/J(R3) is subdirect product of Zs’s and J(Rj3) is
nil.

Now for j € J(R3) we have +35% € J(R3). So 1 —j% 1+ 52 € U(R3) as J(R3) is nil.
Now (j° — j)3 = 0 = 53(1 — j2)*(1 + j2)® = 0 = j3 = 0.Again 5%(j° — j) = 0 =
525 = 0.

Let u € U(R3). Now (v° —u)? =0 = *@w' -1 =0= (u*-1)3 =0 =
ut —1=n € Nil(Rs). So u® = (u)* = (14 n)" =1+ 5%+ ZEDp2 — 1 a5
n? = 0,5%n = 0. So U(R3) is group of exponent of 4 x 52 = 100. Also 5%u(u® — 1) =
0 = 5u' = 5.

Suppose R4 # 0. Here 72 = 0 in Ry.Let k € R, so we can write k = Zf’:l e el =
e eie; = eje; i, j € {1,2,3,4,5}. Now k" — k = 7P where P = P(ey, e, €3, €4, €5) 18
a function of ey, ey, 3, 4, e5. Therefore (k" — k)2 = 0; 7(k" — k) = OVk € Ry.

Now for every n € Nil(R,) we have 1 — n* € U(Ry) where a € N. Now
n"—n)?=0=n*(n®*-12=0=n>=0.Again Tn(n® —1)=0= T =0
Now for j € J(R,) we have +5° € J(R;). So1— 731+ 5% € U(Ry). Now
(G"=7)P2=0=721-72)*1+7*)?*=0=j42=0as1— 7531+ 5% € U(Ry).Again
7(j° — j) = 0 = 7j = 0. Again for i, j € J(R,) we have (i + j)*> = 0 = ij = —ji.

Let u € U(Ry). Now (" —u)2 =0 = v*u® -1 =0= (u5-12=0=
uS — 1 =n € Nil(Ry). Again now (u%)" = (14+n)" = 1+ Tn = 1.S0 U(R,) is group
of exponent 6 x 7 = 42.

Suppose R5 # 0.Here 11 = 0 in Rs.If k¥* = 0 in Rs, then putting k£ = Zle e; where
e;,i = 1,2,3,4,5 are commuting tripotents. Then 0 = k™ = el' +ell + el + el +
11P(ey, e, e3,€4,65) = €1 + €3+ €3+ e4 + e5 = k. Hence Rj is a reduced ring, so R,
is a subdirect product of the domains { R, }. But R, has only the trivial tripotents
0,1, —1, we infer that R, = {—5,—4,—-3,—-2. —1,0,1,2,3,4,5}. But 11 = 0in R,,
so R, = Zy,. Therefore ,R, is a subdirect product of Z;’s. O

Now using the Proposition 5.2 we have the following Corollaries.
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Corollary 5.2. In a ST?*™"! ring, we have 1.2.3.42.52.63.73.81.9* ... (25 + 2)7T1(25 +

VL (2m)™(2m 1) (2m-2) ™ (2m +3)™ (2m+-4)™ (2m+5)™ L (2m+6)m .

(dm +2 — 2j — 1) (dm + 2 — 2§11 . (4m — 1)2(dm)2(4m + 1) (dm + 2)(4m + 3)

_ 2m(m+2)(2m—1)

23(2m D= 0

Corollary 5.3. In a ST?™ "2 ring, we have 1.2.3.42.52.63.72.81.91.10° . . . (2j+3)7 " (2j+

A2 (2m 4 1) (2m 4+ 2)™ L (2m 4 3)™ L (2m 4 4)™ L (2m 4 5)™(2m + 6)™ (2m +

7yl (dmo— 25 + 272 (Am — 25 + 3)7TL L Am3 (dm + 1)%(dm + 2)% (dm + 3) (4m +
6m+m(2m+1)(2m+5)

4)(4m + 5)2 3

Putting k = 2m + 2 and k = 2m + 3 in the equations of Proposition 5.2 we get the

result.

Lemma 5.4. If ¢ is a tripotent then ¢*™*! = ¢ where m > 1.

Proof. We have e = ¢,e® = e3e¢? = e = e. So the result is true for small number.

Imtl — e, Now e?mF3 = ¢2mFle2 — ee? = ¢3 = e. Hence by induction the

Suppose e
resultis foralln € N.

In general for every prime p other than 2 we have e? = e.

We can generalize the property for ST™ ring. Just in general case we have
to obtain the exponent of U(R;) manually. Excluding this case, we establish the

general form of ST™" ring. O

Proposition 5.7. Suppose R is ST" ring. Then we have the following properties
(1) Ifn = 2m+1where m > 1. Suppose 1.2.3.42.52.63.73.81.9 ... (2j+2)7 T (25 +
3L 2m)™(2m+1)™(2m+2)™ M (2m +3)™ (2m +4)™ (2m +5)" " (2m +
6)" 1. (Am+2—25— 1) (4m+2—25)7T L (4m—1)%(4m)?(4m+1)(4m+
2)(4m + 3)23@m- D+ gaigasgas | pai | pa
(2) Orifn = 2m + 2 where m > 1. Suppose 1.2.3.42.52.63.73.82.91.10° ... (25 +
325 + 4)72 . . (2m + 1)™(2m + 2)" T (2m + 3)™ T (2m + 4)™H (2m +
5)m(2m+6)"(2m+ 7)™ . (dm— 25 +2)7 2 (dm — 25 + 3T AmB (dm+
1)2(4m+2)2(dm+3) (dm+4) (dm +5)20m+ “EGC _gmigasges | pai
7
Then R~ Ry X Ry Xx Ry X ... X R; x ... x R; where

(1) R is gero or ST™ ring with 2** = Q.
(2) R, is zero or ST™ ring with 32 = 0. Ry has the identity (k* — k)™ =
0;3%27 (k3 — k) = OVk € R,. For every n € Nil(Ry) we have n® =
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0;327tn = 0. Ry/J(Ry) is subdirect product of Z3’s. For every j € J(Ry) we
have j* = 0,3%71j = 0. For every u € U(R,) we have 3%~ 1y? = 32271,

(3) R3 is zero or ST" ring with 5% = 0. Rj has the identity (k° — k)* =
0;5% 1(k* — k) = OVk € R,. For every n € Nil(R3) we have n® =
0;5%7n = 0. Ry/J(Ry) is subdirect product of Zs’s. For every j € J(R,) we
have j* = 0,5%71j = 0. For every u € U(R,) we have 5% 1yt = 5%~1 [f
as = 1 then Rj is subdirect product of Zs’s.

(i) R; is zero or ST™ ring with p; = 0. Rj has the identity (kP — k)% =
0; p ! (k? —k) = OVk € R;. For every n € Nil(R;) we have n% = 0;pf" 'n =
0. R;/J(R;) is subdirect product of Z,’s. For every j € J(R;) we have

§% =0,p% 15 = 0. For every u € U(R;) we have p?* 'uPi~t = p" ', Ifa; = 1
then R, is subdirect product of Z,,’s.

(k) R, is zero or ST™ ring with p® = 0. Ry has the identity (k"' — k)™ =
0; pf* ' (kP — k) = OVk € R,. For every n € Nil(R;) we have n® = 0;p}* 'n =
0. Rl/J(Rl) is subdirect product of Z,’s. For every j € J(R;) we have
j% =0,p"""j = 0. For every u € U(Rl) we have pi' tuP ! = pi T Ifap = 1

then R, is subdirect product of Z,,’s

Proof. We prove the result only for n = 2m + 1, m > 1. Now if n = 2m + 1 and
R is a ST™ ring then using Corollary 5.2 we have 1.2.3.4%2.52.63.72.80.91 ... (25 +
2)7TL(25+3) . (2m)™ (2m+1)"(2m+2)" T (2m+3)™ (2m+4)™ (2m+5)" " (2m+
6)" L. (dm+2—25 — 1) (4m + 2 — 250 (dm — 1)2(4m)2(4m + 1) (dm +
2)(4m + 3)23C@m-D+2EHRE () and s0 2013025 | p,ai L p = 0.

So by Chinese Remainder Theorem we have

RE¥R xRy xRy3x...xR; x...xRy.

Here Ry = ;1 Ry~ f R, = %R, LR = a . Now R, is zero or ST?"+!

ring with 291,

Considering R;. Now R; is zero or ST?™*! ring with p;% = 0. Let k € R; so we
can write k = Zf;”l“ e eie; = eje;zt,j € {1,2,...,2m + 1}. Now using Lemma
5.4 we have k? — k = p;P({p:|]1 > i > (2m + 1)}) where P({p;|1 > i > 2m + 1})

is a function of e, ey, . . ., €94 1. Therefore (ki — k)% = 0 and p;“~(kPi — k) = 0.
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Now for n € Nil(R;) we have 1 — n® € U(R;) for « € N. Again for n € Nil(R;)
we have (n”* —n)% =0 = n“i(npi*1 —1)% =0 = n% = (. Again p;* ! (nP' —n) =
0= p%nnPi~t —1) =0 = p;%In = 0. Using Lemma 5.2 we have R;/J(R;)
is subdirect product of Z,’s and J(R;) is nil. So if j € J(R;) then j € Nil(R;)
so j% = 0, p%'j = 0. Now let u € U(R;) we have p* ' (uli —u) = 0 =
P (Pt — 1) = 0 = py gl = ot

Now if a; = 1 then p; = 0. Let k € R; withk? = 0.Let k € R; so we can write

k= Z?L”IH e;;ee; =eje;t,j € {1,2,...,2m+ 1}. Now using Lemma 5.4 we have
kPi —k = p;P({p:|]1 > i > (2m + 1)}) where P({p;|1 > ¢ > 2m + 1}) is a function
of e1,es,...,€oms1. Therefore kP —k =0 = k = 0 as k? = 0. So R, is subdirect

product of domains {R, }. But R, has only trivial tripotents 0, 1, —1. We infer that
Ry = {0,£1,42, ..., £} Butp; = 0in R,. So R, & Z,,. So R; is subdirect
product of Z,,’s.

Similarly we can prove for Ry, Rs, ..., R;.
If n = 2m + 2 we can prove the result same as above. O
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