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CENTRALIZERS IN THE FIRST WEYL ALGEBRA OVER A 2 OR 3 -
CHARACTERISTIC FIELD

Bah S.B. Kouame! and Konan M. Kouakou

ABSTRACT. The purpose of this paper is the determination of some centralizers in
Ay, the first Weyl Algebra. Some authors have done their studies in the case of
zero characteristic field. As far as we're concerned, we have decided to work in 2
or 3 characteristic field. Doing so, we show that if u € A; is a minimal element, C-
primitive and without constant term, then its centralizer Z(u) = L[u] N A; where
LL is the fractions field of C, the center of A;. Particularly, when v is ad-invertible,
i.e there exists v € A; such that [u,v] = 1, then we have Z(u) = C[u] which is a
result analogous to that of [2].

1. INTRODUCTION

The first Weyl algebra A; over a field & is the unital, associative k-algebra gen-
erated by two elements x,y with the only commutation relation [y, x] = 1. In-
troduced by Hermann Weyl (1928) in order to study the Heisenberg uncertainty
principle in quantum mechanics, a large description of A; was done in []1] and [3]].

In this paper, we consider A; as the first Weyl algebra over a p-characteristic field
k and for an element u in A;, we denote Z(u) its centralizer in A, C' = k[aP, y?] is
the center of A; and L the fractions field of C.
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In the first section, we give some general and useful results about the central-
izers. These results allow us to reduce their studies in the following section. In
the second section, we clearly determine the structure of the centralizers in 2 or 3
characteristic field.

It is worth noting that this study opens up the vast area of research on central-
izers in nonzero characteristic field in a general context.

2. PRELIMINARIES

In this section, we recall that & is a p-characteristic field and we present some
definitions, notations and basic properties which are necessary for the study of
centralizers in the first Weyl algebra. L is the fractions field of C, the center of A;.

Definition 2.1. Let u be an element of A;. The centralizer of u, denoted Z(u),
is the subalgebra of A; consisting of elements in A; that commute with u. Thus,
Z(u) :={v € A; : [u,v] = uwv —vu = 0}.
Definition 2.2. Let u € A;.
- u is called C-primitive if for all (a,v) € C x Ay, u = av implies a = 1.
- u is called without constant term if for all (a,v) € C' x Ay, u = v + a implies
a = 0.

The following propositions allow us to consider only the centralizers of C-
primitive and non constant term elements.

Proposition 2.1. Let u € A; and a,b € C with a # 0. We have Z(au + b) = Z(u).

Proof. Letv € Z(u). Then, [v, au + b] = a[v,u] = 0 is equivalent to [v, u| = 0. Thus,
the result follows. O

Example 1. Z(a) = A, forany a € C. Let P € C[X] such that P ¢ C. Then,
o Z(P(x)) = Clx]
o Z(P(y)) = Clyl.

Proposition 2.2. Let u € A; and ¢ € Endi(A;). We have:

(1) o(Z(u) € Z(p(u))
(2) If ¢ is an automorphism, then we have the equality.
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Proof.

(1) Let v € Z(u). We have [p(v), p(u)] = ¢([v,u]) = ¢(0) = 0. This implies
that p(v) € Z (p(u)) i.e p(Z(u)) C Z(p(u)).

(2) Let v € Z(p(u)). Since ¢ is an automorphism, there exists v" € A; such
that v = ¢(v). On a [v, p(u)] = [p(v), p(W)] = ¢([v,u]) = 0. As ¢ is
injective, we conclude that [/, u] = 0i.e v' € Z(u). Therefore v € p(Z(u)).
Hence, Z(¢(u)) C ¢(Z(u)). Combining with (1), we obtain the equality
P(Z(w) = Z(p(u)).

U

Lemma 2.1. Let u,v € A;. Set a = [v,u]. For any i € N*, we have

Proof. We use induction on i > 1.
For ¢ = 1, the result is immediate.
For i = 2, we have [v, u?] = ua + au = v* tau' ™' + v 2au?"".
Now, assume that the result is true for an integer ¢ > 2 and prove it for i + 1.

We have

%
[U, uz-‘,—l] — U[’U, uz] +oau = <§ uz—i—l—saus—l) + uz—f—l—(z—l—l)au(z—i—l)—l
s=1
i+1

— § :UH_I_SCLU,S_I.
s=1

Hence, the result holds for all i € N*, d

Proposition 2.3. Let u,v € A;, 1 < i < p— 1 such that v’ ¢ C. We have [v,u'] =
0 <= [v,u] =0.

Proof. [v,u] = 0 = [v,v‘] = 0 is immediate. Now, suppose that [v,u’] = 0. Set
a = [v,u]. According to lemma [2.1, we have

%

i i
[U, UZ] — Z ui—saus—l _ Z (ui—la + ui—s[a’ us—l]) — iui_la 4 Z ui—s[a7 us—l]‘
s=1 s=1

s=1

Let 1 < s < i. Notice that v 'la = v %u*"la.



30 B.S.B. Kouame and K.M. Kouakou

If a # 0, then d°(u*"ta) > d°([a,u*""]) for all 1 < s < i where d°(u*'a) and
d°([a, u*"']) are respectively the degree in x of u*~'a and the degree in x of [a, u*~1].
Consequently, d°(iu'"'a) > d° (Zizl uifs[a,u5*1]>. Hence, [v,u'] # 0, which
completes the proof. O

Definition 2.3. For u € Aj, we define u* := xPu that we call the positive part of .
Notice with this definition that u = x~Pu"™ where x™7 € LL. Thus, we denote A, the
set of positive parts of A,’s elements. In other words, A = 2P A;.

Lemma 2.2. Let j € Nand f(zy) = ap+ a1xy + . .. + a,(xy)" where the a; € L. Set
f(+j) = flzy +j) = a0+ ai(zy +j) + ...+ an(vy + j)". Then

fley)a? =27 f(xy +7) and 3 f(zy) = flzy + 5)y.

Proof. Let f(zy) = ap + arzy + ... + an(xy)™ € Lizy].

By induction on i > 0, we show that (zy)‘z = x(zy+1)". Then, we use induction
on j > 0 to show that f(xy)2! = 27 f(zy + 7).

Similarly, we prove the second result 4’ f(zy) = f(zy + j)y’, using induction
too. UJ

The following theorem is very important in the sequel since it reduces the study
of centralizers from A; to A .

Theorem 2.1. Presentation of elements of A]. All element u € Al can be uniquely
written in the form w = 2 'u, 1 + ... + zu + uo where u; € C[zy]. In other words,
AY is a finitely generated free module over C|xy).

Proof.
Existence of the form.

Let u = 2 > a;x'y’ € Af with a;; € C for all 0 < i,j < p — 1. First, note
that y = 2~ '(xy). Using lemma we have y? = 27 Yay)y = v ly(lay — 1) =
v %(zy)(zy — 1). Assume that 3/ = 27 (zy)(ay — 1) ... (xy — (j — 1)) for 7 > 2. We
have

yH =2 (ay) ey — 1) (zy - (G- 1)y
=z y(zy —1)... (zy — j)
=~ (@y)(y — 1) (xy - ).



CENTRALIZERS OVER 2 OR 3 CHARACTERISTIC FIELD 31

Hence, 2y’ = 27 H; where H; = (zy)(zy — 1) ... (zy — (j — 1)).
Now, consider zPz'y’ = zP*"7H; for i —j € {—(p—1),...,0} and 2Pz'y’ =
xIgPH; for i — j € {0,...,p — 1}. This justifies the existence of the form.

Uniqueness of the form.

Indeed, assume that v = 2"~ 'u, 1 + ...+ zu; +ug = 0 and demonstrate that the
u; are zeros. Taking the commutator with zy, we obtain [zy,2? 'u, 1 + ... +
[zy,z]u; = 0. We have [zy,2"] = na™ for any whole number n. Thus, (p —
)P~ u, 1+...4zu; = 0. Factoring out z, we get (p—1)2P%u, 1+...4+2zus+u; =
0. Continuing this process iteratively, we have u, ; = 0, and then u;, = 0 for all
i €{0,...,p— 1}. Hence, the result follows. O

Corollary 2.1. Let u,v € Ay. Then:
[v,u] =0 <= [v*,u*] = 0.

Proof. We have [v", u"| = [zPv, 2Pu] = 2%[v, u]. Since z* # 0 and A, is a domain,
then, the result is immediate. O

Remark 2.1. Determining the centralizer of an element u € A; is equivalent to
determining the centralizer of u™ € Af.

Definition 2.4. Let u = 2P 'u, 1 + ... + zu; + vy € Af with the u; € Clxy|. We
define the p-degree of u as the greatest integer i € {0,...,p — 1} such that u; # 0.
And this degree will be denoted dj)(u). Any element w is said to be minimal if u ¢ C
and there is no non-central element in its centralizer with a p-degree lower than the
p-degree of u.

Proposition 2.4. Let u € A such that u ¢ C. If d5(u) = 0, then Z(u) = Clzy].

Proof. 1t is sufficient to search Z(zy). Let v = 2P, | + ... + zv; +v9 € Z(xy)
where v; € Clzy]. We have [v,zy] = [2P~} 2y|lv, 1 + ... + [z,zy]v; = 0. That
implies v; = 0 for all 1 <i < p — 1. Then, v = vy € C[zy]. And, we have the final
result. O

Proposition 2.5. Let () € L{zy|. Then

Qry +1) = Q(vy) = Q € L.
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Proof. Set Q = ap + aqxy + ... + ap(xy)™ € L[zy]. We can rewrite ) uniquely as
Q =ay+a1xy + ...+ ap_1(zy)?~! with the q; € L.

We also have, Q(X +1) = ag+ay(zy+1)+...4+a,_1(zy+1)P~'. Then, Q(X +1) =
(Q(X) implies a,_; = 0. By rewriting () and proceeding in the same way, we obtain
Q=ayel.O 0
Remark 2.2. For all Q(zy) € Lizy], Q(zy) + Qzy +1) + ...+ Q(zy +p — 1) and
Qzy)Q(xy +1)...Q(zy + p — 1) are elements of L.

Proposition 2.6. We have:

(1) Lz NLJy] = L

(2) Llz] N Lfzy] = L

(3) Liyl N Lfzy] =L
Proof. (1) Let Q € L{z]NL[y] such that Q = ay+ a1z + ...+, 12771 = By + fry +
oo+ BoyP !t with oy, 8 € L. We have [y,Q] = a1 + ... + (p — Doy, 12772 = 0.
Then, forall 0 <i <p—1, a; = 0. Hence, Q) = o € L. That ends the proof.

For (2) and (3), the demonstrations are analogous to (1). O

3. STRUCTURE OF THE CENTRALIZERS WHEN THE CHARACTERISTIC
carac(k) € {2,3}

In this section, we provide a deep description of the centralizer of an element in
2 or 3 characteristic field.

Lemma 3.1. Let u,v € Ay, a,b € C such that ged(a,b) = 1. If au = bv then b divides
uw and a divides v .

Proof. Considering A; as a C-module, set

U= E a;;x'y’

0<i,j<p—1

V= Z bij:viyj,

0<i,j<p—1
with Qyj, bij e(C = k[l’p, yp] We have

au = E aa;;x"y’

0<i,j<p—1

and
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and
bv = Z bbijxiyj.
0<i,j<p—1
Thus, aa;; = bb;; for all 4, j. Since C' is a factorial domain, b divides a;; for all ¢, j.
Consequently, b divides u. Similarly, we also have a divides v. O

Case of characteristic 2

Remark 3.1. If u = az + ug where a € C and vy € C[zyl, then Z(u) = L[u] N A;. In
fact, for v = zv; + vy € Z(u), we obtain v, € C. That implies the requested result.

Proposition 3.1. Let u € A; be a minimal element. Then, Z(u) = L[u] N A;.

Proof. C[zy] is a free C-module of rank 2, with {1,zy} as a basis. If d3(u) = 0,
then Z(u) = Clxy| acoording to Proposition Let d3(u) = 1. On one hand,
if u = ax + uy where a € C, then we have immediately the result according to
Remark 3.1} Otherwise, set u = zu; +ug. Let v = zv; + vy € Z(u) where v; € Clay]
for all i = 0,1. Then, vy, u, 1 are linearly dependent, i.e there exist «, § € IL such
that v; = au; + 5. Therefore, v = au + A\ where A € L. This completes the
proof. O

Remark 3.2. If u = xuy + ug € Ay with the u; € Clzy] such that u ¢ C|xy], then we
have u? = au + b where a,b € C.

Corollary 3.1. Let u € A, such that u ¢ C. Then, there exits u € Z(u) such that
Z(u) = Clul.

Proof. 1t is sufficient to choose a minimal, C-primitive and a non constant term «
in Z(u). And by using Proposition [3.1] and Remark 3.2} we get the result. O

Case of characteristic 3

In the sequel, we only consider the case of 3 characteristic field since 2 charac-
teristic is entirely solved.

Proposition 3.2. If u = z%a + xu; + ug is minimal with a € C such that a # 0 and
the u; € Clzy|, then Z(u) = L[u] N A;.

Proof. Letv € Z(u). Setw = Y. We have (v, u] <= [v,w].
a
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Set w = 22 + zly + Iy where [, = — € Llzy]. Set d(w) = 2* — L1y (+1)l(+2).
Notice that [;/;(+1)l;(+2) € L accorging to Remark It suffices to show that
d(w) # 0 and then, we have v € L[w] = Lu].

To show it, suppose that d(w) = 0. Then //;(+1)l1(+2) = z* and d (I;) = 0.
Hence, [, € L. Consequently, I;l;(+1)l;(+2) = (I;)* = 2® implies [; = Az with
A € k such that A # 0. This contredits the fact that /; € L[zy]. So, d(w) # 0 and
we obtain our result. O

Corollary 3.2. Let u € A, such that u is minimal. Then, Z(u) = L{u] N A;.

Proof. C[zy] is a free module over C of rank 3, with {1, xy, (zy)*} as a basis. If
d3(u) = 0, then, according to Proposition Z(u) is still entirely known. Let
d§(u) € {1,2}. On one hand, if u = z%a + xu; + uo where a € C, then we have
the result according to Proposition Otherwise, set © = z?uy + zu; + uo and
u? = x?hy + why + ho with u;, h; € Clxy]. Let v = z%vy + 201 +v9 € Z(u). Then,
1,us, he and v, are linearly dependent. In other words, there exist o, ay, 0 € L
such that vy = aghy + ajus + ag. Therefore, v = ayu? + a;u + o where o € LL too.
Hence, Z(u) = Lu] N A;. O

Remark 3.3. Z(u) is still a commutative algebra in 2 or 3 characteristic field as in
the case of zero characteristic field. See in [3].

Corollary 3.3. Let u,v € A, \ C. If Z(u) # Z(v), then Z(u) N Z(v) = C.

Proof. Letd € Z(u)NZ(v) such thatd ¢ C. Then u,v € Z(d). According to Remark
[u,v] = 0. That contradicts the hypothesis. O

Definition 3.1. Any element e € C such that e # 0 is called central irreductible
element if for all a,b € C, e = ab implies a € k or b € k. For examples: x*,y> and all
nongero scalars are central irreductible elements.

Remark 3.4. Let u,v € A; such that [u,v] € C. For all w € Z(u), [v,w] € Z(u). It
suffices to show that [[v,w],u] = 0 by using Jacobi Identity.

Corollary 3.4. If there exist u,v € A, such that [u, v] is a central irreductible element,
then Z(u) = Clu| and Z(v) = Clv].

Proof. Set [u,v] = e. Let P = apu? +aju+ag € Z(u) where ; € Lforall 0 <i < 2.
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If P = aju+ ay, then from Remark[3.4] we have [P, v] € Z(u), thatis cye € Z(u)
and then, since e is irreductible and by using Lemma (3.1, we obtain a; € C.
Therefore, oy € C.

Let P = ayu?® + aju + ap. We have [P,v] = —aseu+ aje € Z(u). From precedent
result, we have oy, a; € C. And then, oy € C. Hence, Z(u) = C[u]. Similarly, we
show that Z(v) = C[v]. O

Remark 3.5. When u is ad-invertible, i.e there exists v € A; such that [u,v] = 1, then
we have immediately Z(u) = C[u] since it is a particular case of Corollary[3.4] Hence,
the result given in zero characteristic field by Jorge A. Guccione, Juan J. Guccione and
Christian Valqui [2] is recovered.

At the end, we discovered that, in 2 or 3 characteristic field, the centralizers are
still monomial algebras.
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