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A NUMERICAL SOLUTION OF THE FRACTIONAL NAVIER-STOKES
EQUATION USING THE CAPUTO-FABRIZIO ABOODH TRANSFORM

METHOD WITH THE REDUCED DIFFERENTIAL POLYNOMIALS

A.A. Oyewumi1, R.A. Oderinu1,2, A.W. Ogunsola1, M. Taiwo3, and A.A. Yahaya1

ABSTRACT. A combination of the Aboodh transform method and the reduced dif-
ferential polynomial technique was employed in this work to solve the Navier-
Stokes equations with the Caputo-Fabrizio derivative. Two illustrations are pre-
sented to show the efficacy of the used method. The results gotten are showcased
with the aid of tables and graphs. It is discovered that the results derived are
close to the actual solution of the problems illustrated. This work will thus make
it simple to study nonlinear process that arise in various aspect of innovations and
researches.

1. INTRODUCTION

Fractional calculus which deals with the concept of fractional derivative was
first given by the Greek mathematician Leibniz in 1695. Many researcher have
since being motivated as the concept of fractional calculus interprets true nature
in a brilliant and methodical way [5-7]. It has also been discovered that calculus
of non-integer order derivative are essential in the description of many scientific
value problems such as but not limited to rheology and damping laws [10-14].
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Numerous concepts of fractional calculus were given by Kemple and Beyer [8],
Momani and Shawagfeh [3], Kilbas and Trujillo [1], Oldham and Spanier [9],
Miller and Ross [4], Podlubny [2], Jafari and Seifi [13,14], Caputo [15], Diethelm
et al.[16] and Kiryakova [20].

In recent time, mathematicians have given huge attention to analytical and ap-
proximate solutions of fractional differential equations. Most of the techniques
applied are the variational iteration method (VIM) [21], reduced differential trans-
form method (RDTM)[22], homotopy perturbation transform method [23-26] and
finite difference method (FDM) [26] to mention but a few.

Stokes and Clade were the first researchers to discover the Navier-Stokes equa-
tion (N-SE) in 1822 [27] as an equation of motion of viscous flow. The N-SE re-
garded as Newton’s second law of motion for fluid substances is a combination of
the energy equation, continuity and momentum equations. The Navier-Stokes (N-
S) model explains many physical processes such as air flow around a wing,water
flow in pipes, ocean currents, weather and many more which arises in various as-
pect of sciences. The N-S equation is also considered a useful tool in the area of
meterology and for discovering the relationship between rigid bodies and viscous
fluid [28-29]. Various techniques have been used to solve the N-SE by several
mathematicians, this include: the modified Laplace decomposition method em-
ployed by Kumar et al. [29] for the analytical solution of the N-S fractional order
equation.

The combined fractional complex transform and He -Laplace transform tech-
nique for the solution of N-SE was implemented by Edeki and Akinlabi [30] and
the analytical solution of time-fractional Navier-Stokes equation in polar coordi-
nate using homotopy perturbation method by Ganji et al. [31]. Singh and Kumar
[33] used the fractional reduced differential transformation method (FRDM) to
find a time-fractional N-S equation numerical solution.

Several researchers have also used various procedure to obtain the solution for
the Navier-Stokes quations. Ragab et al [34] used the homotopy analysis method
to solve the time-fractional Navier-Stokes equations. The discrete Adomian de-
composition method was employed by Birajdar [35] to obtain the numerical solu-
tion of time fractional Navier Stokes equations. Momani and Odibat [36] obtained
the analytical solution of a time fractional Navier Stokes equation via the Adomian
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decomposition method. A fractional model of Navier Stokes equations arising in
unsteady flow of a viscous fluid was investigated by Kumar et al. [37].

This work present the numerical solution of the fractional Navier-Stokes equa-
tions with the aid of the combined Aboodh transform and reduced differential
tranform methods(ABRDTM). Basic fundamental notations and definitions on frac-
tional calculus were explained in sections 2 and 3. Section 4 explains the proce-
dure for the ABRDTM scheme for the Caputo-Fabrizio derivative and section 5
analyzes the conclusion drawn from the study.

2. DEFINITIONS

Definition 2.1. The Riemann-Liouville fractional derivative of a function g, is defined
as [2-3]:

(1) 0I
τ
η g(η) =

1

Γ (τ)

∫ η

0

(η − γ)τ−1g(γ)dγ

where τ > 0, [0, η] is the interval, Γ(.) connotes the gamma function.

Definition 2.2. The fractional order of the Caputo derivative τ is defined in [4-5]
as:

(2) c
0D

τ
ηg(η) =

1

Γ(r − τ)

∫ η

0

g(r)(γ)

(η − γ)τ+1−r dγ,

where r − 1 < τ ≤ r, rϵN .

Definition 2.3. The Caputo-Fabrizio fractional derivative of a function g, is given as
[ 7-8]:

(3) C.F
0 Dτ

ηg(η) =
N(τ)

Γ(1− τ)

∫ η

a

e

−τ(η − γ)

1− τ g′(γ)dγ,

3. THE ABOODH TRANSFORM METHOD

The Aboodh transform defined for a function of the exponential order in a set R
defined [5] by:

(4) R =
{
g(γ) : S, q1, q2 > 0, |g(γ)| < Se−νγ

}
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where S is a constant that is an infinite number and q1, q2 may be finite or infinite.
The Aboodh transform defined by Aboodh et al [5] is denoted by the operator A(.)
and defined by the integral;

(5) A[g(γ)] = H(ν) =
1

ν

∫ ∞

0

g(γ)e−νγdγ, γ ≥ 0, q1 ≤ ν ≤ q2

Theorem 3.1 (5). Given that, H(ν) is the Aboodh transform of g(γ) such that

A[g(γ)] = H(ν),

then:

(1) A [g′(γ)] = νH(ν)− 1

ν
g(0);

(2) A [g′′(γ)] = ν2H(ν)− 1

ν
g′(0)− g(0) ;

(3) A [gm(γ)] = ν(m)H (ν)−
∑m−1

r=0

g(r)(0)

ν2−m+r
.

Theorem 3.2. Let g(η) be continuous, bounded and integrable then; the Aboodh
transform of g(η) in Riemann Liouville fractional derivative sense is given as:

(6) A{R.L0 Iτη g(η)} =
H(ν)

ντ
.

Proof. From the definition of Riemann Liouville integral:

(7) R.L
0 Iτη g(η) =

1

Γτ

∫ η

0

(η − γ)τ−1g(γ)dγ.

Applying the definition of convolution, then Aboodh transform of equation (7) is
given as:

A
[
R.L
0 Iτη g(η)

]
= A

[
1

Γτ

∫ η

0

(η − γ)τ−1g(γ)dγ

]
= A

{
1

Γτ
{ητ−1 × g(η)}

}
.

(8)

The Aboodh transform of equation (8) is further expressed as:

(9) A
[
R.L
0 Iτη g(η)

]
= ν

1

Γτ
A{ητ−1} × A{g(η)}.

Thus, equation(9) becomes:

(10) A
[
R.L
0 Iτη g(η)

]
=

1

Γτ
× Γτ

ντ
×H(ν).



A NUMERICAL SOLUTION OF THE FRACTIONAL NAVIER-STOKES EQUATION 65

Hence,

(11) A{R.L0 Iτη g(η)} =
H(ν)

ντ
.

□

Theorem 3.3. Let g(η) be continuous, bounded and integrable, then the Aboodh
transform of g(η) in Caputo fractional derivative sense is given as:

(12) A
{
c
0D

τ
ηg(η)

}
= ντH(ν)−

m−1∑
r=0

ντ−r−2g(r)(0).

Proof. From the definition of Caputo fractional derivative,

(13) A
[
c
0D

τ
ηg (η)

]
= A

[
0I
m−τgm (η)

]
.

Let
gm(η) = k(η).

Applying the result obtained in equation(11), then

(14) A
[
0I
m−τ
η k(η)

]
=
K(ν)

νm−τ ,

where K(ν)=A{k(ν)} = A{g(m)(η)} .
Simplifying A{g(m)(η)} using Theorem 3.1, then

(15) A{gm(η)} = νmH(ν)−
m−1∑
r=0

ντ−r−2g(r)(0),

thus,

(16) A
{
c
0D

τ
ηg(η)

}
=
K(ν)

νm−τ =
1

νm−τ {ν
mH(ν)−

m−1∑
r=0

νm−r−2g(r)(0)} ,

therefore,

(17) A
{
c
0D

τ
ηg(η)

}
= ν−(m−τ)

{
νmH(ν)−

m−1∑
r=0

νm−r−2g(r)(0)

}
,

(18) = ντH(ν)−
m−1∑
r=0

ντ−r−2g(r)(0) ,
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Hence, the Aboodh transform of Caputo derivative of order τ is given as;

(19) A
{
c
0D

τ
ηg(η)

}
= ντH(ν)−

m−1∑
r=0

ντ−r−2g(r)(0) .

□

Theorem 3.4. Let g(η) be continuous, bounded and integrable then; the Aboodh
transform of g(η) in Caputo-Fabrizio fractional derivative sense is given as: The
Caputo-Fabrizio fractional derivative in a sobolev space given by [5] is defined as:

(20) C.F
a Dτ

ηg (η) =
N(τ)

1− τ

∫ η

a

e

−τ(η − γ)

1− τ g
′
(γ)dγ, 0 < τ ≤ 1.

From the definition of Caputo derivative [4],

(21) c
aD

τ
ηg (η) = aI

m−τ
η g(m) (η) =

1

Γ(m− τ)

∫ η

a

(η − γ)m−τ−1g(m)(γ)dγ,

m− 1 < τ ≤ m. When m = 1, a = 0, then equation (21) was simplified to obtain:

(22) c
aD

τ
ηg (η) =

1

Γ(1− τ)

∫ η

0

(η − γ)−τg
′
(γ)dγ, 0 < τ ≤ 1.

Let τϵ [0,1], g(η)ϵ K’(a,b) for a b, then the Caputo-Fabrizio fractional derivative is
given as [5]:

(23) C.F
a Dτ

ηg (η) =
N(τ)

1− τ

∫ η

a

e

−τ(η − γ)

1− τ g
′
(γ)dγ, 0 < τ ≤ 1,

when, a = 0 and N(τ) = 1.
Equation (23) was simplified to obtain:

(24) C.F
0 Dτ

ηg (η) =
1

1− τ

∫ η

0

e

−τ(η − γ)

1− τ g
′
(γ)dγ, 0 < τ ≤ 1.

The Aboodh transform properties is applied on equation (24)to obtain:

(25) A
[
C.F
0 Dτ

ηg (η)
]
=

1

1− τ
× A

e
−τγ
1− τ × g′(γ)

 .
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Equation (25) was further simplified to obtain:

A
[
C.F
0 Dτ

ηg (η)
]
=

1

1− τ
× ν × A

e
−τγ
1− τ

× A{g(τ)(γ)}

(26) =
ν

ν2(1− τ) + τν
× A{g(τ)(γ)}

since,

(27) A[gτ (γ)] = ντH(ν)−
m−1∑
r=0

gr(0)

ν2−τ+r
.

Hence, equation (26) becomes:

(28) A
[
C.F
a Dτ

ηg (η)
]
=

ν

ν2(1− τ) + τν
× ντH(ν)−

m−1∑
r=0

gr(0)

ν2−τ+r
,

which is the Aboodh transform of Caputo-Fabrizio derivative of order τ .

4. PROCEDURE OF THE ABOODH AND REDUCED DIFFERENTIAL TRANSFORM

SCHEME FOR THE CAPUTO-FABRIZIO DERIVATIVE

Given the general fractional differential equation of the form [31];

(29) C.FDτ
ηu(η, γ) +Ru(η, γ) +NU(η, γ) = g(η, γ)

with the given conditions:

(30) u(m)(η, 0) = g(η), ∀ ηϵN, m = 1, 2, 3, . . .

where the Caputo Fabrizio derivative of order τ is given as C.FDτ
ηu(η, γ), R is the

linear differential operator, N the nonlinear term and the source term as g(η, γ).
Applying the properties of the Aboodh transform on equation (28) we get:

(31) A
[
C.FDτ

ηu(η, γ)
]
+ A [Ru(η, γ)] + A [Nu(η, γ)] = A [g(η, γ)] .

The inverse Aboodh transform is applied on equation (31) with the given condition
to give:

(32) u(η, γ) = A−1

[
ν2(1− τ) + τν

ν1+τ
A [g(η, γ)] +

m−1∑
r=0

u(r)(0)

ν2−τ+r

]
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A−1

[
ν2(1− τ) + τν

ν1+τ
× A [Ru(η, γ) +Nu(η, γ)]

]
Equation (32) is then written as:

(33) u(η, γ) = G(η, γ)− A−1

[
ν2(1− τ) + τν

ν1+τ
{A [Ru(η, γ)] + A [Nu(η, γ)]}

]
,

where the expressions G(η, γ) that rose from the source term after it has been
simplified. The approximated solution will be expressed as:

(34) u(η, γ) =
∞∑
r=0

ur(η, γ).

The nonlinear part is reduced as follows:

(35) Nu(η, γ) =
∞∑
r=0

Ar,

where Ar is expressed as the reduced polynomial which can be gotten from the
below formula

Ar = Ur(η)Um−r(γ), r = 0, 1, . . . .

Substituting equations (34) and (35) into equation (33) gives
∞∑
r=0

ur(η, γ)

= G(η, γ)− A−1

[
ν2(1− τ) + τν

ν1+τ

{
A

[
R

m∑
r=0

ur(η, γ)

]
+ A

[
m∑
r=0

Ar

]}]
.

(36)

From equation (36), the initial approximation is obtained as

(37) ur(η, γ) = G(η, γ), when: r = 0.

And the recursive relation is defined as

(38) ur+1 = −A−1

[
v2(1− τ) + τν

ν1+τ
{A [Rur(η, γ)] + A [Ar]}

]
,

where τ =1,2,3 and r ≥ 0.
The solution u(η, γ) will then be approximated by the series;

(39) u(η, γ) = lim
N→∞

N∑
r=0

ur(η, γ).
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5. APPLICATIONS TO FRACTIONAL NAVIER-STOKES EQUATIONS

5.1. Illustration I.
Given the fractional order Navier-Stokes equation:

(40)
Dτ
ηµ = θ(µϕϕ + µσσ)− (µµϕ + φµσ) + λ

Dτ
ηφ = θ(φϕϕ + φσσ)− (µφϕ + φφσ)− λ

}
subject to the given conditions

µ(ϕ, σ, 0) = − sin(ϕ+ σ)

φ(ϕ, σ, 0) = sin(ϕ+ σ)
.(41)

Applying the differential properties of the Aboodh transform of Caputo-Fabrizio
on equation (40):

A
[
C.FDτ

ηµ
]
= A [θ(µϕϕ + µσσ)− (µµϕ + φµσ) + λ]

ν1+τ

ν2(1− τ) + τν
A [µ(ϕ, σ)]−

m−1∑
r=0

µ(r)(0)

ν2 − τ + r

=A [θ(µϕϕ + µσσ)− (µµϕ + φµσ) + λ] ,

(42)

A
[
C.FDτ

ηφ
]
= A [θ(φϕϕ + φσσ)− (µφϕ + φφσ)− λ]

ν1+τ

ν2(1− τ) + τν
A [φ(ϕ, σ)]−

m−1∑
r=0

φ(r)(0)

ν2 − τ + r

=A [θ(φϕϕ + φσσ)− (µφϕ + φµσ) + λ] .

(43)

The inverse Aboodh transform of equations (42) and (43) alongside the given
conditions is expressed as

µ(ϕ, σ) = A−1 [G(ϕ, σ, 0)]

+A−1

{
ν2(1− τ) + τν

ν1+τ
[A [θ(µϕϕ + µσσ)− (µµϕ + φµσ) + λ]]

}
∞∑
r=0

µr(ϕ, σ, ψ) = − sin(ϕ+ σ) +

(
ψτ

Γ(τ + 1)

)
λ

+A−1

[
ν2(1− τ) + τν

ν1+τ
A [θ(µϕϕ + µσσ)− [N(µ)ϕσ]]

]
(44)
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φ(ϕ, σ) = A−1 [G(ϕ, σ, 0)]

+A−1

{
ν2(1− τ) + τν

ν1+τ
[A [θ(φϕϕ + φσσ)− (µφϕ + φφσ)− λ]]

}
∞∑
r=0

φr(ϕ, σ, ψ) = sin(ϕ+ σ)−
(

ψτ

Γ(τ + 1)

)
λ

+A−1

[
ν2(1− τ) + τν

ν1+τ
A [θ(φϕϕ + φσσ)− [N(φ)ϕσ]]

]
(45)

Thus, the first iterate is given as:

(46)
µ0 = − sin(ϕ+ σ) +

(
ψτ

Γ(τ + 1)

)
λ

φ0 = sin(ϕ+ σ)−
(

ψτ

Γ(τ + 1)

)
λ

 ,

where N(µ) and N(φ) are the reduced polynomials defined as:

(47) N(µ) = µµϕ =
m∑
r=0

Ar

Ar = µm(µm−r)ϕ, A0 = µ0µ0,ϕ{r = 0}, A1 = µ0µ1,ϕ + µ1µ0,ϕ {r = 1}

(48) φµσ =
m∑
r=0

Br

B0 = φ0µ0,σ {r = 0}, B1 = φ0µ1,σ + φ1µ0,σ {r = 1}

(49) N(φ) = µφϕ =
m∑
r=0

Cr, φφσ =
m∑
r=0

Dr

The recursive relation is given as:

µr+1(ϕ, σ, ψ)

=A−1

{
ν2(1− τ) + τν

ν1+τ

[
A

[
θ(µϕϕ + µσσ)−

(
m∑
r=0

Ar +
m∑
r=0

Br

)]]}
φr+1(ϕ, σ, ψ)

=A−1

{
ν2(1− τ) + τν

ν1+τ

[
A

[
θ(φϕϕ + φσσ)−

(
m∑
r=0

Cr +
m∑
r=0

Dr

)]]}(50)
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when r = 0:

µ1(ϕ, σ, ψ) = sin(ϕ+ σ)
2θψτ

Γ(τ + 1)

φ1(ϕ, σ, ψ) = − sin(ϕ+ σ)
2θψτ

Γ(τ + 1)
,

(51)

when r = 1:

µ2(ϕ, σ, ψ) = − sin(ϕ+ σ)
(2θ)2ψ2τ

Γ(2τ + 1)

φ2(ϕ, σ, ψ) = sin(ϕ+ σ)
(2θ)2ψ2τ

Γ(2τ + 1)

(52)

when r = 2:

µ3(ϕ, σ, ψ) = − sin(ϕ+ σ)
(2θ)3ψ3τ

Γ(3τ + 1)

φ3(ϕ, σ, ψ) = sin(ϕ+ σ)
(2θ)3ψ3τ

Γ(3τ + 1)
.

(53)

The approximated solution is obtained as:

µ(ϕ, σ, ψ) = µ0(ϕ, σ, ψ) + µ1(ϕ, σ, ψ) + µ2(ϕ, σ, ψ) + µ3(ϕ, σ, ψ) + . . .

= − sin(ϕ+ σ) +

(
ψr

Γ(τ + 1)

)
λ+ sin(ϕ+ σ)

2θψr

Γ(τ + 1)

− sin(ϕ+ σ)
(2θ)2ψ2τ

Γ(2τ + 1)
+ sin(ϕ+ σ)

(2θ)3ψ3τ

Γ(3τ + 1)

(54)

ψ(ϕ, σ, ψ) = φ0(ϕ, σ, ψ) + φ1(ϕ, σ, ψ) + φ2(ϕ, σ, ψ) + φ3(ϕ, σ, ψ) + . . .

= sin(ϕ+ σ)−
(

ψr

Γ(τ + 1)

)
λ− sin(ϕ+ σ)

2θψr

Γ(τ + 1)

− sin(ϕ+ σ)
(2θ)2ψ2τ

Γ(2τ + 1)
− sin(ϕ+ σ)

(2θ)3ψ3τ

Γ(3τ + 1)

(55)

Equations (54) and (55) are the solution of equation (40) which converges to the
exact solution, (when τ=1 and λ = 0):

(56) µ(ϕ, σ, ψ) = −e−2θψ sin(ϕ+ σ),

(57) φ(ϕ, σ, ψ) = e−2θψ sin(ϕ+ σ).
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TABLE 1. Comparisons between the numerical and analytical solu-
tions for equation (37), µ(ϕ, σ, ψ) at σ = ψ = θ = 10−3 .

ϕ ANALY TICAL ABRDTM FRTM [16] |E − ABRDTM |
0.1 −0.1097563473 −0.1097552362 −0.1097552362 4.20161× 10−7

0.2 −0.2084182120 −0.2084181103 −0.2084181103 4.61745× 10−8

0.3 −0.3049976308 −0.3049967275 −0.3049967275 7.67804× 10−7

0.4 −0.3985296141 −0.3985285031 −0.3985285031 3.46567× 10−9

0.5 −0.4880796212 −0.4880795120 −0.4880795120 5.03011× 10−8

0.6 −0.5727528981 −0.5727527870 −0.5727527870 5.12184× 10−7

0.7 −0.6517034173 −0.6517023063 −0.6517023063 3.62834× 10−6

0.8 −0.7241423315 −0.7241422304 −0.7241422304 2.48523× 10−7

0.9 −0.7893458547 −0.7893457436 −0.7893457436 3.31621× 10−9

1.0 −0.8466624952 −0.8466623841 −0.8466623841 3.86431× 10−8

FIGURE 1. Graph of µ(ϕ, σ, ψ) for equation (40) at τ = 1

TABLE 2. Comparisons between the numerical and analytical solu-
tions for equation (40), φ(ϕ, σ, ψ) at σ = ψ = θ = 10−3 .

ϕ ANALY TICAL ABRDTM FRTM [16] |E − ABRDTM |
0.1 0.1097563473 0.1097552362 0.1097552362 4.20161× 10−7

0.2 0.2084182120 0.2084181103 0.2084181103 4.61745× 10−8

0.3 0.3049976308 0.3049967275 0.3049967275 7.67804× 10−7

0.4 0.3985296141 0.3985285031 0.3985285031 3.46567× 10−9

0.5 0.4880796212 0.4880795120 0.4880795120 5.03011× 10−8

0.6 0.5727528981 0.5727527870 0.5727527870 5.12184× 10−7

0.7 0.6517034173 0.6517023063 0.6517023063 3.62834× 10−6

0.8 0.7241423315 0.7241422304 0.7241422304 2.48523× 10−7

0.9 0.7893458547 0.7893457436 0.7893457436 3.31621× 10−9

1.0 0.8466624952 0.8466623841 0.7893457436 3.86431× 10−8
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FIGURE 2. Graph of φ(ϕ, σ, ψ) for equation (40) at τ =1

TABLE 3. Comparisons between the numerical and analytical solu-
tions for equation (40), φ(ϕ, σ, ψ) at σ = ψ = θ = 10−3, a = τ =
0.25, b = τ = 0.75 .

ϕ ANALYTICAL ABRDTM (a) ABRDTM(b) |E-ABRDTM| |E-ABRDTM|
0.1 0.1097563473 0.08989609518 0.08477066486 1.9860× 10−2 2.4985× 10−2

0.2 0.2084182120 0.18855896930 0.18343353900 1.9859× 10−2 2.4984× 10−2

0.3 0.3049976308 0.28513758650 0.28001215620 1.9860× 10−2 2.4985× 10−2

0.4 0.3985296141 0.37866936210 0.37354393180 1.9860× 10−2 2.4984× 10−2

0.5 0.4880796212 0.46822037100 0.46309494070 1.9859× 10−2 2.4984× 10−2

0.6 0.5727528981 0.55289364600 0.54776821570 1.9859× 10−2 2.4985× 10−2

0.7 0.6517034173 0.63184316530 0.62671773500 1.9860× 10−2 2.4984× 10−2

0.8 0.7241423315 0.70428308940 0.69915765910 1.9859× 10−2 2.4984× 10−2

0.9 0.7893458547 0.76948660260 0.76436117230 1.9859× 10−2 2.4984× 10−2

1.0 0.8466624952 0.82680324310 0.82167781280 1.9859× 10−2 2.4984× 10−2

FIGURE 3. Graph of µ(ϕ, σ, ψ) for equation (40) at τ =0.25 and 0.75
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5.2. Illustration II.
Given the fractional order Navier-Stokes equation:

(58)

Dτ
ηµ = θ(µϕϕ + µσσ + µϱϱ)− (µµϕ + φµσ + ρµϱ) + λ1

Dτ
ηφ = θ(φϕϕ + φσσ + φϱϱ)− (µφϕ + φφσ + ρφϱ) + λ2

Dτ
ηρ = θ(ρϕϕ + ρσσ + ρϱϱ)− (µρϕ + φρσ + ρρϱ) + λ3


subject to the initial condition

(59)

µ(ϕ, σ, ϱ, 0) = −0.5ϕ+ σ + ϱ

φ(ϕ, σ, ϱ, 0) = ϕ− 0.5σ + ϱ

ρ(ϕ, σ, ϱ, 0) = ϕ+ σ − 0.5ϱ


Applying the differential properties of the Aboodh transform of Caputo-Fabrizio
on equation (58):

A
[
C.FDτ

ηµ
]
= A [θ(µϕϕ + µσσ + µϱϱ)− (µµϕ + φµσ + ρµϱ) + λ1]

ν1+τ

ν2(1− τ) + τν
A [µ(ϕ, σ, ϱ)]−

m−1∑
r=0

µ(r)(0)

ν2 − τ + r

=A [θ(µϕϕ + µσσ + µϱϱ)− (µµϕ + φµσ + ρµϱ) + λ1]

(60)

A
[
C.FDτ

ηφ
]
= A [θ(φϕϕ + φσσ + φϱϱ)− (µφϕ + φφσ + ρφϱ) + λ2]

ν1+τ

ν2(1− τ) + τν
A [φ(ϕ, σ, ϱ)]−

m−1∑
r=0

φ(r)(0)

ν2 − τ + r

=A [θ(φϕϕ + φσσ + φϱϱ)− (µφϕ + φφσ + ρφϱ) + λ2]

(61)

A
[
C.FDτ

ηρ
]
= A [θ(ρϕϕ + ρσσ + ρϱϱ)− (µρϕ + φρσ + ρρϱ) + λ3]

ν1+τ

ν2(1− τ) + τν
A [ρ(ϕ, σ, ϱ)]−

m−1∑
r=0

φ(r)(0)

ν2 − τ + r

=A [θ(ρϕϕ + ρσσ + ρϱϱ)− (µρϕ + φρσ + ρρϱ) + λ3] .

(62)
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The inverse Aboodh transform of equations (60-62) alongside the given conditions
is expressed as:

µ(ϕ, σ, ϱ) = A−1 [G(ϕ, σ, ϱ, 0)]

+A−1

{
ν2(1− τ) + τν

ν1+τ
[A [θ(µϕϕ + µσσ + µϱϱ)− (µµϕ + φµσ + ρµϱ) + λ1]]

}
∞∑
r=0

µr(ϕ, σ, ϱ, ψ) = (−0.5φ+ σ + ρ) +

(
ψτ

Γ(τ + 1)

)
λ1

+A−1

[
ν2(1− τ) + τν

ν1+τ
A [θ(µϕϕ + µσσ + µϱϱ)− [N(µ)ϕσ]]

]
(63)

φ(ϕ, σ, ϱ) = A−1 [G(ϕ, σ, ϱ, 0)]

+A−1

{
ν2(1− τ) + τν

ν1+τ
[A [θ(φϕϕ + φσσ + φϱϱ)

− (µφϕ + φφσ + ρφϱ) + λ2]]}

(64)

∞∑
r=0

φr(ϕ, σ, ϱ, ψ) = (ϕ− 0.5σ + ρ) +

(
ψτ

Γ(τ + 1)

)
λ2

+A−1

[
ν2(1− τ) + τν

ν1+τ
A [θ(φϕϕ + φσσ + φϱϱ)− [N(φ)ϕσ]]

](65)

ρ(ϕ, σ, ϱ) = A−1 [G(ϕ, σ, ϱ, 0)]

+A−1

{
ν2(1− τ) + τν

ν1+τ
[A [θ(ρϕϕ + ρσσ + ρϱϱ)− (µρϕ + φρσ + ρρϱ) + λ2]]

}
∞∑
r=0

ρr(ϕ, σ, ϱ, ψ) = (ϕ− 0.5σ + ρ) +

(
ψτ

Γ(τ + 1)

)
λ2

+A−1

[
ν2(1− τ) + τν

ν1+τ
A [θ(ρϕϕ + ρσσ + ρϱϱ)− [N(ρ)ϕσ]]

](66)

Thus, the first iterate is given as:

(67)

µ0 = −0.5ϕ+ σ + ϱ

φ0 = ϕ− 0.5σ + ϱ

ρ0 = ϕ+ σ − 0.5ϱ
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where N(µ), N(φ) and N(ρ)are the reduced polynomials defined as:

N(µ) = µµϕ =
m∑
r=0

Ar

Ar = µm(µm−r)ϕ, A0 = µ0µ0,ϕ{r = 0}, A1 = µ0µ1,ϕ + µ1µ0,ϕ {r = 1}

(68) φµσ =
m∑
r=0

Br ρµϱ =
m∑
r=0

Cr

B0 = φ0µ0,σ {r = 1}, B1 = φ0µ1,σ + φ1µ0,σ {r = 1}

N(φ) = µφϕ =
m∑
r=0

Dr, φφσ =
m∑
r=0

Erρφϱ =
m∑
r=0

Fr

(69) N(ρ) = µρϕ =
m∑
r=0

Gr, φρσ =
m∑
r=0

Hrρρϱ =
m∑
r=0

Ir

The recursive relation is given as:

µr+1(ϕ, σ, ϱ, ψ)

=A−1

{
ν2(1− τ) + τν

ν1+τ

[
A

[
θ(µϕϕ + µσσ + µϱϱ)−

(
m∑
r=0

Ar +
m∑
r=0

Br +
m∑
r=0

Cr

)]]}

φr+1(ϕ, σ, ϱ, ψ) = A−1

{
ν2(1− τ) + τν

ν1+τ
[A [θ(φϕϕ + φσσ + φϱϱ)

−

(
m∑
r=0

Dr +

m∑
r=0

Er +

m∑
r=0

Fr

)]]}(70)

ρr+1(ϕ, σ, ϱ, ψ)

=A−1

{
ν2(1− τ) + τν

ν1+τ

[
A

[
θ(ρϕϕ + ρσσ + ρϱϱ)−

(
m∑
r=0

Gr +

m∑
r=0

Hr +

m∑
r=0

Ir

)]]}
(71)

when r = 0:
µ1(ϕ, σ, ϱ, ψ) =

−2.25ϕψτ

Γ(τ + 1)

(72) φ1(ϕ, σ, ϱ, ψ) =
−2.25σψτ

Γ(τ + 1)

ρ1(ϕ, σ, ϱ, ψ) =
−2.25ρψτ

Γ(τ + 1)
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when r = 1:

µ2(ϕ, σ, ϱ, ψ) =
2(2.25)ϕψτ

Γ(2τ + 1)
(−0.5ϕ+ σ + ϱ)

(73) φ2(ϕ, σ, ϱ, ψ) =
2(2.25)ϕψτ

Γ(2τ + 1)
(ϕ− 0.5σ + ϱ)

ρ2(ϕ, σ, ϱ, ψ) =
2(2.25)ϕψτ

Γ(2τ + 1)
(ϕ+ σ − 0.5ϱ)

when r = 2:

µ3(ϕ, σ, ϱ, ψ) = −(2.25)2ϕ(4(Γ(τ + 1))2 + Γ(2τ + 1))ψ3τ

Γ(2τ + 1)(Γ(τ + 1))2

(74) φ3(ϕ, σ, ϱ, ψ) = −(2.25)2σ(4(Γ(τ + 1))2 + Γ(2τ + 1))ψ3τ

Γ(2τ + 1)(Γ(τ + 1))2

ρ3(ϕ, σ, ϱ, ψ) = −(2.25)2ρ(4(Γ(τ + 1))2 + Γ(2τ + 1))ψ3τ

Γ(2τ + 1)(Γ(τ + 1))2

The approximated solution is obtained as:

µ(ϕ, σ, ϱ, ψ)

= µ0(ϕ, σ, ϱ, ψ) + µ1(ϕ, σ, ϱ, ψ) + µ2(ϕ, σ, ϱ, ψ) + µ3(ϕ, σ, ϱ, ψ) + . . .

= −0.5ϕ+ σ + ϱ− 2.25ϕψτ

Γ(τ + 1)
+

2(2.25)ϕψ2τ

Γ(2τ + 1)

× (−0.5ϕ+ σ + ϱ)− (2.25)2ϕψ3τ

Γ(3τ + 1)

(
4 +

Γ(2τ + 1)

(Γ(τ + 1))2

)
+ . . .

(75)

φ(ϕ, σ, ϱ, ψ)

= φ0(ϕ, σ, ϱ, ψ) + φ1(ϕ, σ, ϱ, ψ) + φ2(ϕ, σ, ϱ, ψ) + φ3(ϕ, σ, ϱ, ψ) + . . .

= ϕ− 0.5σ + ϱ− 2.25σψτ

Γ(τ + 1)
+

2(2.25)σψ2τ

Γ(2τ + 1)

× (ϕ− 0.5σ + ϱ)− (2.25)2σψ3τ

Γ(3τ + 1)

(
4 +

Γ(2τ + 1)

(Γ(τ + 1))2

)
+ . . .

(76)

ρ(ϕ, σ, ϱ, ψ)

= ρ0(ϕ, σ, ϱ, ψ) + ρ1(ϕ, σ, ϱ, ψ) + ρ2(ϕ, σ, ϱ, ψ) + ρ3(ϕ, σ, ϱ, ψ) + . . .



78 A.A. Oyewumi, R.A. Oderinu, A.W. Ogunsola, M. Taiwo, and A.A. Yahaya

= ϕ+ σ − 0.5ϱ− 2.25ϱψτ

Γ(τ + 1)
+

2(2.25)ϱψ2τ

Γ(2τ + 1)

× (ϕ+ σ − 0.5ϱ)− (2.25)2ϱψ3τ

Γ(3τ + 1)

(
4 +

Γ(2τ + 1)

(Γ(τ + 1))2

)
+ . . .

(77)

Equations (74-76) is the solution of equation (55) which converges to the exact
solution,(when τ=1):

µ(ϕ, σ, ϱ, ψ) =
−0.5ϕ+ σ + ϱ− 2.25ϕψ

1− 2.25ψ2

ψ(ϕ, σ, ϱ, ψ) =
ϕ− 0.5σ + ϱ− 2.25σψ

1− 2.25ψ2

ρ(ϕ, σ, ϱ, ψ) =
ϕ+ σ − 0.5ϱ− 2.25ϱψ

1− 2.25ψ2
.

(78)

TABLE 4. Comparisons between the numerical and analytical solu-
tions for equation (58) µ(ϕ, σ, ϱ, ψ) at σ = ϱ = ψ = 10−3.

ϕ Analytical ABRDTM FRTM |E − ABRDTM |
0.1 0.03225073125 0.03225062024 0.03225062024 3.09891× 10−7

0.08450221250 0.08450210149 0.08450210149 4.17898× 10−8

0.13675444380 0.13675434270 0.13675434270 3.01948× 10−9

0.18900742500 0.18900731400 0.18900731400 2.06452× 10−6

0.5 0.24126115620 0.24126114510 0.24126114510 3.21061× 10−7

0.29351563750 0.29351452640 0.29351452640 3.07221× 10−9

0.34577086880 0.34577075770 0.34577075770 2.09879× 10−7

0.39802685000 0.39802684967 0.39802684967 4.08559× 10−6

0.45028358120 0.45028347019 0.45028347019 5.76776× 10−7

1.0 0.50254106250 0.50254095140 0.50254095140 5.76776× 10−8

6. DISCUSSION OF RESULTS

Aboodh transform of convolution of two functions was shown to exist in The-
orem 3.2. In addition, the formula for Aboodh transform of Riemann Liouville
derivative and Caputo derivative were also shown to exist in Theorem 3.3 and
3.4 respectively which were then used in obtaining solutions of two Navier-Stokes
equations of the Caputo-Fabrizio type.
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TABLE 5. Comparisons between the numerical and analytical solu-
tions for equation (58) µ(ϕ, σ, ϱ, ψ) at σ = ϱ = ψ = 10−3 a = τ =
0.25, b = τ = 0.75

ϕ Analytical ABRDTM(a) ABRDTM(b) |E − ABRDTM |
0.1 0.03225073125 0.03007115150 0.30711550980 2.17957× 10−3

0.08450221250 0.08014230370 0.08142317700 4.35990× 10−3

0.13675444380 0.13021345670 0.13213487790 6.54098× 10−3

0.18900742500 0.18028461050 0.18284665390 8.72281× 10−3

0.5 0.24126115620 0.23035576500 0.23355850490 1.09053× 10−2

0.29351563750 0.28042692020 0.28427043090 1.30887× 10−2

0.34577086880 0.33049807620 0.33498243190 1.52727× 10−2

0.39802685000 0.38056923300 0.38569450780 1.74576× 10−2

0.45028358120 0.43064039040 0.43640665880 1.96431× 10−2

1.0 0.50254106250 0.48071154870 0.48711888480 2.18295× 10−2

FIGURE 4. Graph of µ(ϕ, σ, ϱ, φ) for equation (55) at τ = 1

Tables 1, 2 3, and 4, 5, show the results of equations (40) and (58), respectively,
which compared the numerical results obtained in this work with the exact solu-
tion at τ = 1. Different values of τ at 0.25 and 0.75 were computed and compared
to verify their effect on the solution of the problems considered. Tables 3 and 5
displays the values and errors obtained when compared with the values obtained
at τ = 1 for both problems solved. These results agree with the exact solutions
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FIGURE 5. Graph of µ(ϕ, σ, ϱ, φ) for equation (58) at τ = 0.25 and 0.75

TABLE 6. Comparisons between the numerical and analytical solu-
tions for equation (58) for φ(ϕ, σ, ϱ, ψ) at σ = ϱ = ψ = 10−3 .

ϕ Analytical ABRDTM FRTM E − ABRDTM
0.1 0.1047747300 0.1047636279 0.1047636279 3.09891× 10−9

0.2047744488 0.2047743487 0.2047743487 4.17898× 10−8

0.3047741674 0.3047741674 0.3047741674 3.01948× 10−5

0.4047738862 0.4047738862 0.4047738862 4.06452× 10−3

0.5 0.5047736050 0.5047625940 0.5047625940 5.21061× 10−7

0.6047733238 0.6047622127 0.6047622127 4.07221× 10−6

0.7047730424 0.7047629393 0.7047629393 3.09879× 10−8

0.8047727612 0.8047616601 0.8047616601 4.08559× 10−7

0.9047724800 0.9047613985 0.9047613985 5.76776× 10−9

1.0 1.0047721990 1.0047610989 1.0047610989 5.76776× 10−7

as the errors calculated are very negligible. The choice of τ = 1 is the only point
where exact solutions exists for the two problems.

Figures 1,2,3,4,5 and 6 also depicts the pictorial properties of the problems
considered at different values of fractional order τ . The shapes of the graphs
shows the effect of the various values obtained for each problem with different
values of τ considered.
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FIGURE 6. Graph of φ(ϕ, σ, ϱ, ψ) for equation (58) at τ = 1

7. CONCLUSION

In this work, we have investigated the solutions of the N–S equations of frac-
tional order with the aid of the Aboodh and reduced differential transform meth-
ods(ABRDTM) of the Caputo-Fabrizio type. The proposed method is a combination
of Aboodh transform method [32] and reduced differential transform method [33,
34]. The combined method has been used for two nonlinear partial differential
Navier -Stokes equations and provide the actual solutions in the form of conver-
gent series. The solutions are calculated for both fractional and integer orders of
the problems. The results gotten are explained and verified using graphs and ta-
bles. It is analyzed that the present technique provides the solutions of fractional-
order problems in a very simple and straightforward procedure and thus suitable
to compute the solutions of other nonlinear problems in various branches of ap-
plied sciences.
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