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THE CONSECUTIVE MATRIX THEOREM - A PROPERTY OF DETERMINANTS
Pablo Ribeiro Dias
ABSTRACT. The purpose of this paper is to present the proof that the determinant

of any matrix of order higher than 2 (k¥ > 2) where elements are consecutive
numbers or numbers following an arithmetic progression will always be zero.

1. INTRODUCTION

Consider a 4 by 4 matrix with consecutive elements

1 2 3 4
5 6 7 8
9 10 14 12
13 14 15 16

The determinant of such matrix will always be zero. Here, this example will be
expanded to a more generic format and proven for any matrix of order higher than
2 (k> 2).
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2. THEOREM DESCRIPTION

Let A be a k by k£ matrix such that

a 12+ a13—|—y a1y + 2
ao1 o9 + T a23+y Aof, + 2
A= : ,
Ag—1,1 Ok—12+T Qp13+yY -+ Qg1+ 2
| Akl ago + ags +vy g + 2|

where q;; is an element a in row ¢ and column j.

Now consider a special case of matrix A, in which all elements ifia in the same
row are equal such that a;; = a1 = -+ = ag, 21 = Qoo = +++ = Agp, A1 = Ay =
-+« = ay, et. ¢. Such matrix could be written as

a a+xrx a+y -+ a+=z
b b+x b+y - btz
k k+z k+y - k+z

Here, it is shown that the determinant of such matrix, det(B), is zero for any
matrix of order greater than 2 (k > 2), and for a;;, z,y,2,... € R.

3. LEMMAS

The following lemmas will be used:

Lemma 3.1. Element Sum Property. The determinant can be expressed as the sum
of two other determinants if the determinant in each element in any row or column
consists of two terms.

Lemma 3.2. Repetition Property. The value of a determinant is zero if two rows or
columns of a determinant are identical.

Lemma 3.3. Multiplying a row or column by a scalar. If a given matrix D is ob-
tained from matrix C' by multiplying a row or column of C' by a real number r, then
det(C) = r - det(D).

Proofs for all lemmas used can be found in references [1-3].
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Consider the k by £ matrix B introduced in the theorem description.
order greater than 2 (k > 2) and a,b,...,k,x,vy, ..

4. THEOREM PROOF

a a+xr a+y
b b+x b+y

k k+x k+y

The determinant of B can be calculated as

det(B) =

a at+x a+t+vy
b b+x b+y

k k+zx k+vy

a—+z
b+ z

k+ =z

a—+z
b+ z

k+z

.,z € R such that

According to the Lemma 3.1, det(B) can be decomposed into two terms

a a a+y a—+z

b b b+ b+ z
sdet(By =1, | "7 +

kE k k+y k+z

a r a+y
b = b+y

k x k+y

a-+z
b+ z

k+z
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B is of

The first term has two identical columns; thus, such determinant is zero according

to Lemma 3.2, and

c.det(B) =0+ |,

a r a+y
b = b+y

k x k+uy

a—+z

b+ z

k+ =z

According to the lemma 3.1, det(B) can be decomposed again into two terms

c.det(B) =

a T a a—+z
b = b b+ z
.o .|t
k =z k k+z

a x vy

b = y

k z vy

a+z
b+ z

k+z
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The first term has two identical columns; thus such determinant is zero according
to Lemma 3.2, and

a r Yy - a+z

b e b4z
codet(B) =041, . y . .

Ekx vy -+ k+z

The second term has a column in which all elements are identical and equal to z,
and one in which all elements are identical and equal to y. According to Lemma
3.1, the det(B) can be written as

1 - a+z
b 1 - b+z

det(B) =ay |,
E1 1 - k+=z

The determinant now has two identical columns, thus the determinant is zero
according to Lemma 3.2, and

c.det(B) =zy-0=0.

Note that a matrix of consecutive numbers falls into the generic case proposed,
as does the case of any matrix of arithmetic progression. E.g.,

1 2 3
4 5 6
789

can be written in the generic form with x =1 and y = 2 as

a a+zxr a+vy 1 141 1+2
b b+x b+y|l=1[4 441 4+42|.
c c+zx c+y 7T 7T4+1 742

This was proven to be equal zero.
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