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CENTRALIZERS IN THE FIRST WEYL ALGEBRA OVER A 2 OR 3 -
CHARACTERISTIC FIELD

Bah S.B. Kouame1 and Konan M. Kouakou

ABSTRACT. The purpose of this paper is the determination of some centralizers in
A1, the first Weyl Algebra. Some authors have done their studies in the case of
zero characteristic field. As far as we’re concerned, we have decided to work in 2
or 3 characteristic field. Doing so, we show that if u ∈ A1 is a minimal element, C-
primitive and without constant term, then its centralizer Z(u) = L[u] ∩ A1 where
L is the fractions field of C, the center of A1. Particularly, when u is ad-invertible,
i.e there exists v ∈ A1 such that [u, v] = 1, then we have Z(u) = C[u] which is a
result analogous to that of [2].

1. INTRODUCTION

The first Weyl algebra A1 over a field k is the unital, associative k-algebra gen-
erated by two elements x, y with the only commutation relation [y, x] = 1. In-
troduced by Hermann Weyl (1928) in order to study the Heisenberg uncertainty
principle in quantum mechanics, a large description of A1 was done in [1] and [3].

In this paper, we consider A1 as the first Weyl algebra over a p-characteristic field
k and for an element u in A1, we denote Z(u) its centralizer in A1, C = k[xp, yp] is
the center of A1 and L the fractions field of C.
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In the first section, we give some general and useful results about the central-
izers. These results allow us to reduce their studies in the following section. In
the second section, we clearly determine the structure of the centralizers in 2 or 3
characteristic field.

It is worth noting that this study opens up the vast area of research on central-
izers in nonzero characteristic field in a general context.

2. PRELIMINARIES

In this section, we recall that k is a p-characteristic field and we present some
definitions, notations and basic properties which are necessary for the study of
centralizers in the first Weyl algebra. L is the fractions field of C, the center of A1.

Definition 2.1. Let u be an element of A1. The centralizer of u, denoted Z(u),
is the subalgebra of A1 consisting of elements in A1 that commute with u. Thus,
Z(u) := {v ∈ A1 : [u, v] = uv − vu = 0}.

Definition 2.2. Let u ∈ A1.

- u is called C-primitive if for all (a, v) ∈ C × A1, u = av implies a = 1.
- u is called without constant term if for all (a, v) ∈ C ×A1, u = v + a implies
a = 0.

The following propositions allow us to consider only the centralizers of C-
primitive and non constant term elements.

Proposition 2.1. Let u ∈ A1 and a, b ∈ C with a ̸= 0. We have Z(au+ b) = Z(u).

Proof. Let v ∈ Z(u). Then, [v, au+ b] = a[v, u] = 0 is equivalent to [v, u] = 0. Thus,
the result follows. □

Example 1. Z(a) = A1 for any a ∈ C. Let P ∈ C[X] such that P /∈ C. Then,

◦ Z(P (x)) = C[x]

◦ Z(P (y)) = C[y].

Proposition 2.2. Let u ∈ A1 and φ ∈ Endk(A1). We have:

(1) φ(Z(u)) ⊂ Z(φ(u))

(2) If φ is an automorphism, then we have the equality.
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Proof.

(1) Let v ∈ Z(u). We have [φ(v), φ(u)] = φ([v, u]) = φ(0) = 0. This implies
that φ(v) ∈ Z (φ(u)) i.e φ(Z(u)) ⊂ Z(φ(u)).

(2) Let v ∈ Z(φ(u)). Since φ is an automorphism, there exists v′ ∈ A1 such
that v = φ(v′). On a [v, φ(u)] = [φ(v′), φ(u)] = φ ([v′, u]) = 0. As φ is
injective, we conclude that [v′, u] = 0 i.e v′ ∈ Z(u). Therefore v ∈ φ(Z(u)).
Hence, Z(φ(u)) ⊂ φ(Z(u)). Combining with (1), we obtain the equality
φ(Z(u)) = Z(φ(u)).

□

Lemma 2.1. Let u, v ∈ A1. Set a = [v, u]. For any i ∈ N∗, we have

[v, ui] =
i∑

s=1

ui−saus−1.

Proof. We use induction on i ≥ 1.
For i = 1, the result is immediate.
For i = 2, we have [v, u2] = ua+ au = u2−1au1−1 + u2−2au2−1.
Now, assume that the result is true for an integer i ≥ 2 and prove it for i + 1.

We have

[v, ui+1] = u[v, ui] + aui =

(
i∑

s=1

ui+1−saus−1

)
+ ui+1−(i+1)au(i+1)−1

=
i+1∑
s=1

ui+1−saus−1.

Hence, the result holds for all i ∈ N∗. □

Proposition 2.3. Let u, v ∈ A1, 1 ≤ i ≤ p − 1 such that ui /∈ C. We have [v, ui] =

0 ⇐⇒ [v, u] = 0.

Proof. [v, u] = 0 =⇒ [v, ui] = 0 is immediate. Now, suppose that [v, ui] = 0. Set
a = [v, u]. According to lemma 2.1, we have

[v, ui] =
i∑

s=1

ui−saus−1 =
i∑

s=1

(
ui−1a+ ui−s[a, us−1]

)
= iui−1a+

i∑
s=1

ui−s[a, us−1].

Let 1 ≤ s ≤ i. Notice that ui−1a = ui−sus−1a.
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If a ̸= 0, then dox(u
s−1a) > dox([a, u

s−1]) for all 1 ≤ s ≤ i where dox(u
s−1a) and

dox([a, u
s−1]) are respectively the degree in x of us−1a and the degree in x of [a, us−1].

Consequently, dox(iu
i−1a) > dox

(∑i
s=1 u

i−s[a, us−1]
)

. Hence, [v, ui] ̸= 0, which
completes the proof. □

Definition 2.3. For u ∈ A1, we define u+ := xpu that we call the positive part of u.
Notice with this definition that u = x−pu+ where x−p ∈ L. Thus, we denote A+

1 , the
set of positive parts of A1’s elements. In other words, A+

1 = xpA1.

Lemma 2.2. Let j ∈ N and f(xy) = a0 + a1xy+ . . .+ an(xy)
n where the ai ∈ L. Set

f(+j) = f(xy + j) := a0 + a1(xy + j) + . . .+ an(xy + j)n. Then

f(xy)xj = xjf(xy + j) and yjf(xy) = f(xy + j)yj.

Proof. Let f(xy) = a0 + a1xy + . . .+ an(xy)
n ∈ L[xy].

By induction on i ≥ 0, we show that (xy)ix = x(xy+1)i. Then, we use induction
on j ≥ 0 to show that f(xy)xj = xjf(xy + j).

Similarly, we prove the second result yjf(xy) = f(xy + j)yj, using induction
too. □

The following theorem is very important in the sequel since it reduces the study
of centralizers from A1 to A+

1 .

Theorem 2.1. Presentation of elements of A+
1 . All element u ∈ A+

1 can be uniquely
written in the form u = xp−1up−1 + . . . + xu + u0 where ui ∈ C[xy]. In other words,
A+

1 is a finitely generated free module over C[xy].

Proof.
Existence of the form.

Let u = xp
∑

aijx
iyj ∈ A+

1 with aij ∈ C for all 0 ≤ i, j ≤ p − 1. First, note
that y = x−1(xy). Using lemma 2.2, we have y2 = x−1(xy)y = x−1y(xy − 1) =

x−2(xy)(xy − 1). Assume that yj = x−j(xy)(xy − 1) . . . (xy − (j − 1)) for j ≥ 2. We
have

yj+1 = x−j(xy)(xy − 1) . . . (xy − (j − 1))y

= x−jy(xy − 1) . . . (xy − j)

= x−(j+1)(xy)(xy − 1) . . . (xy − j).
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Hence, xiyj = xi−jHj where Hj = (xy)(xy − 1) . . . (xy − (j − 1)).
Now, consider xpxiyj = xp+i−jHj for i − j ∈ {−(p− 1), . . . , 0} and xpxiyj =

xi−jxpHj for i− j ∈ {0, . . . , p− 1}. This justifies the existence of the form.

Uniqueness of the form.

Indeed, assume that u = xp−1up−1+ . . .+xu1+u0 = 0 and demonstrate that the
ui are zeros. Taking the commutator with xy, we obtain [xy, xp−1]up−1 + . . . +

[xy, x]u1 = 0. We have [xy, xn] = nxn for any whole number n. Thus, (p −
1)xp−1up−1+. . .+xu1 = 0. Factoring out x, we get (p−1)xp−2up−1+. . .+2xu2+u1 =

0. Continuing this process iteratively, we have up−1 = 0, and then ui = 0 for all
i ∈ {0, . . . , p− 1}. Hence, the result follows. □

Corollary 2.1. Let u, v ∈ A1. Then:

[v, u] = 0 ⇐⇒ [v+, u+] = 0.

Proof. We have [v+, u+] = [xpv, xpu] = x2p[v, u]. Since x2p ̸= 0 and A1 is a domain,
then, the result is immediate. □

Remark 2.1. Determining the centralizer of an element u ∈ A1 is equivalent to
determining the centralizer of u+ ∈ A+

1 .

Definition 2.4. Let u = xp−1up−1 + . . . + xu1 + u0 ∈ A+
1 with the ui ∈ C[xy]. We

define the p-degree of u as the greatest integer i ∈ {0, . . . , p− 1} such that ui ̸= 0.
And this degree will be denoted d0p(u). Any element u is said to be minimal if u /∈ C

and there is no non-central element in its centralizer with a p-degree lower than the
p-degree of u.

Proposition 2.4. Let u ∈ A1 such that u /∈ C. If dop(u) = 0, then Z(u) = C[xy].

Proof. It is sufficient to search Z(xy). Let v = xp−1vp−1 + . . . + xv1 + v0 ∈ Z(xy)

where vi ∈ C[xy]. We have [v, xy] = [xp−1, xy] vp−1 + . . . + [x, xy] v1 = 0. That
implies vi = 0 for all 1 ≤ i ≤ p − 1. Then, v = v0 ∈ C[xy]. And, we have the final
result. □

Proposition 2.5. Let Q ∈ L[xy]. Then

Q(xy + 1) = Q(xy) =⇒ Q ∈ L.
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Proof. Set Q = α0 + α1xy + . . . + αn(xy)
n ∈ L[xy]. We can rewrite Q uniquely as

Q = a0 + a1xy + . . .+ ap−1(xy)
p−1 with the ai ∈ L.

We also have, Q(X+1) = a0+a1(xy+1)+. . .+ap−1(xy+1)p−1. Then, Q(X+1) =

Q(X) implies ap−1 = 0. By rewriting Q and proceeding in the same way, we obtain
Q = a0 ∈ L. □ □

Remark 2.2. For all Q(xy) ∈ L[xy], Q(xy) + Q(xy + 1) + . . . + Q(xy + p − 1) and
Q(xy)Q(xy + 1) . . . Q(xy + p− 1) are elements of L.

Proposition 2.6. We have:

(1) L[x] ∩ L[y] = L
(2) L[x] ∩ L[xy] = L
(3) L[y] ∩ L[xy] = L

Proof. (1) Let Q ∈ L[x]∩L[y] such that Q = α0+α1x+ . . .+αp−1x
p−1 = β0+β1y+

. . . + βp−1y
p−1 with αi, βi ∈ L. We have [y,Q] = α1 + . . . + (p − 1)αp−1x

p−2 = 0.
Then, for all 0 ≤ i ≤ p− 1, αi = 0. Hence, Q = α0 ∈ L. That ends the proof.

For (2) and (3), the demonstrations are analogous to (1). □

3. STRUCTURE OF THE CENTRALIZERS WHEN THE CHARACTERISTIC

carac(k) ∈ {2, 3}

In this section, we provide a deep description of the centralizer of an element in
2 or 3 characteristic field.

Lemma 3.1. Let u, v ∈ A1, a, b ∈ C such that gcd(a, b) = 1. If au = bv then b divides
u and a divides v .

Proof. Considering A1 as a C-module, set

u =
∑

0≤i,j≤p−1

aijx
iyj

and
v =

∑
0≤i,j≤p−1

bijx
iyj,

with aij, bij ∈ C = k[xp, yp]. We have

au =
∑

0≤i,j≤p−1

aaijx
iyj
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and
bv =

∑
0≤i,j≤p−1

bbijx
iyj.

Thus, aaij = bbij for all i, j. Since C is a factorial domain, b divides aij for all i, j.
Consequently, b divides u. Similarly, we also have a divides v. □

Case of characteristic 2

Remark 3.1. If u = ax+ u0 where a ∈ C and u0 ∈ C[xy], then Z(u) = L[u]∩A1. In
fact, for v = xv1 + v0 ∈ Z(u), we obtain v1 ∈ C. That implies the requested result.

Proposition 3.1. Let u ∈ A1 be a minimal element. Then, Z(u) = L[u] ∩ A1.

Proof. C[xy] is a free C-module of rank 2, with {1, xy} as a basis. If do2(u) = 0,
then Z(u) = C[xy] acoording to Proposition 2.4. Let do2(u) = 1. On one hand,
if u = ax + u0 where a ∈ C, then we have immediately the result according to
Remark 3.1. Otherwise, set u = xu1+u0. Let v = xv1+ v0 ∈ Z(u) where vi ∈ C[xy]

for all i = 0, 1. Then, v1, u1, 1 are linearly dependent, i.e there exist α, β ∈ L such
that v1 = αu1 + β. Therefore, v = αu + λ where λ ∈ L. This completes the
proof. □

Remark 3.2. If u = xu1 + u0 ∈ A1 with the ui ∈ C[xy] such that u /∈ C[xy], then we
have u2 = au+ b where a, b ∈ C.

Corollary 3.1. Let u ∈ A1 such that u /∈ C. Then, there exits ū ∈ Z(u) such that
Z(u) = C[ū].

Proof. It is sufficient to choose a minimal, C-primitive and a non constant term ū

in Z(u). And by using Proposition 3.1 and Remark 3.2, we get the result. □

Case of characteristic 3

In the sequel, we only consider the case of 3 characteristic field since 2 charac-
teristic is entirely solved.

Proposition 3.2. If u = x2a + xu1 + u0 is minimal with a ∈ C such that a ̸= 0 and
the ui ∈ C[xy], then Z(u) = L[u] ∩ A1.

Proof. Let v ∈ Z(u). Set w =
u

a
. We have [v, u] ⇐⇒ [v, w].
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Set w = x2 + xl1 + l0 where li =
ui

a
∈ L[xy]. Set d(w) = x3 − l1l1(+1)l1(+2).

Notice that l1l1(+1)l1(+2) ∈ L according to Remark 2.2. It suffices to show that
d(w) ̸= 0 and then, we have v ∈ L[w] = L[u].

To show it, suppose that d(w) = 0. Then l1l1(+1)l1(+2) = x3 and doy (l1) = 0.
Hence, l1 ∈ L. Consequently, l1l1(+1)l1(+2) = (l1)

3 = x3 implies l1 = λx with
λ ∈ k such that λ ̸= 0. This contredits the fact that l1 ∈ L[xy]. So, d(w) ̸= 0 and
we obtain our result. □

Corollary 3.2. Let u ∈ A1 such that u is minimal. Then, Z(u) = L[u] ∩ A1.

Proof. C[xy] is a free module over C of rank 3, with {1, xy, (xy)2} as a basis. If
do3(u) = 0, then, according to Proposition 2.4, Z(u) is still entirely known. Let
do3(u) ∈ {1, 2}. On one hand, if u = x2a + xu1 + u0 where a ∈ C, then we have
the result according to Proposition 3.2. Otherwise, set u = x2u2 + xu1 + u0 and
u2 = x2h2 + xh1 + h0 with ui, hi ∈ C[xy]. Let v = x2v2 + xv1 + v0 ∈ Z(u). Then,
1, u2, h2 and v2 are linearly dependent. In other words, there exist α0, α1, α2 ∈ L
such that v2 = α2h2 + α1u2 + α0. Therefore, v = α2u

2 + α1u+ α where α ∈ L too.
Hence, Z(u) = L[u] ∩ A1. □

Remark 3.3. Z(u) is still a commutative algebra in 2 or 3 characteristic field as in
the case of zero characteristic field. See in [3].

Corollary 3.3. Let u, v ∈ A1 \ C. If Z(u) ̸= Z(v), then Z(u) ∩ Z(v) = C.

Proof. Let d ∈ Z(u)∩Z(v) such that d /∈ C. Then u, v ∈ Z(d). According to Remark
3.3, [u, v] = 0. That contradicts the hypothesis. □

Definition 3.1. Any element e ∈ C such that e ̸= 0 is called central irreductible
element if for all a, b ∈ C, e = ab implies a ∈ k or b ∈ k. For examples: x3, y3 and all
nonzero scalars are central irreductible elements.

Remark 3.4. Let u, v ∈ A1 such that [u, v] ∈ C. For all w ∈ Z(u), [v, w] ∈ Z(u). It
suffices to show that [[v, w] , u] = 0 by using Jacobi Identity.

Corollary 3.4. If there exist u, v ∈ A1 such that [u, v] is a central irreductible element,
then Z(u) = C[u] and Z(v) = C[v].

Proof. Set [u, v] = e. Let P = α2u
2+α1u+α0 ∈ Z(u) where αi ∈ L for all 0 ≤ i ≤ 2.
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If P = α1u+α0, then from Remark 3.4, we have [P, v] ∈ Z(u), that is α1e ∈ Z(u)

and then, since e is irreductible and by using Lemma 3.1, we obtain α1 ∈ C.
Therefore, α0 ∈ C.

Let P = α2u
2+α1u+α0. We have [P, v] = −α2eu+α1e ∈ Z(u). From precedent

result, we have α2, α1 ∈ C. And then, α0 ∈ C. Hence, Z(u) = C[u]. Similarly, we
show that Z(v) = C[v]. □

Remark 3.5. When u is ad-invertible, i.e there exists v ∈ A1 such that [u, v] = 1, then
we have immediately Z(u) = C[u] since it is a particular case of Corollary 3.4. Hence,
the result given in zero characteristic field by Jorge A. Guccione, Juan J. Guccione and
Christian Valqui [2] is recovered.

At the end, we discovered that, in 2 or 3 characteristic field, the centralizers are
still monomial algebras.

ACKNOWLEDGMENT

We thank all the members of the Algebra Seminar Team, led by Professor Daouda
SANGARE, for their valuable assistance about some challenging questions.

REFERENCES

[1] J. DIXMIER: Sur les Algèbres de Weyl, Bulletin de la S.M.F., 96 (1968), 209–242.
[2] J.A. GUCCIONE, J.J. GUCCIONE, C. VALQUI: On the Centralizer in the Weyl Algebra, Article

in Proceedings of the American Mathematical Society, December 2009.
[3] V. BAVULA: Dixmiers Problem 5 for the Weyl algebra, Journal of Algebra, 283 (2005), 604—

621.

LABORATORY OF MATHEMATICS AND APPLICATIONS

UNIVERSITY FÉLIX HOUPHOUËT BOIGNY

ABIDJAN,
CÔTE D’IVOIRE.
Email address: lesagebene@gmail.com

LABORATORY OF MATHEMATICS AND APPLICATIONS

UNIVERSITY FÉLIX HOUPHOUËT BOIGNY

ABIDJAN,
CÔTE D’IVOIRE.
Email address: makonankouakou@yahoo.fr


	1. Introduction
	2. Preliminaries
	3. Structure of the centralizers when the characteristic carac(k)2,3
	Acknowledgment
	References

